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Abstract: This work provides a numerical analysis of heat transfer from medical devices such as
catheters and implants to the blood flow by considering the relative position of such power sources
to the vessel wall. We have used COMSOL Multiphysics® software to simulate the heat transfer in
the blood flow, using the finite element method and Carreau—Yasuda fluid model (a non-Newtonian
model for blood flow). The location of the power source is changed (from the center to near the wall)
in the blood vessel with small steps, while the blood flow takes different velocities. The numerical
simulations show that when the catheter/implant approaches the vessel wall, the temperature
increases linearly for ~90% of the radial displacement from the centerline position to the vessel wall,
while for the last 10% of the radial displacement, the temperature increases exponentially. As a result,
the temperature is increased significantly, when changing the position of the catheter/implant from
the centerline to the area adjacent to the vessel wall.

Keywords: implantable devices; catheters; heat transfer; blood flow; thermal analysis

1. Introduction

The internal temperature of the human body is almost 309.6 K. When the body is at
rest, the normal range of this temperature is between 309.15 K to 311.15 K, while when
doing heavy exercise, this temperature can temporarily increase to 314.15 K [1]. The human
body has an internal mechanism for controlling temperature (cooling and heating) to return
any abnormal temperature changes to the normal range [1]. This mechanism is mainly
adapted for controlling external factors such as environment temperature variation [2–6].
Any changes in the local temperature of the body can be detected by the temperature
control mechanism to maintain the safety of the body, while if it exceeds the normal range,
it can damage the body tissues [7–12].

The use of catheters and implantable devices is increasing for diagnostic and therapeu-
tic applications [13–16]. The catheters and implantable devices are widely used technologies
for ultrasound imaging (Imaging Intra-Cardiac Echocardiography, ICE, and Intra-Vascular
Ultrasound, IVUS), tethered and wireless implants such as brain implants, leadless heart
implants, bladder implants, etc. [17–20]. These miniaturized electronics devices operate
inside the body at different locations and consume electrical power [12,21,22]. The electrical
power is consequently converted to heat, which is dissipated in the surrounding body
tissues. This regional heat causes a temperature rise in the human body tissues which
needs to be controlled and limited to ensure safety [8,10].

Figure 1 shows the conceptual schematic of the catheters and implantable devices for
various applications at the different human body positions. Based on the study presented
in [23], the local heat generated by the implants in the human body is significantly propor-
tional to the blood velocity across the implants. On the other hand, the blood velocity is
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not constant everywhere in a blood vessel (it reduces to zero velocity near the vessel wall).
Therefore, the position of the implant in the blood vessel is an essential parameter for safety
considerations and adds extra limits to the design by reducing the maximum allowable
power that the implants can consume [16,23].
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Figure 1. The conceptual schematic of the positions of the catheters and implants in the human body
(located in/near the blood vessel).

In this work, we have changed the location of implants in a blood vessel model (from
the center to near the wall) with small steps, using COMSOL Multiphysics® software
(version 5.6, Stockholm, Sweden) and evaluated the local temperature rise in the human
body. A comprehensive analysis of heat transfer is done by comparing the temperature
rises at different implants positions. As a result, we have modified the temperature rise
prediction equation presented in [23] by adding the new parameter of the implant’s position
into it. Section 2 presents an overview of the design and system modeling method. Section 3
presents the simulation results and is followed by a discussion in Section 4. Finally, Section 5
presents the conclusion.

2. System Modeling

We have modeled a 3-dimensional Blood-Vessel Implant (BVI) system based on [23],
in which the catheter/implant was located at the centerline of the vessel ideally for
all investigated different scenarios. In this work, we have changed the location of the
catheter/implant from the centerline to the area adjacent to the vessel wall with small steps.
The cross-section schematic (2D, top, and side) of the modeled BVI system is shown in
Figure 2 for two positions of the implant (centerline, Figure 2a, and near the vessel wall,
Figure 2b). Figure 2a,b indicate (1) the inlet and outlet blood flow, (2) the catheter and its
tip (implant/probe), (3) the vessel and sinusoidal blood flow at the inlet, and (4) the dimen-
sions of the model. L1, L2, and L3 are the lengths of the modeled vessel, implant/probe, and
catheter, respectively. D1 is the inner diameter of the vessel and D2 is the outer diameter of
the catheter/implant. In addition, Xcp determines the location of the catheter proportion to
the centerline of the blood vessel. The parameters of the dimensions of the BVI model are
summarized in Table 1.
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Figure 2. Conceptual schematic of the BVI system, including the blood vessel and catheter-
probe/implant, (a) probe/implant in the centerline of the vessel (Xcp = 0 mm), and (b) probe/implant
near the vessel wall (Xcp = 6 mm). Inset: the applied blood flow velocity profile as a function of time
at the inlet of the blood vessel.

Table 1. The parameters of the dimension of the BVI model.

Parameters Value (mm) Description

D1 13 Diameter of the Blood Vessel

D2 0.8 Diameter of the Catheter

Xcp 0–6 Position from Center

L1 80 Length of the Blood Vessel

L2 5 Length of the Catheter Tip, Probe/Implant

L3 50 Length of the Catheter

We have used the set of Navier–Stokes (N-S) equations (including continuity (1),
momentum (2), and energy (3) equations) and a non-Newtonian fluid model (Carreau–
Yasuda, (4)) for the proposed model [14–16].

∂ρ

∂t
+∇ ·

(
ρ
→
V
)
= 0, (1)

ρ

∂
→
V

∂t
+

(→
V · ∇

)→
V

 = −∇p +∇ · τij + f , (2)
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ρcp

(
∂T
∂t

+
→
V · ∇T

)
= −∇ · q + Q, (3)

µ− µ∞

µ0 − µ∞
=
[
1 +

(
λ

.
γ
)α
](n−1)/α

, (4)

where in N-S Equations (1)–(3),
→
V = Vxi + Vy j + Vzk is the fluid flow velocity vector, p

is the pressure, ρ is the fluid density, τij = µ
.
γ is the shear stress tensor of blood (as an

incompressible flow, where µ is the dynamic viscosity and
.
γ is the shear rate), f is the

volumetric body force (if existing), cp is the specific heat capacity at constant pressure, T is
the temperature, and Q is the heat source. In addition, to express Fourier’s Law of Heat
Conduction, q is the heat flux in q = −k∇T, where k is the thermal conductivity of the
fluid (blood). In the Carreau–Yasuda non-Newtonian fluid model, (4), µ∞, µ0, and λ are
the viscosity at an infinite shear rate, the zero-shear-rate viscosity, and the relaxation time
(seconds), respectively. The parameters α and n control the blood dilatation behavior due
to shear stress [23].

The velocity of the blood flow in the human body is a periodic velocity, which can
be modeled by a sinusoidal function, ideally [23,24]. We have generated and applied the
periodic blood flow velocity at the input of the vessel model (Figure 2: Blood Inlet, Figure 2:
Inset, periodic function, VZ(t)). The modeled blood flow velocity function at the vessel inlet
is presented in (5):

VZ(t) = Vavg[1 + sin(πt)], (5)

where Vavg is the blood flow average velocity at the input of the vessel [24]. The BVI system
is modeled using COMSOL Multiphysics®, and this software has solved the governing
Equations (1)–(3), using the finite element method. We have used the previously developed
boundary conditions presented in [23] for the proposed BVI model in this work.

3. Simulation Results

We have used the modeled BVI system to evaluate the temperature rise in the blood
due to the heat generated by the implant in the blood vessel. We have changed the position
of probe/implant from the centerline of the blood vessel (Xcp = 0 mm) to near the vessel
wall (Xcp = 6 mm) in four steps in the BVI model and compared the temperature rises. In
Figure 3, the temperature contours around the implant are illustrated for two positions
of Xcp = 0 mm and Xcp = 5 mm at t = 1.5 s, while the heat flux at the implant/probe
surface was set to be 15,000 W/m2. This figure includes the results at the different average
velocities of blood flow such as 0.1 m/s, 0.6 m/s, and 1.4 m/s. Based on these simulation
results, the implant has experienced higher levels of temperature rises of 2.5 K, 0.91 K, and
0.81 K when it is located near the vessel wall (Xcp = 5 mm), for blood velocities of 0.1 m/s,
0.6 m/s, and 1.4 m/s, respectively. As it was expected, (1) when the implant is close to the
wall, the BVI system experiences a higher temperature rise, and (2) a higher blood flow
velocity causes a lower temperature rise.

Figure 4 shows the temperature rises in the blood vessel for different positions of
the implant (Xcp = 0, 2.5, 5, and 6 mm). In this simulation, the heat flux and the average
velocity of blood flow were set to be 15,000 W/m2 and 1.4 m/s, respectively. As shown
in Figure 4, for Xcp = 6 mm, the temperature is raised significantly at the gap between
the implant and vessel wall due to the lower velocity of blood flow with the non-slip
boundary condition. Therefore, it is critical to take the position of the implant as a vital
parameter into account/assumption to ensure the safety of using an implant/catheter.
Figure 5 indicates the numerical results of the temperature rise over a line at the tip of
the implant (at Z = 55 mm in Figure 4) as a function of the blood vessel diameter (X: from
−2.5 mm to +6.5 mm). In this simulation, the implant is located in different positions of
Xcp = 0, 2.5, 5, and 6 mm.
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6 mm (with the average velocity of 1.4 m/s and heat flux of 15,000 W/m2).

Figure 5 shows the temperature contours at the diametrical cross-section (top view)
of the blood vessel and implant. The results indicate a nonlinear temperature rise from
Xcp = 0 mm to Xcp = 6 mm, in which the difference between Xcp = 0 mm to Xcp = 6 mm
on the tip of implant is ~2 K.

The temperature is raised exponentially near Xcp = 6 mm. Although the temperature
rise at the tip of the implant is up to 317.6 K (Figure 5), the maximum temperature rise (up
to 324 K) occurs at the gap between the implant and the vessel wall, as shown in Figure 4
(for Xcp = 6 mm). The temperature rise in the gap has exceeded the safe threshold of 315 K
by 9 K. Figure 6 indicates the simulation results of the temperature changes as a function
of heat flux (0–15,000 W/m2) in two positions of Xcp = 0 mm and Xcp = 5 mm, and three
average velocities of 0.1 m/s, 0.6 m/s, and 1.4 m/s. These results show a linear relationship
between temperature rise and heat flux rise. This linear relation is also obtained at the
different blood flow velocities and the different positions of the implant. The temperature
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difference for two positions of Xcp = 5 mm and Xcp = 0 mm and the blood flow velocities
0.1 m/s, 0.6 m/s, and 1.4 m/s are almost 1.15 K, 1.56 K, and 1.45 K, respectively (at the heat
flux 15,000 W/m2).
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(Xcp = 0, 2.5, 5, and 6 mm). The insets show the temperature contours at the cross-section of the
vessel (at the implant tip).
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Figure 6. The numerical results of blood temperature rise as a function of the heat flux for two
positions of Xcp = 0 mm and Xcp = 5 mm, and the average blood flow velocities of 0.1 m/s, 0.6 m/s,
and 1.4 m/s.

4. Design Rule and Discussion

In this section, we have plotted the obtained results in a 3D fashion to visualize the
relationships between the temperature rise, blood flow velocity, heat flux, and positions of
an implant. We have also developed a correlation formula, corresponding to these results
to present a design rule for safety check and estimating/predicting the temperature rise
in the human body when using/designing an implant/catheter that produces the heat.
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Figure 7a indicates a 3D visualization of simulated results where the temperature rise has
been illustrated as a function of the average blood flow velocity and the heat flux for two
positions of the implant (Xcp = 0 mm and Xcp = 6 mm). These results include the blood
flow velocities up to 2 m/s and heat fluxes up to 100,000 W/m2 to cover the heat flux
ranges of ablation applications. This 3D plot shows two different levels of temperature
rises for the implant positions of Xcp = 0 mm and Xcp = 6 mm, in which for the position
Xcp = 6 mm, the temperature rise slope is higher than position Xcp = 0 mm. Figure 7b
includes two top views of BVI system (cross-section at top of the implant) for the indicated
implant positions. In addition, Figure 7b (at the top) shows a 2D temperature rise as a
function of the average velocity of blood flow at the heat flux of 100,000 W/m2. These 2D
curves show that the temperature changes exponentially for both positions of the implant.
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Figure 7. (a) The numerical results of blood temperature rise as a function of the blood average
velocity and heat flux for two positions of the implant in the blood vessel, and (b) the temperature as
a function of velocity for heat flux of 100,000 W/m2 (at the top) and two positions of the implant.

According to the previous study and the new simulation results in this work, we have
modified the temperature rise correlation formula in [14] by including the parameter of
implant/catheter position in the blood vessel. This new correlation formula, (6), can be
used to predict and estimate the temperature rise (K) in the human body accurately:

T = 310 +
H(1 + 0.07Xcp)

3000

(
1 + e−

√
7V
)

, (6)

where Xcp (mm) is the distance between implant and centerline of the blood vessel, V (m/s)
is the blood flow average velocity, and H (W/m2) is the heat flux produced by the implant.
Based on (6), we have proposed a flowchart for the safety check design rule to estimate the
temperature rise in the human body, shown in Figure 8.
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Figure 8. The proposed safety check flowchart for estimating and predicting the temperature rise
during the process of designing implantable/catheter devices.

To calculate the heat flux produced by implants, it is required to know the electrical
power consumption of the design and its surface area (H = Power/Surface (W/m2)).
The designers can use the flowchart to calculate the allowable heat flux that the system
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can tolerate based on the location of the implant, blood velocity at that location, power
consumption of the design, and its surface area.

5. Conclusions

A numerical simulation of the heat transfer from medical devices to the blood flow
in the human body has been presented previously, while the devices were located at the
centerline of blood vessels. However, in the present study, we have extended the results by
including the vital parameter of implant location in different positions in the blood vessel.
The proposed BVI system is modeled and simulated by COMSOL Multiphysics (using a
Carreau–Yasuda Non-Newtonian model). We have correlated the simulation results into a
formula to estimate/predict the temperature rise due to electrical power consumption of
implant/catheter in the human body. This formula can be used to predict the temperature
rise in blood vessel and check/evaluate the safety level of the design. The results show a
significant dependency of temperature rise on the location of the implant at any level of
heat flux and blood velocity. The temperature rise in the gap between the implant and the
vessel wall at Xcp = 6 mm has exceeded the safe threshold of 315 K by 9 K.
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