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Abstract: Trajectory prediction of surrounding objects plays a pivotal role in the field of autonomous
driving vehicles. In the current rollout process, it suffers from an accumulation of errors, which
has a negative impact on prediction accuracy. This paper proposes a parametric-learning recursive
least-squares (RLS) method integrated with an encoder–decoder framework for trajectory prediction,
named the recursive least-squares-based refinement network (RRN). Through the generation of
several anchors in the future trajectory, RRN can capture both local and global motion patterns. We
conducted experiments on the prevalent NGSIM and INTERACTION datasets, which contain various
scenarios such as highways, intersections and roundabouts. The promising results indicate that RRN
could improve the performance of the rollout trajectory prediction effectively.

Keywords: recursive refinement network; trajectory prediction; parametric-learning recursive least
square; anchor generator

1. Introduction

Trajectory prediction is a fundamental function of autonomous driving vehicles in
traffic conditions. Autonomous vehicles must make decisions carefully based on trajectories
of surrounding objects, e.g., various vehicles, cyclists and pedestrians in order to reduce
the risk of collisions [1]. Trajectory prediction becomes an indispensable work for both
perception and planning in autonomous driving systems [2,3]. History trajectories of ego
and neighboring agents are utilized to predict their future position, which helps plan
plausible paths for traffic agents. The challenge lies in the tendency of the trajectories
to be of high uncertainty due to unobserved intent and complex interactions between
multiple agents.

A number of studies have been conducted to predict trajectories from traditional
machine learning and state-of-the-art deep neural networks. Recent works suggest employ-
ing Recurrent Neural Network (RNN) [4] to predict trajectories. Additionally, the social
mechanism and the attention mechanism [5] are used to take the interaction of agents
into account. Moreover, variational auto-encoder (VAE) [6] and generative adversarial
networks (GAN) [7] are employed to improve the generalization of models. Some studies
also consider maps [8] and traffic rules [9] as important context information. These studies
adopt the same logic, which forecast the future positions in a rollout way. The term ‘rollout’
refers to the sequence generation process, where the prediction at each step is put into the
model at the next time step [10]. However, there are some limitations in most studies up
to now.

One limitation is that the rollout mechanism leads to error accumulation during
the recursive process. It attempts to optimize the performance of prediction of several
states (position, velocity, etc.) at each step. Errors accompanied by the state’s update
have negative influence on the next prediction. Thus, prediction by the rollout mechanism
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becomes less and less accurate over time. In addition, the rollout mechanism fails to capture
the global motion feature, since these algorithms are designed to run step by step based on
the history trajectories of multiple agents.

In the topic of trajectory prediction, local motion pattern is related with the motiva-
tion of drivers to perform certain driving behaviors within short range, such as immedi-
ate change of orientation to avoid collision, sudden acceleration to overtake, and so on.
The global motion pattern is regarded as the target of driving to perform long-term driving
behaviors. Local motion patterns change frequently in a short period of time, while the
global motion pattern changes less over time and remains stable over a longer period of
time. Although some work similar to long short-term memory (LSTM) [11] proposes a bal-
ance structure to form a trade-off between local and global motion patterns, the short-term
or local motion remains predominant due to the simple logic of the forgotten gate. It is still
difficult to capture long-term or global motion patterns in the rollout prediction methods.

In addition, many researchers tend to use context information such as maps [8] or
traffic rules [9] into their models. Context information provides more constraints on
trajectory prediction, but it is not clear whether it makes an impact on the generalization of
prediction model [12–14]. As a result, context-free approaches are also of great importance
for trajectory prediction, which focuses on the interactive motion of multiple agents.

This paper proposes a context-free model named the recursive least-squares-based
refinement network (RRN) to improve rollout models by integrating recursive least squares
(RLS) [15] in a parametric learning way. RLS is a well-known adaptive filter algorithm
that efficiently updates a weighted linear least-squares cost as new data become available.
In order to improve the ability to model global motion pattern, we introduce ’anchors’ to
capture global-consistent features in the rollout process. As shown in Figure 1, the anchors
are defined as the possible positions in the future trajectory at certain time steps. At each
time step, the refinement module leverages the predicted anchors to improve the rollout
estimation based on RLS.

Figure 1. Overview of our work. The red line represents the history trajectory of certain object.
The yellow crosses denote the generated anchors. The dotted green and blue lines represent trajecto-
ries predicted by the rollout method and our proposed RRN method, respectively.

Experiments are conducted on the NGSIM [16] and INTERACTION [17] datasets. They
are widely used datasets in the field of trajectory prediction [13,14,18,19]. Experiments
verify the promising performance of our method both qualitatively and quantitatively.

Our contributions are summarized as follows:

1. We propose an RLS-based framework with generated anchors that captures both
local and global motion patterns of surrounding vehicles. This method manages to
minimize the negative impact of error accumulation.

2. Instead of artificial parameters, we propose a data-driven RLS method that allows the
covariance matrix of RLS to be automatically updated by a learning-based method.
Our prediction network based on the proposed RLS model can be more accurate and
robust in various traffic scenes.
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3. Our model can be easily embedded into most rollout approaches. An ablation study
has proved the effectiveness of our module which can be easily plugged into various
networks to improve their performance.

This paper is organized as follows: In Section 2, recent work on trajectory prediction is
summarized. In Section 3, our method is presented including the anchor generator, network
framework and parametric-learning recursive least-squares model. In Section 4, our method
is evaluated on real-world datasets and analyzed both qualitatively and quantitatively.
Finally, the conclusion is presented in Section 5.

2. Related Works

Trajectory prediction can be classified into three types of methods, i.e., physics-based
methods, pattern-based methods, and planning-based methods [20]. Physics-based meth-
ods estimate the motion state of the agent using explicit dynamical models based on New-
ton’s law of motion. Pattern-based methods learn prototypical trajectories from observed
agent behavior to predict future motion. Planning-based methods include reasoning about
the possible goals and corresponding paths based on optimization method. Among these
methods, pattern-based methods benefit from the thriving development of deep learn-
ing methods, which can capture a powerful representation about motion patterns from
observed trajectories of agents.

2.1. Deep Learning in Trajectory Prediction

The introduction of generative models provide the prediction with multi-modality,
which means the model will finally output a number of predicted trajectories with corre-
sponding confidence. Lee et al. [21] propose a Conditional Variational Autoencoder (CVAE),
named DESIRE, to generate multiple future trajectories based on agents’ interaction, scene
semantics and expected reward function. Tang et al. [22] introduce a probabilistic frame-
work called Multiple Future Prediction (MFP) that efficiently learns latent variables to
jointly model the multi-step future motions between multiple agents.

Numerous studies have also attempted to model social interaction. Alahi et al. [23]
propose a Social LSTM model which introduces a social-pooling mechanism to aggregate
the neighboring agents’ behaviors together. Deo et al. [24] employ the convolution operation
to improve the performance of the social pooling method. GAN [25] is integrated with
Social LSTM for trajectory prediction. These models succeed in modeling social interaction
in a parametric learning way, causing a significant improvement in prediction accuracy.
This study does not focus on vehicle interaction, instead we attempt to solve problems
caused by the rollout mechanism.

2.2. Seq2seq Trajectory Prediction

In most deep learning frameworks, sequence-to-sequence (seq2seq) models are com-
monly adopted by researchers to build the network architecture of sequence prediction [26].
Seq2seq originates from neural language processing, which is a general-purpose encoder–
decoder framework. RNNs and their variants, e.g., LSTM [11], and gated recurrent unit
(GRU) [27] are classical sequence-to-sequence models under the rollout frameworks. Re-
cently, they have also been applied in trajectory prediction [21,28–32]. In [28], LSTM is
used to track the position of the object based on the ranging sensor measurements. In [29],
the driver’s intention is identified based on the trajectory data using LSTM. In [30], LSTM
is applied to predict the location of the vehicle after a certain number of seconds using
past trajectory data. In [21], GRU is combined with conditional variational auto-encoder
(CVAE) to predict the vehicle trajectory. Seong et al. [31] propose a similar structure which
produces the K most likely trajectory candidates from the decoder over occupancy grid
map by employing the beam search technique. It achieves significantly higher accuracy
over the conventional trajectory prediction techniques. Du et al. [32] further improve the
performance of trajectory prediction based on the encoder–decoder architecture via fusion
of attention mechanism. Seq2seq models are proved to be more powerful than traditional
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methods when dealing with temporal prediction task. However, it generates the predicted
value in a rollout way, and the weakness of the rollout method is not accounted for by most
researchers. They also lack the ability to capture global motion patterns even if LSTM is
designed to balance the long-term and short-term memory. In order to solve these problems,
some works attempt to add extra information such as goal point and intent, which are
regarded as long-term features from a global perspective.

2.3. Goal-Conditioned Methods

Many researchers have attempted to make an estimation of goals [33–38], intents [39–41]
and anchors [42,43] to benefit the trajectory prediction.

Some researh works have tried to set ‘goal points’ or ‘end points’ to reduce accumula-
tive errors in the rollout approaches. TPNet [33] makes final predictions by refining the
proposal trajectories, which are generated by regressed endpoints and polynomial fitting.
PECNet [34] infers distant endpoints of trajectories to assist in long-range multi-modal
trajectory prediction, together with the social pooling mechanism. Goal-GAN [35] presents
a GAN-based end-to-end trainable model for human trajectory prediction with the goal
estimation module. Zhao [36] proposes to predict the trajectories of agents via the guidance
of goal expertise, which can be obtained with modest expense through a novel goal-search
mechanism on already-seen training examples. TNT [37,38] performs target-conditioned
motion estimation for trajectory prediction and combines expert knowledge (e.g., HD maps)
to make constraints on traffic scenes.

Intent prediction represents another possible solution to improve the performance of
trajectory prediction. IntentNet [39] manually defines several common motion categories
for self-driving vehicles, such as left turn and lane changes, and learned a separate motion
predictor for each intent. This manual categorization depends on task and dataset, which
may be too coarse to capture intra-category multimodality. In [40], the model generates
multi-modal trajectory possibility prediction with high interpretability according to the
estimation of driver intention. Li et al. [41] propose a conditional deep generative model
that combines a graph attention network built upon inter-agent latent code. These methods
have inspired us to introduce a group of stochastic variables regarded as ’anchors’ to reduce
the accumulative errors. Anchors are initialized used in the field of object detection [44].
More recently, MultiPath [42] and CoverNet [43] chose to quantize the trajectories into an-
chors, where the trajectory prediction task is reformulated into anchor selection and offset
regression. The anchors are either pre-clustered into a fixed priori set or obtained dynami-
cally based on kinematic heuristics. Here, we propose a novel anchor generation strategy
in the RLS framework to make predictions on the future trajectories of multiple vehicles.

3. Recursive Least-Squares Based Refinement Network
3.1. Problem Definition

In this work, vehicle trajectory prediction is formulated as estimating the condi-
tional probability distribution p(Y|X) of future positions Yi = {(xt

i , yt
i) ∈ R2|t = tobs +

1, · · · , tpred} based on the observed trajectories Xi = {(xt
i , yt

i) ∈ R2|t = 1, 2, · · · , tobs} of N
currently visible vehicles. We assume that the conditional probability distribution p(Y|X)
follows the bivariate Gaussian distribution as

Yi ∼ N (µi, Σi), (1)

µi =

(
µx,i
µy,i

)
, Σi =

(
σ2

x,i σx,iσy,iρi
σx,iσy,iρi σ2

y,i

)
, (2)

where µi and Σi denote the mean and covariance of predicted positions of vehicle i in x− y
axes.
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In the trajectory prediction, a set of anchors A = {Ai|i = 1, 2, · · · , N} are proposed to
facilitate the estimation of the probability distribution p(Y|X) as

p(Y|X) = ∑
A

p(Y, A|X) = ∑
A

p(Y|A, X)p(A|X), (3)

where Ai = {(xt
i , yt

i) ∈ R2|t = tobs + k} and k ∈ {1, 2, · · · , τ|τ < tpred − tobs} denotes the
time step when anchors are generated and inserted.

The first component can be further factorized as

p(Y|A, X) =

tpred

∏
t=tobs+1

p(Yt|Yt−1, At−1, X)Ωt + p(Yt|Yt−1, X)(1−Ωt), (4)

Ωt =

{
1 anchor available at time t
0 otherwise

. (5)

The second component p(A|X) represents the latent motion patterns of agents based
on the anchor generation in certain time steps. Anchor generator provides the global
motion patterns, which is not considered in most rollout methods [11,27,45]. We attempt to
manage the problem of imbalance between local and global motion patterns by using an
anchor generator.

3.2. Anchor Generator

In the anchor generator, the bivariate Gaussian distribution is used to characterize the
conditional probability distribution P(A|X) as

Ai ∼ N (µi, Σi), (6)

and Ẑ = {µi|i = 1, 2, · · · , N} and R̂ = {Σi|i = 1, 2, · · · , N} denote the mean and covari-
ance of all anchors. As shown in Figure 2, anchors are then inserted into the seq2seq
framework to adjust accumulated errors in the rollout process. These anchors are gener-
ated only once in the process of trajectory prediction. They are completely conditionally
independent each other and can provide global information.

The anchor generator is composed of three parts: an input embedding layer, a multi-
layer perceptron (MLP) and an output layer. Input embedding layer is a linear layer
mapping of the dimension of input X from 2 to Cemb = 64. MLP is composed of two
linear layers, which generate features with the dimension Cmlp = 128, 64. The output
layer generates the predicted anchor which consists of 5 variables, i.e., µx, µy, σx, σy, and ρ.
We use the Rectified Linear Unit (ReLU) as the activation function. These three parts are
conducted as follows:

hemb = Linear(X; Wemb), hemb ∈ RN×τ×Cemb , (7)

hmlp = MLP(ReLU(hemb); Wmlp), hmlp ∈ RN×τ×Cmlp , (8)

Aout = Linear(ReLU(hmlp); Wout), Aout ∈ RN×τ×5, (9)

where hemb and hmlp denote the features generated by input embedding layer and MLP.
Ẑ and R̂ are further calculated based on Aout, which represent the final results by the
anchor generator. Wemb denotes the weights of the input embedding layer, Wmlp refers
to the weights of the MLP, and Wout denotes the weights of the output layer. Generated
anchors are further used by the RLS module to adjust the accumulative errors from a global
perspective as shown in Figure 2.
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Figure 2. The pipeline of RRN. X denotes the history trajectories of vehicles. Ŷ and P̂ denote the
mean and covariance characterizing the probability distribution over predicted trajectories. Ẑ and R̂
denote the mean and covariance characterizing the probability distribution over anchors. K denotes
the gain matrix of RLS module. ’OP’ denotes the output layer of decoder. Trajectory encoder and
decoder are both implemented by a couple of LSTM units. A bunch of anchors are generated from a
global perspective. At several time steps, the rollout estimation is refined by RLS using information
provided by anchors. ’Regular frame’ refers to the frame without anchor adjustment, while ’Anchored
frame’ refers to the one with anchors.

3.3. Trajectory Encoder

The sequence-to-sequence structure is a general framework for sequential prediction
problems. The structure consists of an encoder and a decoder. We employ LSTM as an
encoder, which recurrently takes each step in the sequence as input and updates the state
of LSTM unit [11].

As shown in Figure 2, the trajectory encoder is composed of a series of LSTM units via
sharing weights. The encoder takes history trajectories X ∈ RN×tobs×2 as input. The input
embedding layer also maps the dimension of coordinates from 2 to C′emb = 32 as mentioned
in Section 3.2.

At each time step, LSTM receives the current embedded tensor as input and update
its hidden state together as shown in Figure 2. In the recurrent process, feature dimension
is further mapped from C′emb = 32 to Cenc = 64 within LSTM module. The process can be
presented as follows:

hemb = Linear(X; Wemb), hemb ∈ RN×tobs×C′emb , (10)

ht
enc = LSTMenc(ht−1

enc , ht−1
emb; Wenc), t = 1, · · · , tobs, ht

enc ∈ RN×Cenc , (11)

where hemb denotes the embedded features. Wemb denotes the weights of the input embed-
ding layer in the encoder part, and Wenc refers to all weights of LSTM module. Finally,
the encoder generates a hidden feature ht

enc as input of the trajectory decoder.



Electronics 2022, 11, 1859 7 of 14

3.4. Trajectory Decoder

Trajectory encoder takes history trajectories as input and estimates the hidden motion
state of vehicles. Then, the decoder is responsible for generating future trajectory based
on the hidden status. The structure of the trajectory decoder is composed of δ LSTM units
(δ = tpred − tobs) with sharing weights as shown in Figure 2. The decoder process can be
formulated as follows:

ht
dec = LSTMdec(ht−1

enc , ht−1
dec ; Wdec), t = tobs + 1, · · · , tpred, ht

dec ∈ RN×(tpred−tobs)×Cdec , (12)

hout = Linear(ht
dec; Wout), hout ∈ RN×(tpred−tobs)×5, (13)

where Wdec refers to weight matrices of all LSTM units and Wout denotes the weights of
output layer. Cdec refers to the feature dimension of the decoder as 32. We can further get

the mean vectors Ŷ and covariance matrices P̂ based on hout = {µx, µy, σx, σy, ρ}tobs+1:tpred
1:N ,

which characterizes the probability distribution of all predicted trajectories.

3.5. Recursive Least-Squares Module

In our method, the recursive least-squares module is combined with a trajectory
decoder part in order to adjust the accumulative errors and capture the global motion
features of vehicles. Anchors are not simply concatenated to the decoder LSTM unit
as observed in many ’Goal points’ methods, but a parametric-learning RLS module is
proposed to produce dynamic filtering with generated anchors at certain time steps.

RLS is a recursive method of aggregating two or more random variables to minimize
the variance [46]. In traditional RLS, some parameters such as noise covariance matrix
should be set artificially by hand. Machine learning methods open the window to set these
parameters automatically. To date, there are some studies which have investigated the RLS
in deep learning methods, but none in trajectory prediction. RLS provides a novel view
on the fusion of goal points and the rollout prediction. Our purpose is to employ anchors
Ẑ and R̂ and rollout predictions Ŷ and P̂ in the RLS to generate a refined estimation for
future coordinates.

At the time step when anchors are generated, RLS module takes (Ẑt, R̂t) and (Ŷt, P̂t)
as input. RLS module sequentially computes the gain and refines rollout predictions as

Kt = P̂t−1HtT
(Ht P̂t−1HtT

+ R̂t)−1, (14)

Ŷt = Ŷt−1 + Kt(Ẑt − HtŶt−1), (15)

P̂t = (I − KtHt)P̂t−1, (16)

where H denotes the vector [1, 1]T , K denotes the gain, and I is set to the identity matrix
here. The refined estimations by the RLS module are then fed back into the next LSTM unit,
as shown in Figure 2.

Finally, we use negative log-likelihood (NLL) loss to be the loss function as

NLL = −
tpred

∑
t=tobs+1

log(N (Ŷt, P̂t)). (17)

The output of trajectory decoder is refined by the parametric-learning RLS module,
which can make a tradeoff between local and global motion patterns. Consequently, this
framework is able to reduce accumulated errors.

4. Experiments

In this section, the performance of our method is evaluated on the public NGSIM [16]
and INTERACTION [17] datasets. NGSIM are a set of video-transcribed data of vehicle
trajectories on US-101, Lankershim Blvd. in Los Angeles, and I-80 in Emeryville. In total, it
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contains approximately 45 min of vehicle trajectory data collected at 10 Hz. INTERACTION
is a large-scale real-world dataset which consists of top-down scenes from intersections,
highways and roundabouts. The data are collected from three different continents (North
America, Asia and Europe). This dataset is challenging as it includes interactions between
vehicles, different environments and multiple potetially plausible predictions.

Following the same rule as previous works [22,24], the dataset is split into 70% training,
10% validation, and 20% testing. In each 8-s trajectory data clip, the last 3-s data are used
to predict the future 5-s trajectories. We define the interactive range amongst vehicles as
180 feet (±90 feet).

All experiments are carried out on a platform with an Intel i7-10700K CPU and an
Nvidia GeForce RTX 3080 GPU. To evaluate the models, root mean squared error (RMSE)
in meters is adopted as the performance metric:

RMSE =

√√√√∑N
i=1 ∑

tpred
t=tobs+1((xt

i − x̂t
i )

2 + (yt
i − ŷt

i)
2)

N · (tpred − tobs)
. (18)

where N denotes the number of vehicles within the interactive range.

4.1. Quantitative Results and Analysis
4.1.1. Baselines

Our proposed model RRN is compared with several baseline models as follows:

• S-LSTM [23]: An influential method based on a social pooling model.
• CS-LSTM [24]: A model using a convolutional social pooling structure to learn vehicle

interactions.
• MHA-LSTM [5]: A model based on a multi-head attention mechanism for trajectory

prediction.
• MATF GAN [47]: A model using convolutional neural network and generative adver-

sarial network to learn social interaction.
• GRIP [48]: A model using graph networks to simulate interactions between

multiple agents.
• MFP [22]: A state-of-the-art model which learns semantically latent variables for

trajectory prediction.

4.1.2. Quantitative Evaluation

Tables 1 and 2 show the RMSE results (in meters) of comparison between various
models on the NGSIM and INTERACTION datasets. RRN achieves the minimum values
on each evaluation point and obtains a relevant improvement of accuracy at the end point,
compared to the state-of-the-art model MFP.

Table 1. RMSE (in meters) results of experiments on the NGSIM. We compare the performance of
several baseline models with the RRN over the 5-s prediction horizon.

Time S-LSTM CS-LSTM MHA-LSTM MATF GAN GRIP MFP RRN

1 s 0.65 0.64 0.56 0.66 0.64 0.52 0.49
2 s 1.31 1.27 1.22 1.34 1.13 1.11 1.09
3 s 2.16 2.09 2.01 2.08 1.80 1.79 1.76
4 s 3.25 3.10 3.00 2.97 2.62 2.59 2.54
5 s 4.55 4.37 4.25 4.13 3.60 3.53 3.44
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Table 2. RMSE (in meters) results of experiments on the INTERACTION. We compare the perfor-
mance of several baseline models with the RRN over the 5-s prediction horizon.

Time S-LSTM CS-LSTM MHA-LSTM MATF GAN GRIP MFP RRN

1 s 0.33 0.16 0.16 0.16 0.13 0.12 0.11
2 s 0.76 0.72 0.69 0.67 0.56 0.55 0.52
3 s 1.77 1.77 1.65 1.60 1.34 1.31 1.31
4 s 3.42 3.22 3.96 3.72 2.45 2.42 2.38
5 s 5.46 4.96 4.61 4.42 3.86 3.84 3.69

We also present the error distributions of trajectory prediction based on the RRN
model as illustrated in Figure 3. The box-plots shows the minimum, first (lower) quartile,
median, third (upper) quartile, and maximum of Euclidean distances between all predicted
values and ground truth on the testing set.

Figure 3. Error distributions of trajectory prediction on the NGSIM and INTERACTION, respectively.
The x-axis denotes 5 evaluation points as 1 s, 2 s, 3 s, 4 s, and 5 s; (a) Box-plot of RMSE based on RRN
on the NGSIM dataset; (b) Box-plot of RMSE based on RRN on the INTERACTION dataset.

In order to evaluate the performance toward perturbation occurrences, we add random
noise based on a Gaussian distribution N (0, σ) on the history trajectories. σ is set to
different values, and the corresponding results are shown in Figure 4. We can see that
our method surpasses CS-LSTM, which is the first model using social modeling in the
prediction of vehicle trajectories. Wherein, the bias is calculated as the following function.
We make a statistic of bias on 5 evaluation points.

Bias =
RMSEnoise − RMSEraw

RMSEraw
. (19)

In addition, the computation cost of our method is about 5.1 ms on average, compared
to the typical models such as CS-LSTM (about 3 ms) and MFP (about 5 ms). This is still an
acceptable and reasonable cost for an autonomous driving system.

4.1.3. Ablation Study

An ablation study is carried out to evaluate the effect of the anchor generator and
RLS module in trajectory refinement. Two basic models are used here, i.e., Vanilla LSTM,
a simple LSTM framework without anchor generator and RLS module, and Attention
LSTM, an LSTM model with attention to learning social interaction. We compare the
parametric-learning RLS model with the original one over the 5-s prediction horizon by
using RMSE as shown in Table 3.
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Figure 4. Results of perturbation occurrence. We make a comparison of our model RRN with CS-
LSTM.

Table 3. RMSE (in meters) results of ablation study. Vanilla LSTM (+RLS) and Attention LSTM
(+RLS) stand for Vanilla LSTM with parametric-learning RLS and Attention LSTM with parametric-
learning RLS.

Time Vanilla LSTM Vanilla LSTM
(+RLS)

Attention
LSTM

Attention
LSTM (+RLS)

1s 0.65 0.64 0.56 0.56
2s 1.58 1.56 1.21 1.20
3s 2.77 2.78 1.96 1.94
4s 4.26 4.27 2.86 2.78
5s 6.11 6.01 4.01 3.89

Through addition of the anchor generator and RLS module, the new models reduce
the RMSE at most time steps. In particular, there are improvements at the final point by
1.64% on Vanilla LSTM and 3.0% on Attention LSTM. Although the improvement appears
to not be very salient in the first 4-s of Vanilla LSTM and Attention LSTM, it has proved the
feasibility of aggregating various scale information.

The results indicate that our method can improve the performance of rollout trajectory
prediction effectively. The anchor generator and RLS module are useful for reducing error
accumulation and capturing global motion patterns.

4.2. Qualitative Results and Analysis

The comparison between MFP and RRN is illustrated in several scenarios as shown
in Figures 5 and 6, which correspond to highways in the NGSIM and roundabouts in the
INTERACTION. Trajectories estimated by the RRN model reveal that anchors work in
most cases, while MFP sometimes generates a trajectory with large error due to the rollout
mechanism. RRN achieves remarkable refinement over the predicted trajectories.

In many cases, RRN yaws as well at the first few time steps. Although the RRN
corrects the yawing to a certain extent over time. Particularly, as shown in Figure 5d, there
exists an obvious wheeling in the trajectories by the RRN model. This should be attributed
to the effect of the anchor generator and RLS module, which help to capture and balance
between local and global motion patterns. Nonetheless, there is still abundant space for
further work in avoiding mode-averaging to render the trajectory plausible.
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Figure 5. Examples of trajectory visualization on the NGSIM. We present the prediction results (in
meters) of MFP and RRN in several cases. The red line denotes the history trajectories. The ground
truth is shown by the blue line. The predicted trajectories of MFP and RRN are, respectively, plotted
in the green and orange dotted lines. Subfigures (a–d) illustrate predicted trajectories of 4 various
cases on the NGSIM dataset.

Figure 6. Examples of trajectory visualization on the INTERACTION. We present the prediction
results (in meter) of MFP and RRN in the roundabout conditions. Subfigures (a–d) illustrate predicted
trajectories of 4 various cases on the INTERACTION dataset.
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5. Conclusions

This study is launched to improve the performance of rollout methods of trajectory
prediction on road scenes. We propose a recursive least-squares-based refinement network
to capture both local and global motion patterns of surrounding vehicles and refine the
rollout trajectories. A data-driven recursive least-squares method is extended in a plausible
deep learning manner.

Results of experiments show a promising improvement in trajectory prediction accu-
racy towards the existing rollout methods on the real-world NGSIM and INTERACTION
datasets. Ablation studies have proved the effectiveness of anchor generators and RLS
modules on rollout methods. Our work reported here sheds new light on the integration of
an interpretable filtering model and the powerful deep learning method.

This research could proceed further by extending RLS to Kalman filter [49]. The PSO
with a deep learning model such as CNN and RNN presents another research direction [50].
Furthermore, the next step is to bring the distribution of other objects, i.e., pedestrians
and cyclists into the training and testing dataset. This could allow the model of trajectory
prediction work in different traffic conditions.
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