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Abstract: Many datasets used to train artificial intelligence systems to recognize potholes, such
as the challenging sequences for autonomous driving (CCSAD) and the Pacific Northwest road
(PNW) datasets, do not produce satisfactory results. This is due to the fact that these datasets
present complex but realistic scenarios of pothole detection tasks than popularly used datasets that
achieve better results but do not effectively represents realistic pothole detection task. In remote
sensing, super-resolution generative adversarial networks (GAN), such as enhanced super-resolution
generative adversarial networks (ESRGAN), have been employed to mitigate the issues of small-object
detection, which has shown remarkable performance in detecting small objects from low-quality
images. Inspired by this success in remote sensing, we apply similar techniques with an ESRGAN
super-resolution network to improve the image quality of road surfaces, and we use different
object detection networks in the same pipeline to detect instances of potholes in the images. The
architecture we propose consists of two main components: ESRGAN and a detection network. For
the detection network, we employ both you only look once (YOLOv5) and EfficientDet networks.
Comprehensive experiments on different pothole detection datasets show better performance for our
method compared to similar state-of-the-art methods for pothole detection.

Keywords: pothole detection; small object detection; super-resolution; object detection; GAN;
deep learning

1. Introduction
1.1. Problem Description and Motivation

There are many applications for the detection of objects on the road, with some of the
most promising occurring in autonomous driving [1,2], and surface defects that need to
be reported to road repair ministries [3,4]. These applications are made possible through
cameras that are mounted on moving vehicles. In order to address the challenges of
detecting potholes from images and videos, there have been many methods proposed.
These methods include processing images or videos captured with cameras from mobile
phones [3], unmanned aerial vehicles (UAVs), and drones [5]. However, the methods do
not reflect how pothole detection as an object detection problem can be perceived. Figure 1
shows on the left an image that was taken close up while standing over a pothole. This
typically represents how most pothole datasets acquire data and what the state-of-the-art
methods have used to train models to detect potholes. The image on the right shows a
more realistic scenario of pothole instances captured from a moving vehicle, representing
how pothole detection tasks should be perceived. When the methods are presented in a
manner that reflects the problem well, the detection performance is not so good because of
cases where the amount of noise present in images or videos, most often at low resolution,
causes small potholes to appear as insignificant objects that blend into the background.
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The datasets that present realistic representations of pothole detection problems include
PNW [6] and CCSAD [7].

Figure 1. A more realistic task of pothole detection presented in the right column compared to an
unrealistic instance.

When evaluating object detection methods’ performance, researchers use datasets,
such as ImageNet [8] and Microsoft Common Objects in Context (COCO) [9], containing
objects that are relatively easy to detect. In addition, the objects often appear large in
the images. However, some other objects captured from a distance often appear small,
sometimes blending in with the background, and can be challenging to detect using popular
object detectors [10]. For images containing these types of objects to be detected, researchers
have found that high-resolution (HR) images offer more input features than low-resolution
(LR) images as a result of the lack of input features for small objects [11–13].

In an attempt to improve the detection accuracy of the pothole object detection prob-
lems, researchers have proposed varieties of object detection methods [14–19] enhanced
with super-resolution (SR) techniques that are employed to generate an enhanced image
from a low-resolution image before performing object detection. In the field of remote
sensing, where images are captured from a satellite and most often present the small object
detection problem, several methods have been proposed based on super-resolution as
well. SR techniques based on convolutional neural networks (CNN), such as single-image
super-resolution convolution networks (SRCNN) [14] and accurate image super-resolution
using very deep convolutional networks (VDSR) [15], have been proposed and show re-
markable results in generating HR images and performing object detection. In addition to
CNN-based methods, methods based on generative adversarial network (GAN) [16] have
also been proposed. Super-resolution generative adversarial networks (SRGAN) [17], en-
hanced super-resolution generative adversarial networks (ESRGAN) [18], and end-to-end
enhanced super-resolution generative adversarial networks (EESRGAN) [19] have demon-
strated better performance in producing both realistic HR images and performing small
object detection. These GAN-based models typically consist of generator and discriminator
networks that are trained on a pair of LR and HR images, with the generator network
generating HR images from the inputted LR images while the discriminator network tries
to distinguish the real HR image from the generated HR image. The generator network
eventually learns to produce HR images that are indistinguishable from the ground truth
HR images, and the discriminator will not be able to distinguish between the images.

Another major challenge in detecting potholes on roads is the cost of the sensor
devices used in such a process. Majorly, lidar sensors are exploited for 3D modeling of
the surrounding environment to detect obstacles and objects around the vehicle. A single
lidar sensor can easily cost thousands of dollars. Cameras have been exploited as cheaper
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alternatives, but acquiring HR cameras that can capture high-quality images from a moving
vehicle can also be expensive.

We have thus identified two main problems with detecting potholes from 2D images.
First, the accuracy of object detection models can decline considerably when potholes
appear as small objects at a distance compared to large objects. Second, LR cameras cannot
provide good detection accuracy at a reasonable cost, while it is too costly to acquire
HR cameras. Therefore, there is a need for a novel solution to improve the detection of
potholes when they appear at a distance from LR images. To the best of our knowledge, no
study has employed GAN-based super-resolution image enhancement and object detection
algorithms to detect potholes when they appear in a captured image.

In this paper, we present a pipeline that combines an object detection network and
a super-resolution network in order to detect potholes accurately from images. Recent
research has shown that some state-of-the-art detectors can misclassify or totally miss
objects that appear at a distance when trained on low-resolution images. Our proposed
method can detect such instances of potholes that are at a distance. When we used super-
resolution images to train our object detector to detect instances of potholes from images
from different pothole detection datasets, namely the Sunny dataset, CCSAD, PNW, and
Japan, the detector exhibited a more reliable detection performance than when using low-
resolution images. We have combined several datasets to achieve this aim because there is
no single benchmark dataset for pothole detection and most of the known datasets do not
accurately represent the pothole detection scenario. This is a known challenge in pothole
detection tasks. A comparison of our methods with similar studies using similar datasets
indicates that our detector records a higher precision rate than comparative studies and
has a reasonable recall value on the test set. The overall performance on the test datasets is
also satisfactory. Section 5 provides detailed information about our results.

1.2. Contributions

The proposed methodology uses two components: the ESRGAN network [18] and an
object detection network (YOLOv5 and EfficientDet Networks). This approach is inspired
from work completed in the remote sensing field that employs super-resolution GANs
to detect objects at different resolutions. We used ESRGAN to generate super-resolution
images and trained an object detection network on these images.

The proposed strategy facilitates the detection of potholes from a distance accurately.
Figure 2 shows the cases where some instances of potholes could not be detected from an
LR image. The experimental results show that, using the state-of-the-art object detectors,
the SR images used for training can significantly outperform the detectors trained on LR
images both in accuracy and in detecting small potholes that appear in the frame. It is
our hope that this study will expose the industry to the field of using HR images for the
task of pothole detection. In this study, we also provide an overview of the state-of-the-art
techniques used for the problem of pothole detection.

The paper is structured as follows: in Section 2, we review the existing literature on
pothole detection techniques, image super-resolution techniques, and studies that have
employed super-resolution along with object detection for small object detection tasks. In
Section 3, we present our proposed methodology by showcasing the ESRGAN network
and the object detection methods we have employed, such as YOLOv5 and EfficientNet.
In Section 4, we provide the details of our experiments by providing information about
the datasets we have used in training and testing our methods. In Section 5, we present
comparative performance evaluation results derived from the experiments on different
datasets and also a comparison with other studies that used similar datasets but on LR
images. Finally, in Section 6, we conclude.
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Figure 2. The first image shows detected instances on an LR image, and the second image shows
detection on an SR image, which detected more instances of potholes, particularly an instance at a
distance.

2. Related Works

In this section, we provide in-depth knowledge regarding the developing field of
road surface anomalies detection. We discuss the topic within the context of other related
areas and review the current research on the subject. This section presents the recent
advancements in the fields related to this paper.

2.1. Pothole Object Detection

A variety of devices have been employed to collect data used in road surface anomalies
detection. These devices include image acquisition devices, vibration-based sensors, and
3-D depth cameras. Object detection techniques often rely on image data captured by
digital cameras [20,21] and depth cameras, thermal imaging technology, and lasers.

To extract the features of a pothole from images, convolutional-neural-network (CNN)-
based techniques are more prevalent in this application. These models can accurately
model non-linearity in patterns and perform automatic feature extraction on given images.
In addition, they are desirable because of their robustness to filtering background noise
and low contrast in road images [22]. CNNs have been successfully employed in many
applications [1,3,5], but they are not effective in all scenarios. For example, when the object
to be detected is small relative to the image, or when high-resolution images are used to
mitigate this problem, the computation required to process the data can be prohibitive.
This is because CNNs consume a large amount of memory and computation time [23]. To
address this, Chen et al. [23] suggest two workarounds to resize input images to the network
or using image patches from HR images to train the network. The former workaround is a
two-stage system in which a localization network (LCNN) is first employed to locate the
pothole instance in the image and then a classification network based on part (PCNN) is
utilized to determine the classes.

Salcedo et al. [4] recently proposed a series of deep learning models to develop a road
maintenance prioritization system for India. The proposed models include UNet, which
employs ResNet34 as the encoder (a neural network subcomponent), EfficientDet, and
YOLOv5 on the Indian driving dataset (IDD). Another variation of the you only look once
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(YOLO) model has also been employed for the task of pothole detection. In a study by Silva
et al. [24], the YOLOv4 algorithm was used to detect road damage on a custom dataset
that provides an aerial view of roads from a flying drone. The accuracy of the YOLOv4
algorithm and its applicability in the context of identifying damages on highway roads was
experimentally evaluated, with an accuracy of 95%.

Asphalt roads can be evaluated by creating 3D crack segmentation models. Guan
et al. [25] employed a modified U-net architecture featuring a depth-wise separable convo-
lution in an attempt to reduce the computational workload when working on a multi-view
stereo imaging system that contains color images, depth images, and color-depth over-
lapped images of asphalt roads. The architecture produces a 3D crack segmentation model
that considerably outperforms the benchmark models regarding both inference speed and
accuracy.

Fan et al. [26] argued that approaches that have employed CNNs for road potholes
are faced with challenges of annotating data to be used for training since deep learning
models require a large amount of data. The authors thereby proposed a stereo vision-
based road pothole detection dataset and an algorithm that is used to distinguish between
damaged road and undamaged roads. The algorithm proposed derived inspiration from
graph neural network, where the authors employed an additional CNN layer called the
graph attention layer (GAL) to provide optimization for image feature representations for
semantic segmentation.

Other methods besides deep learning—such as support vector machines (SVM) and
nonlinear SVM—have been explored for extracting potholes from images. Gao et al. [27]
employed texture features from grayscale images to train an SVM classifier to distinguish
road potholes from cracks in the pavement.

In addition to the aforementioned machine-learning-based techniques, other ap-
proaches have been developed. Penghui et al. [28] used morphological processing in
conjunction with geometric features from pavement images to detect pothole edges. Koch
et al. [29] used histogram shape-based thresholding to detect defective regions in road
surface images and subsequently applied morphological thinning and elliptic regression to
deduce pothole shapes; texture features within these shapes were compared with those
from surrounding non-pothole areas to determine if an actual pothole was present.

As previously mentioned, these proposed techniques produce good results on the test
set, but they have not been trained and tested on realistic datasets of high complexity, such
as those encountered in autonomous vehicles and unmanned aerial vehicles. Such models
will likely underperform when applied to real-world scenarios.

2.2. Super-Resolution Techniques

Small object detection is commonly exploited in the remote sensing field, where
researchers are often faced with small objects in the object categories, making the detection
of these objects by state-of-the-art detectors challenging. As images are scaled down by the
generic detectors, such as SSD, Faster R-CNN, etc., the performance is reduced. Therefore,
most of the proposed methods that use super-resolution images for small object detection
are enormous in this field.

Enhanced deep SR network (EDSR) [30] introduces the idea of performing object
detection on SR images in the remote sensing field for some of the popularly used ar-
chitectures [19,31,32]. The ESRGAN [18] architecture improved on the existing super-
resolution GAN networks to provide more realistic SR images. The authors employed
residual-in-residual dense block (RRDB) with adversarial and perceptual loss to achieve
this. The authors achieved a considerable improvement in a subsequent study regard-
ing real-ESRGAN [33] with the use of only synthetic data with high-order degradation
modeling, which were close to the real-world degradations.

SwinIR [34] addressed the issue of small object detection with SR data by proposing a
transformer that had three parts: a shallow feature extraction step, a deep feature extraction
step, and a high-quality image reconstruction step using the residual Swin transformer
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blocks (RSTB). This transformer produced good results on the DIV2K dataset and the
Flickr2K dataset.

Zhang et al. [35] proposed a model called BSRGAN to address degradation issues of
SR models that often affect the performance of such models. They proposed that BSRGAN
uses random blue shuffle, down sampling, and noise degradation techniques to produce a
more realistic degradation of LR images.

The dual regression network (DRN) [36] mapped LR images to HR ones and provided
a corresponding degradation mapping function. The authors also found that their method
achieved better performance in terms of PSNR (peak signal-to-noise ratio) and the number
of parameters.

NLSN for non-local sparse network [37] uses a non-local sparse attention (NLSA) to
address the problem of image SR. The method divides the input into hash buckets that
contain relevant features, which prevents the network from providing noise or attention to
areas of the image with less information during training.

2.3. Super-Resolution Based Object Detectors

For object detection tasks, both training and inference are affected by the size of the
objects. The existing detectors work well with medium-to-large-sized objects but struggle
when detecting small-sized objects (objects occupying less than 5% of the overall image
size or objects with dimensions in a few pixels). This is because small objects are often
indistinguishable from the features of other classes or the background, thereby leading to
lower accuracy for the detector.

One technique for improving detector accuracy has been to use data augmentation to
oversample small objects of interest, thus increasing the possibility that the small objects
will overlap with the prediction [38]. However, this technique has proven to decrease
accuracy on other objects in the dataset by reducing the overall amount of training data
available for those objects. Another technique proposed for improving detector accuracy is
training on both small and large objects of multiple resolutions [39].

YOLOv3 [40] is an object detection system that uses the feature pyramid network
(FPN) to quickly provide users with the location of objects in a specific field of view. The
system has had great success at detecting small objects due to its ability to detect and locate
them without having to perform multiple scans of the same area. One of the significant
improvements this network provides is the addition of a new classifier that enables the
system to track objects during different stages of their movements, which allows YOLOv3
to locate smaller objects more effectively. However, the network lacks significantly when it
comes to processing time. To further improve the performance of small object detection,
different modifications have been made to the architecture.

To further improve the performance of YOLOv3 on small object detection and pro-
cessing speed, Chang et al. [41] proposed amendments to the structure of the network.
First, the authors proposed using the K-means algorithm using the width and height of the
object’s bounding box to obtain appropriate anchor boxes for the objects of interest in a
dataset to mitigate the challenge of the objects having different sizes. This modification
provides faster network training since the generated anchor boxes are now much closer to
the dataset objects.

Lv et al. [42] proposed optimizing the loss function of the YOLOv3 by changing
the default loss function L2 and classification loss cross-entropy to GIoU (generalized
intersection-over-union) loss function and focal loss, respectively, due to the lack of ro-
bustness of the L2 loss function and vulnerabilities, such as the model being sensitive to
examples with significant errors and, while trying to adjust, sacrificing example values,
with small mistakes. To this end, the GIoU loss function, a variation of the IoU loss function,
is proposed to provide a general improvement for the YOLOv3 network

In studies by Bashir and Wang [11] and Courtrai et al. [43], SR networks were used
to increase the spatial resolution of LR datasets before feeding the SR images to detector
networks for actual detection tasks. Such SR networks have been exploited in recent studies
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to scale LR images for 2× and 4× scale factors, resulting in remarkable results. In recent
years, image generation models that produce single or a pair of images have been widely
used for visual representation. Examples include single-image super-resolution (SISR) [44]
using a single input; Ferdous et al. [45] used a generative adversarial network (GAN) to
produce SR images and SSD to perform object detection on the images; Rabbi et al. [19]
combined ESRGAN [18] and EEGAN [46] to develop their own integrated end-to-end
small object detection network; Wang et al. [47] proposed a multi-class cyclic GAN with
residual feature aggregation (RFA), which is based on both image SR and object detection.
The proposed method replaced conventional residual blocks with RFA-based blocks and
concatenated the features of the images to improve the performance of the network.

3. Materials and Methods

In this paper, we present an efficient architecture for the detection of small objects in
the context of pothole detection on road images. Toward this goal, we propose a network
consisting of two separately trained deep neural network modules: ERSGAN (enhanced
super-resolution generative adversarial networks), which is used to upscale the images
by 4× while producing HR images from LR images, and an object detection network for
detecting instances of potholes. Figure 2 shows the proposed architecture. The ERSGAN is
first used to upscale the images in our dataset 4 times their original scale, while the object
detection network is trained on the HR images.

3.1. Super-Resolution with ESRGAN

The SR network based on ESRGAN architecture was designed to generally improve
the perceptual quality of super-resolution images. ESRGAN typically employs the basic
architecture of SRResNet [17] with few adjustments made to the discriminator network
and the perceptual loss for produce a better performance.

To improve the quality of the generated images, primarily texture, two main changes
were introduced to the architecture of the SRGAN. First, all BN layers were removed and
replaced by a new residual-in-residual dense block (RRDB), which combines both dense
connections and multi-level residual networks within a single module.

From the architecture of the SRGAN, the batch normalization (BN) layers were re-
moved from the residual block as depicted in Figure 3. This was conducted because the
removal of BN layers from architectures have produced better results in PSNR tasks, such
as deblurring [48] and super-resolution [30], since BN layers perform normalization of
features with mean and variance in a given batch during the training process and even use
an estimate of mean and variance of the entire training dataset during testing; therefore,
the statistics for training and testing datasets significantly vary, thereby introducing un-
desirable artifacts and also limiting the generalization ability. Therefore, to achieve more
stable training and performance of the network, the BN layers were removed. It was also
observed that the procedure improved the generalization ability of the network and also
caused a reduction in the computational workload.

While retaining the architectural design of the SRGAN, RRDB is proposed as the basic
block, with the intention to use more layers and connections to improve the performance of
the network. It features a residual-in-residual structure and uses dense blocks in the main
connections.

In addition to these changes made to the SRGAN architecture, the authors also ex-
ploited a different training technique to achieve a better performance: residual scaling,
which scales down the residuals through the multiplication of a given constant value
between 0 and 1 before adding them to the main path as an attempt to establish stability
and the usage of smaller initialization, which makes training easier since the parameter
variance will become smaller.
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Figure 3. The proposed end-to-end architecture consisting of the ESRGAN super-resolution architec-
ture and object detector.

3.1.1. Relativistic Discriminator

In addition to the improvements that have been covered so far, which are mainly
completed in the generator network of the architecture, the authors also proposed the
enhancement of the discriminator network based on the relativistic GAN [49], which
differs from the standard discriminator D used in SRGAN. The relativistic discriminator
DRa attempts to deduce the probability of a real image is relatively more realistic than
a generated image by the generator. This differs from the SRGAN discriminator, which
only estimates the probability of an input image x is real. Thus, the authors deduced the
discriminator loss and the adversarial loss for the generator network as:

LRa
D = −Exr

[
log
(

DRa

(
xr, x f

))]
− Ex f

[
log
(

1 − DRa

(
x f , xr

) )]
. (1)

LRa
G = −Exr

[
log
(

1 − DRa

(
xr, x f

))]
− Ex f

[
log
(

DRa

(
x f , xr

) )]
. (2)

Ex f represents for the operation of taking average for all the generated data in a given
mini-batch. The generated image derived from the input LR image is represented as x f
and xr for the real SR image. Both real and generated data gradients provide benefit to the
generator during adversarial training.

3.1.2. Perceptual Loss

SRGAN proposed a loss, which constrains the features after the activation. As for
perceptual loss Lpercep, the constraints on features are completed before activation. The
standard perceptual loss proposed by Johnson et al. [50] can be enabled on the activation
layers of a pre-trained deep neural network with the minimal distance between the two
activated features. As for ESRGAN, the authors proposed to use the features before the
activation layers to overcome the drawbacks of the original perceptual loss. The identified
drawbacks include: sparse activated features which provides weak supervision and lead to
lower performance, and inconsistent reconstructed brightness of SR images when compared
to the ground truth image. The loss for the generator network is thus given as:

LG = Lpercep + λLRa
G + ηL1 (3)
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The content loss L1 is used to evaluate the 1-norm distance between the ground truth
image and the recovered image, while λ and η are coefficients for balancing the different
loss terms.

Finally, to prevent unwanted noise in the result, the authors proposed a network
interpolation strategy that trains a PSNR-oriented network and a fine-tuned GAN-base
network, with both network parameters interpolated to derive an interpolated model G
with the following parameters: θ INTERP

G , θPSNR
G , and θGAN

G :

θ INTERP
G = (1 − α)θPSNR

G + αθGAN
G (4)

This allows the network to produce good results without the introduction of artefacts
and a continuously balanced perceptual quality through training. In the case of potholes,
the network showcased its ability to remove significant noise from the images. In addition
to upscaling the images to 4× the original size, deblurring was adequate and the edge
information of the pothole shapes is enhanced as well; see Figure 4.

Figure 4. On the left is the SR generated by ESRGAN (4× scale) compared with the LR image on the
right. It can be observed that the SR images provide more feature representation of the objects on
scene than the LR images.
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3.2. Object Detection

We proposed both YOLOv5 and EfficientDet-D1 architectures for the object detection
tasks. We will briefly discuss the architectures of the networks in the following sections.

3.2.1. You Only Look Once (YOLOv5)

The YOLOv5 [51] architecture is a little bit different from the previous YOLO version.
While other previous versions use Darknet, the new version uses PyTorch and CSPDark-
net53 [52] as the backbone network.

YOLOv5 is an effective, fast, and efficient object detection and classification model.
It is a single-stage object detection network. It uses the focal loss function, which is used
in classification tasks, and runs a convolutional feature extractor on top of a backbone
architecture that is pretrained on ImageNet. It then passes the extracted features to a
detection head composed of two subnetworks. One subnetwork outputs bounding box
coordinates, while the other outputs class probabilities for each bounding box. This
architecture is unique because it uses both classification and regression losses to train its
model rather than using a single loss function like most other object detection networks. It
also uses the same anchor boxes across all scales of images during training so that it can
produce consistent results regardless of input size.

The backbone network is an important part of the architecture as it is used to solve
the vanishing gradient problem that used to exist in large backbones and is also used to
integrate gradient change into the feature map, which tends to reduce the inference speed
and model size while improving the accuracy.

It also uses a path aggregation network (PANet) [53] as the neck of the network as a
technique to boost the information flow. The PANet uses a newer type of feature pyramid
network (FPN) [54] with a large number of bottom-up and top-down layers to improve the
propagation of low-level features in the model, thus improving the localization in lower
layers and enhancing the localization accuracy of the network.

YOLOv5 employs the same head architecture as both the YOLOv4 [55] and YOLOv3 [41]
architectures. The YOLO layers generate three different outputs of feature maps to achieve
multi-scale prediction in an attempt to enhance the prediction of small to large objects. The
generated feature maps are fed into the backbone network for feature extraction and to the
PANet for feature fusion. To calculate the loss, focal loss or binary cross-entropy with logits
loss is used. The loss is calculated based on the bounding box regression score, objectness
score, and class probability score.

3.2.2. EfficientDet

The architecture of EfficientDet [56] was conceived from the evaluation of several
object detection architectures with the intention to optimize several areas and improve
the general efficiency. The evaluations made by the authors include the examination
of backbone network, feature fusion, and class/box network. To develop an efficient
multi-scale feature fusion, weighted bi-directional feature pyramid network (BiFPN) was
proposed to replace commonly used architecture that often contributes to unequal fusion.
The BiFPN employs learnable weights to deduce the importance of each input feature and
continuously apply bottom-up and top-down multi-scale feature fusion.

The authors [56] also proposed a compound scaling method for the backbone that
can effectively scale up resolution, depth, and width for the backbone, feature, and class
prediction networks. Therefore, combining the backbone and the BiFPN, the EfficientDet
network could achieve better accuracy on object detection tasks while using fewer numbers
of parameters than other object detectors.

The general architecture features an ImageNet-pretrained EfficientNets, which serves
as the backbone of the network; the BiFPN is the feature network that continuously applies
bottom-up and top-down bidirectional feature fusion, which is then read into the class and
box network to predict object class and the bounding box.
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3.3. Training

The proposed architecture is trained in a way where the ESRGAN network is used
to generate the SR from the input LR image and then the bounding boxes of the object
of interest are scaled accordingly. Afterwards, the newly generated image is fed into the
object detectors for training on the task of pothole detection.

4. Experiments

As previously mentioned, the training of the architecture was completed in a separate
manner from the ESRGAN network used to generate SR images and the object detectors
trained on the SR images generated. The pre-trained model of the ESRGAN that has been
trained on the DIV2K dataset of HR images usually used for image restoration tasks was
employed.

For the EfficientDet model, we employed adaptive learning rate and learning rate
scheduling mechanism, which work together to reduce the learning rate to the defined
schedule. The operation is based on cosine decay schedule. The schedule periodically
applies the cosine decay function to the optimizer at a given step. We employed a learning
rate base of 8 × 10−2, with the warmup learning rate set to 0.001 and interval set to every
2500 steps. The training consists of a total of 40,000 steps and a batch size of 8. We used the
momentum optimizer to update the entire architecture weights until it converges.

As for the YOLOv5 architecture, in order to match with the size of the EfficientDet
network, the larger size of YOLOv5 called YOLOv5l was used. The version has 49.0 mAP
on the COCO dataset, which is a decent performance. An initial learning rate of 0.01 was set
and the final one cycle learning rate set to 0.2. SGD momentum optimizer was employed,
which updates at every 3 epochs and has a momentum of 0.8 and initial bias value of 0.1.
The training consists of a total of 200 epochs with a batch size of 16.

We implemented the EfficientNet architecture with the Tensorflow object detection
framework and the YOLOv5 with the PyTorch framework and both trained and tested using
NVIDIA P-100 GPU with 16 GB on the Google Colaboratory platform (pro version). The
training for the YOLOv5 architecture took about 10 h to complete, while for the EfficientDet,
it took about 12 h to complete.

4.1. Datasets

It is important to use datasets that present the real scenario of detecting potholes in the
wild, which typically involves a camera mounted on a moving vehicle capturing images at
a distance. Dhiman and Klette [57] established the lack of proper datasets and benchmark
dataset for the task of pothole detection and proposed to combine a number of datasets to
mitigate these challenges. In our research, we follow the same ideology.

1. CCSAD—Guzmán et al. [7] presented a dataset named challenging sequences for
autonomous driving (CCSAD), which consists of captured video at 20 fps using two
Basler Scout scA1300-32fm firewire greyscale cameras from a moving vehicle on
the street of Mexico. The dataset presents instances of potholes on the road surface
amongst other objects. The entire dataset is divided into four segments, colonial town
streets, urban streets, avenues and small roads, and tunnel networks. It is a very large
dataset of about 500 GB consisting of calibrated and rectified pairs of sterol images,
videos, and meta-data for each of the segments. The image resolution of the dataset is
1096 × 822.

2. Japan—The Japan dataset has been widely used in road damage detection com-
petitions and some research work. It contains about 163 k images of roads with
dimensions of 600 × 600 collected across Japan. Different categories of road damages
are presented in the dataset, including cracks and potholes; however, few instances of
potholes are presented in the dataset. We have selected from the few available images
with instances of potholes contained in them.
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3. Sunny—This dataset presents several images of pothole instances, mostly small-sized
and at a distance. The image resolution is 3680 × 2760 captured with a GoPro camera
mounted on the vehicle.

4. PNW—The dataset [6] is a YouTube video recorded on a Pacific Northwest highway
during the winter season. The dataset presents a realistic pothole detection problem
with roads that have been dilapidated by melting snow and rainwater. The vehicle
from which the video is recorded has a typical speed range of 45 km/h to 90 km/h.
Images of dimension 1280 × 720 were extracted from the video frames.

We used about 1300 images for the training dataset, which comprise SR images from
the CCSAD’s Urban Sequence 1 dataset, the Japan dataset, and the PNW dataset collectively;
see Figure 5. The Sunny dataset was also used in the mix, but the super-resolution pipeline
was not performed on it because the images come at a higher resolution. The validation
dataset contains about 188 images, representing about 12% of the entire data, to monitor
the performance of the model during training. The testing set contains 81 images, which
are used to evaluate the performance of the models.

Figure 5. The Japan dataset. Generated SR image is shown on the left and the corresponding LR
image on the right.

4.2. Evaluation Metrics for Detection

Both YOLOv5 and EfficentDet networks give output as bounding boxed with the cor-
responding classes. In our case, we our have one class (pothole) and the rest as background
class. To evaluate the performance of our proposed methods, we have employed precision
and recall.

To determine the values of the proposed evaluation metrics, we can calculate the values
with true positives (TP), which are the set of corrected detected objects, false positives (FP)—
set of wrongly detected objects, false negatives (FN)—set of objects that are not detected by
the detector. Therefore, the precision is given as the as the ratio of true positives to all the
other predicted objects (Equation (5)), and the recall is given as the ratio of detected objects
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to the number of all objects in the dataset (Equation (6)). We set the IoU to vary between
0.5 to 0.95 for a more generalized evaluation.

The output of our detection models is the bounding boxes along with the single
pothole class, which is the standard for most object detection networks. To evaluate the
results of our experiments, we used average precision (AP) at a given calculated intersection
over union (IoU). Precision and recall are thus used in computing AP.

We can measure the error in predicted bounding boxes by comparing them to their
true locations. A box is considered to be correctly predicted if it overlaps with a ground
truth box. This overlap is calculated as the overlap between the detected and ground truth
box (IoU). If we consider all boxes with an IoU greater than a given value as true positives,
while the remaining boxes as false positives, we can compute the precision at the given
IoU. Moreover, if we vary the IoU between values 0.5 and 0.95 at a given step of 0.05,
we can combine these precision values at each step to compute average precision (AP) at
IoU = 0.5:0.95.

To obtain a single representative performance, we use mean average precision (mAP)
as our evaluation metric. We evaluate performance by considering results at both IoU = 0.5
and IoU = 0.5:0.95 since this is the range of overlap between the object detections and
ground truth objects during training. It is calculated by measuring the average distance
between instances of the ground truth and predicted bounding boxes and then dividing
that by the number of ground truth instances.

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

5. Results
5.1. Detection with SR and LR Images

To determine the performance of the detectors, we trained both proposed object
detectors on the SR images generated by the ESRGAN network. We also used LR images of
the same datasets to train and test the models. The YOLOv5l and EfficientDet-D1 models
were used, trained on SR and LR images, respectively.

Table 1 shows the results of the object detectors in terms of the mAP on each of the
datasets employed. The EfficientDet network achieved up to 10.6% AP on the datasets,
while the YOLOv5l network also achieved up to 12% AP on the datasets when the LR
images were used for training and testing. These results are considerably lower than the
SR images. The detection results for the models trained on the SR images are evident in the
table. We have achieved up to 32% AP on the dataset for the YOLOv5 model and 26% AP
with the EfficientDetD1 model.

Table 1. Detection on super-resolution images and low-resolution images for both models. The
AP (average precision) values are calculated using 10 different IoUs from 0.5 to 0.95 with 0.05 step
intervals.

Model Image
Resolution

Test Results
(mAP at IoU = 0.5:0.95)

Test Results
(mAP at IoU = 0.5)

Test Results
(Recall)

Test Results
(Precision)

ESRGAN + EfficientDet LR 10.6% 20% 30% 53%
ESRGAN + YOLOv5 LR 12% 30% 41% 60%

ESRGAN + EfficientDet SR 26% 39% 66.77% 100%
ESRGAN + YOLOv5 SR 32% 46% 70% 97.60%

5.2. Discussion

We have used IoU = 0.5 to determine and calculate the recall. From the experiments,
it can be noted that the methods recorded higher precision than the recall value. In its
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essence, the methods can detect instances of potholes better, including the tiny instances,
but might not detect all the instances of potholes. The reason for the lower recall value can
be related to the misclassification that occurs in the training and testing datasets.

Due to the nature of the datasets used for training and testing, errors were recorded
during testing. It was observed that there were considerably large numbers of mislabels in
the Japan dataset, where instances of cracks were labeled as potholes or plain road surfaces
were labeled as potholes. In addition, manhole covers were also mislabeled as pothole
instances. This can be connected to the low resolution of the images during annotation
and the multi-class property of the Japan dataset. It is also worth mentioning that the
Sunny dataset contains instances of a great deal of visual occlusions, where the potholes
are almost invisible even to humans. This contributed to the detection error encountered
during the experiments. Therefore, a better result is obtained from the PNW and CCSAD
datasets compared to the Japan dataset. However, the Japan dataset is almost 50% of the
entire dataset used.

The effect of the low recall value recorded can reduce the accuracy of the pothole
detection system. This means that the detection system may not catch all the negative
instances that it should be catching, which could result in an increased amount of false
positives. Thus, the performance of the detector is considerably reduced such that it may
not be able to detect all the positive cases that it should be detecting. While it will correctly
detect pothole instances in an image, it has a higher probability of not detecting all the
pothole instances in frame.

The recall value could have been significantly improved if we had relabeled the
datasets accordingly. This will reduce the mislabeling that exists in the datasets, therefore
improving the overall performance of the target detectors. Moreover, collecting a new,
independent, and realistic pothole database will considerably resolve the encountered
issue.

Apart from the characteristics of the potholes in the dataset, computing resources also
contributed to the detection errors. To train on the SR images, we resized their input to
object detectors. However, since we were not able to utilize the full capability of the SR
images and train with more images and more training time, our performance suffered. The
experimental results clearly indicate that the evaluation metrics will significantly improve
with a well-labeled and clean dataset where pothole instances are clearly labeled.

The ESRGAN + YOLOv5 and the ESRGAN + EfficientDet models are used to detect
instances of potholes in any given SR image, and the results are satisfactory as it can
be observed in Figure 6 that the ESRGAN + YOLOv5 model correctly detects instances
of potholes in an image even when they appear small or at a distance within the frame.
Figure 6 also shows the LR images input into the ESRGAN network and the corresponding
SR image output. The image enhancement provided by the ESRGAN network has helped
the detectors to obtain higher AP values by making the images visually good enough
to identify the objects easily. It is evident from the figure that the visual quality of the
generated SR images is quite good compared to the corresponding LR images, with both
detectors detecting cases of small potholes. Few misclassifications were also experienced,
even with the varying lighting conditions. What can be considered as a misclassification
is in the cases where cracks, hand-hole covers, and a black refuse nylon on the road were
detected as potholes, as shown in Figure 7.

To measure the performance of the models and compare with the state-of-the-art
results, we generally employed the precision and recall as common classification measures.
The metrics were previously defined and explained. We compared the results of both
proposed object detectors and they produced good results on detecting pothole instances
and almost identical values.
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Figure 6. Detected potholes from the validation set using the ESRGAN + YOLOv5 method, with each
row showing images from the different datasets.

Figure 7. Misclassifications experienced during validation, where a manhole cover, crack, and black
nylon are classified as pothole instance.

We completed the evaluation on a per dataset basis for the test set and later evaluated
collectively for each model, as presented in Table 1. Table 2 presents the results for the
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selected few frames from the CCSAD urban sequences 1, which compares the detected pot-
holes with the ground truth for the images. It also shows the comparison with the Dhiman
and Klette [57] results on similar frames from the same dataset in an attempt to compare our
results with other studies. The table shows that both our proposed methods significantly
outperform the compared study in terms of precision but with a lower recall value, which
can be related to the mislabeling issues previously identified. The ESRGAN + YOLOv5
model also performed better than the ESRGAN + EfficientDet model.

Table 2. Comparative evaluation of the proposed ESRGAN + YOLOv5 and ESRGAN + EfficientDet
with Dhiman and Klette [57] best-performing model (LM1) on selected frames from the CCSAD
dataset.

Method Mean Precision (%) Mean Recall (%)

ESRGAN + EfficientDet 100 71.5
ESRGAN + YOLOv5 100 72.2

LM1 89.9 92.8

Table 3 presents the results for a few selected frames from the PNW dataset since the
PNW dataset accurately represents the scenario at hand, with a fast-moving vehicle and
realistic road damage challenges. Both models misclassify a black trash bag on the road
as a pothole because of the dark color property and spherical shape of the bag, as can be
seen in Figure 5. Both models showed great potentials in identifying realistic potholes on
the road surface from a moving vehicle and at a distance, even when the holes are filled
with water, as also illustrated by the images in the same figure. On the Sunny dataset, the
YOLOv5 model has an overall precision of 100% and recall of 56.7%. On the Japan dataset,
the EfficientDet model has an overall precision of 81.25% and recall of 65.8% while the
YOLOv5 model has an overall precision of 86.3% and recall of 61.6% (see Table 4).

Table 3. Comparative evaluation of the proposed ESRGAN + YOLOv5 and ESRGAN + EfficientDet
with Dhiman and Klette [57] best-performing model (LM1) on extracted frames from the PNW
dataset.

Method Mean Precision (%) Mean Recall (%)

ESRGAN + EfficientDet 100 63
ESRGAN + YOLOv5 92.5 86.1

LM1 88.6 85.05

Table 4. Precision and recall on each dataset in the test set for both models.

Dataset

ESRGAN + YOLOv5 ESRGAN + EfficientDet

Mean
Precision (%)

Mean
Recall (%)

Mean
Precision (%)

Mean
Recall (%)

CCSAD 100 72.2 100 71.5
Sunny 100 57 60 34
PNW 92.5 86.1 100 63
Japan 86.3 61.58 81.25 65.8

The overall precision and recall value for all 81 images in our testing dataset is 100%
precision and 66.77% recall for the EfficientDet model and 97.60% precision and 70% recall
for the YOLOv5 model.

We also performed a comparative analysis with several studies that have used similar
datasets for the task of pothole detection The results are compared with ours in Table 5.
Dhiman and Klette [57] employed the same datasets and Mask R-CNN model in their
studies.We have done this not to compare our methods with theirs but to show that, even
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when a segmentation model is used, our proposed methods with super-resolution can
perform better in some instances with object detection. Our results generally provided
better precision but lower recall than theirs, with their best method recording an overall
precision of 88% and overall recall of 84%, while our best model (both models have very
close overall results) with YOLOv5 has an overall precision of 97.60% and recall of 70%.
Moreover, Darapaneni et al. [58] and Kortmann et al. [59] also employed the Japan dataset
for the purpose of pothole detection. Table 4 compared our results side by side with theirs,
with our methods performing better than both studies in terms of precision and recall.

Table 5. Comparative evaluation of the proposed ESRGAN + YOLOv5 and ESRGAN + EfficientDet
with Darapaneni et al. [58] and Kortmann et al. [59] on the Japan dataset.

Author Method Mean Precision (%) Mean Recall (%)

Darapaneni et al. [58] YOLOv3 60 50
Darapaneni et al. [58] YOLOv4 90 11
Darapaneni et al. [58] YOLOv5 40 40
Kortmann et al. [59] FRCNN 68.56 54.02

Our method ESRGAN + EfficientDet 81.25 65.85
Our method ESRGAN + YOLOv5 86.3 61.58

The proposed method outperforms the existing approaches in detecting smaller pot-
holes in the frame or at a distance and also boosts the general accuracy of detection. Espe-
cially with challenging datasets, our approach could accurately detect pothole instances
where other common methods could not perform well on these datasets. To this end, our
method provides a means of obtaining accurate detection of potholes from low-quality
imaging devices and in complex, unpredictable scenarios. The success of our proposed
method, with the detection performance improving significantly with the use of SR images
on the dataset and the state-of-the-art detectors, can miss potholes that are smaller in size.

Capturing agents do not have to employ expensive sensors, such as LIDAR or HD
cameras, to be able to obtain a precise detection of pothole instances on asphalt surfaces.

However, due to the super-resolution technique used, more processing power is
needed on-board to perform real-time processing, thereby increasing the computational
cost. The lesser the computing resources are, the longer the inference time to detect the
pothole instances.

6. Conclusions

Potholes significantly contribute to road accidents all over the world and are also
culprits in causing wear-and-tire on vehicles. In this study, we have proposed a technique
based on the super-resolution of images to mitigate the overlooked realistic characteristics
of pothole detection tasks. We proposed the GAN-based ERSGAN network to achieve
super-resolution from low-resolution images and two object detectors, YOLOv5 and Ef-
ficientDet networks, to perform the task of pothole detection from the SR images. The
proposed method provides several enhancements over the state-of-the-art research in pot-
hole detection, such as the accurate identification of potholes in a challenging environment,
accurate detection of potholes that appear smaller in the image and at a distance, tackling
the issue of small object detection, and resolving the issue of detection from 2D images
generated by inexpensive equipment. Both object detection techniques produced similar
results in pothole detection on the test set by recording good precision and recall values.
Both methods are easy to implement, but the YOLOv5 method provides a faster training
and inference speed than the EfficientDet method.

In addition, when compared to the state-of-the-art methods in pothole detection
on similar datasets, the proposed method significantly outperforms the other methods,
especially with a higher precision but with a lower recall value than the state-of-the-art
method that employed instance segmentation. Overall, the mAP values for the proposed
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methods are significantly higher than the results obtained from the models trained on LR
images.

The results we have presented here no doubt shed more light on the task of small
object detection and how super-resolution images are used to mitigate the challenges it
poses. While super-resolution GANs are popularly used in the field of remote sensing for
object detection, other domains with similar challenges have not fully utilized the benefits
it presents. This study thereby tries to bridge these gaps in different areas of research
and is not limited to the task of pothole detection. In future works, we intend to focus
on employing end-to-end training for both the super-resolution network and the object
detection network. In addition, our work is focused on developing light-weight super-
resolution networks to significantly reduce the inference time and employ lightweight
semantic segmentation networks to detect all objects in frame and on the road surface.
While there is no standard benchmark dataset for a complex pothole detection dataset, we
intend to collect and release such a dataset that will realistically represent potholes on road
surfaces for autonomous vehicles.
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