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Abstract: Concerning the good description of arbitrarily shaped clusters, collecting accurate support
vectors (SVs) is critical yet resource-consuming for support vector clustering (SVC). Even though
SVs can be extracted from the boundaries for efficiency, boundary patterns with too much noise and
inappropriate parameter settings, such as the kernel width, also confuse the connectivity analysis.
Thus, we propose an improved boundary SVC (IBSVC) with self-adaption support for reasonable
boundaries and comfortable parameters. The first self-adaption is in the movable edge selection
(MES). By introducing a divide-and-conquer strategy with the k-means++ support, it collects local,
informative, and reasonable edges for the minimal hypersphere construction while rejecting pseudo-
borders and outliers. Rather than the execution of model learning with repetitive training and
evaluation, we fuse the second self-adaption with the flexible parameter selection (FPS) for direct
model construction. FPS automatically selects the kernel width to meet a conformity constraint,
which is defined by measuring the difference between the data description drawn by the model and
the actual pattern. Finally, IBSVC adopts a convex decomposition-based strategy to finish cluster
checking and labeling even though there is no prior knowledge of the cluster number. Theoretical
analysis and experimental results confirm that IBSVC can discover clusters with high computational
efficiency and applicability.

Keywords: support vector clustering; cluster boundary; edge selection; parameter adaption;
convex decomposition

1. Introduction

Support vector clustering (SVC) has attracted much attention for handling clusters
with arbitrary shapes [1,2]. For a better description, support vectors (SVs) with their
specific coefficients should generally be collected through excellent model training, which
requires a large number of valid training samples and a complex iterative analysis under
specific metrics. Due to the increasing data size and weak representative samples, pricey
storage and computation in the training phase frequently degrade the SVC’s performance.
Meanwhile, the connectivity analysis can also be confused by inappropriate parameter
settings even with the use of correct SVs. Intuitively, we expect an efficient model to be
trained on fewer yet representative samples and comfortable parameters to be found at a
minimal cost.

Let X be a data set with N data samples {x1, x2, · · · , xN}, where xi ∈ Rd(i ∈ [1, N])
in the data space. Model training is pricey because it generally has to solve a quadratic
programming problem in terms of iterative analysis on an N× N kernel matrix. Its runtime
usually ranges from O(N2) to O(N3) depending on the specific case [1,3,4]. Furthermore,
the number of iterative analyses is uncertain, although a great value for the final coefficient
vector β that exacerbates the practical time-cost is expected. To achieve an improvement,
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on the one hand, selecting the most representative subset of X is critical and apparent.
However, few research works in the literature focus on the subset’s representativeness
or purity. They frequently prefer a subset selected under a random or fixed strategy for
convenience. For instance, [5] unstably partitioned X into k subsets for local training and
global merging, while [6] set a sample rate θ to control the randomly selected data samples
(Ntr = θN) in model training and in generating Voronoi cells. Despite running fast, they
resulted in an extremely unstable accuracy. Later, refs. [7,8] adopted the boundary samples
to reformulate the dual problem. Even though they achieved stable performance, a large N
slowed down the efficiency of boundary selection, and it suffered from noise in the cluster
description and connectivity analysis. On the other hand, parameter selection stops model
training at the right time for cluster discovery. In the literature [1,9], the expected cluster
number k is still the most common stop condition before obtaining the appropriate kernel
width q by an incremental test. However, k is what we need for discovery in practical
situations [8,10]. Despite various strategies to increase q, e.g., tangent approximation [11],
they are not so effective because several complete clustering analyses are required.

In order to tackle these issues, we propose an improved boundary SVC (IBSVC) with
self-adaption support for reasonable boundaries and comfortable parameters. Under a
divide-and-conquer strategy, it firstly collects local edges with the k-means++ support.
After removing the fake edges, the pure edges are used to reformulate the dual problem
with relaxed constraints. Meanwhile, the expected iterative direction of the solver impels
us to directly select an optimal q, which reduces the difference between the data descrip-
tion drawn by the constructed model and the actual pattern. IBSVC adopts a coefficient
initialization-based iteration control method and a convex decomposition-based labeling
strategy for the further benefit of efficiency. The main contributions of this work lie in
the following:

(1) A movable edge selection (MES) method with self-adaption support is proposed. It
collects local data samples from the boundaries of clusters divided by the k-means++,
removes the fake edge patterns, and shrinks the remaining edges for requisite con-
nectivity and fewer outliers. Due to the divide-and-conquer strategy, the achieved
efficiency improvement enables MES to efficiently handle large-scale data analyses
and supply informative and reasonable edges.

(2) For an appropriate kernel width q, a flexible parameter selection (FPS) strategy is
presented in the direct model construction without a penalty factor C. Rather than
the traditional search strategy, FPS automatically adjusts q in a smaller range with a
clearer target, i.e., the iterative directions drawn by the model is close to the actual
data pattern. More importantly, no complete clustering procedure is required by each
adjustment of q.

(3) Benefiting from the divide-and-conquer strategy and the convex decomposition-based
labeling strategy [12], IBSVC can easily adjust the discovered clusters by consider-
ing the neighborhood relationship of convex hulls even though there is no prior
knowledge of the cluster number.

The remainder of this paper is organized as follows: In Section 2, both of the classic
SVC and boundary SVC are briefly described. In Section 3, we first present the two self-
adaption supported methods, MES and FPS, and then describe the framework of the IBSVC.
After the introduction of a typical labeling phase, the theoretical analysis and experimental
results of the IBSVC are presented in Section 4. Then, we give our review of related works
in Section 5. Finally, conclusions are drawn in the last section, and future works to be
investigated are discussed.

2. Preliminaries
2.1. Classical SVC
2.1.1. Estimation of a Trained Support Function

X can be mapped to a high-dimensional feature space from the data space through
a nonlinear function Φ(·). Then, SVC tries to find a sphere with the minimal radius that
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contains most of the mapped data samples. This sphere, when mapped back to the data
space, can be partitioned into several components, with each one enclosing an isolated
cluster of samples. In mathematical formulation, the spherical radius R is subjected to
the following:

min
R,α,ξi

R2 + C ∑
i

ξi

s.t. ||Φ(xi)− α||2 ≤ R2 + ξi,
(1)

where α is the center of the sphere, ξi is a slack variable, and C is a constant controlling the
penalty of noise. Following [13,14], the expected sphere is estimated by a support function,
which is defined as a positive scalar function f : Rn → R+. Since the support function
is constructed by SVs, we estimate it by solving a dual problem in Equation (2), where xi
corresponds to the coefficient βi(i = 1, . . . , N) if its 0 < βi < C is an SV.

max
β j

∑
j

K(xj, xj)β j −∑
i,j

βiβ jK(xi, xj)

s.t. ∑
j

β j = 1, 0 ≤ β j ≤ C, j = 1, . . . , N.
(2)

By optimizing Equation (2) with a Gaussian kernel K(xi, xj) = e−q||xi−xj ||2 , the trained
objective support function can be formulated by the squared radial distance of the image of
x from the sphere center α given by the following equation:

f (x) = 1− 2 ∑
j

β jK(xj, x) + ∑
i,j

βiβ jK(xi, xj). (3)

α = ∑
j

β jΦ(xj). (4)

Theoretically, the radius R is usually defined by the square root of f (xi), where xi is
any one of the SVs.

2.1.2. Cluster Assignments

Since SVs are located on the border of clusters, a simple graphical connected compo-
nent method can be used for cluster labeling. For any two samples, xi and xj, we check the
m segmers on the line segment connecting them by allowing their images to travel in the
hypersphere. According to Equation (3), xi and xj should be labeled with the same cluster
index, while all the m segmers always lie in the hypersphere, i.e., f (xm̃) ≤ R2 for m̃ ∈ [1, m].
Otherwise, they will be in two different clusters.

2.2. Boundary SVC

In geometry, a cluster boundary consists of edge and border patterns. A cluster has
independent edge patterns, while any two clusters with overlapping regions share the
same border patterns. We usually consider them as two cluster components for the latter
unless they have different labels. Following the support vector data description (SVDD),
edge patterns are critical for the description of a cluster in unsupervised learning. Edge
patterns should be the most informative samples that can accurately describe the data
distribution structure without border patterns. Taken from another perspective, they can be
considered as the superset of the SVs. Therefore, ref [8] proposed a classic boundary SVC
(BSVC) which constructs a support function equivalent to (3), directly using the boundaries
Xb = {xb1 , xb2 , . . . , xbM} ⊆ X .
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In theory, f (xbi ) (i = 1, 2, . . . , M) should be approximately equal. Hence, we have the
following equation: 

∑j β j[K(xbj , xb1)− K(xbj , xb2)] ≤ ξ1,
∑j β j[K(xbj , xb1)− K(xbj , xb3)] ≤ ξ2,
· · ·

∑j β j[K(xbj , xb1)− K(xbj , xbM )] ≤ ξM−1,

(5)

where j = 1, 2, . . . , M and ∑j β j = 1. Let β = [β1, β2, · · · , βM]T , ξ = [ξ1, ξ2, · · · , ξM−1]
T ,

and Q = [Q1, Q2, · · · , QM−1]
T , where:

Qt = [1− K(xb1 ,xbt+1), K(xb2 , xb1)− K(xb2 , xbt+1),

· · · , K(xbM , xb1)− K(xbM , xbt+1)],
(6)

and t = 1, 2, . . . , M− 1. Thus, we have Qβ ≤ ξ, whose objective can be approximated by
the equation below:

min
β

βT Hβ

s.t. ∑
j

β j = 1, ∀j ∈ [1, M], β j ≥ 0
(7)

where H = QTQ is a Hessian matrix in RM×M. Notice that (7) is a standard convex
quadratic program. Using the boundaries, it replaces (2) to estimate a trained support
function for BSVC. Furthermore, BSVC is compatible with the state-of-the-art strategy for
cluster assignments.

3. The Proposed IBSVC
3.1. Movable Edge Selection

Regarding cluster boundary collection, Li and Maguire [15] designed a border-edge
pattern selection (BEPS) algorithm. Although its contributions to clustering and classifi-
cation have been confirmed, the double loop of a distance analysis between all the data
sample pairs requires a pricey computation. Moreover, BEPS frequently suffers from noise
along with un-shrunk edges [8]. Therefore, we propose the MES method, a hybrid frame-
work of the k-means++ and BEPS, with an easy shrinking strategy and a fake edge removal
strategy. The framework of MES is depicted in Figure 1.

k-means++

Movable Boundary 
Selection

Movable Boundary 
Selection

Cluster #1 Cluster #K

Boundary Aggregation with Border Elimination

Data Input

Edge Patterns

Figure 1. Framework of MES.

Following the classic divide-and-conquer strategy, MES utilizes k-means++ to divide
the data set into a number of clusters. As an optional phase, it is strongly recommended for
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large-scale data. Due to the shortcomings of the circle-like pattern hypothesis and the fact
that the cluster number K is unknown, the obtained clusters frequently cannot reflect the
ground truth of data distribution well. Thus, a movable boundary selection (MBS) with an
easy shrinking strategy is first designed to collect cluster boundaries while eliminating as
much noise as possible. As for better supporting arbitrary shapes, the fake edge removal
strategy is integrated into the boundary aggregation with border elimination.

3.1.1. Movable Boundary Selection

On five Gaussians [5], we conducted a comparative analysis in Figure 2 before present-
ing the algorithm description of MBS. As discussed in Section 4 of [8], BEPS cannot obtain
the shrunken edges that frequently reserve too many data samples located in the outermost
section of the clusters. Due to the poor data description, as shown in Figure 2a, these
data can be considered as noise or outliers. Thus, in [8], a shrinkable boundary selection
(SBS) method was presented to avoid most of the noise by introducing an upper bound.
However, according to Figure 2b, we can still find data samples disturbing the form of clear
clusters that might affect the further use of edges. Do we have to use a subset of the input
data to represent the edges for a description of the arbitrary shapes of clusters? Apparently,
similar to [7] finding boundaries to replace the SVs, we can also use any equivalent edges
to reach the same objective.
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Edge Data

(a) Edge data collected by BEPS (b) Edge data collected by SBS
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(c) Edge data with convergence direction (d) New edge data obtained by MBS

Figure 2. Edge data collected by different boundary selection methods. On the five Gaussians with
1000 data samples equally distributed into fire clusters: (a) BEPS [15] collects edge data, with k = 30
and γ = 0.8; (b) SBS [8] finds edges, with k = 30, γl = 0.8, γu = 0.9; (c) Convergence direction
description based on the results of SBS; (d) MBS obtains new edges not in the original dataset by
allowing edges to move.

Taking the norm vector as the convergence direction, following [15], it is clear that the
outermost data samples have bigger modules than the others close to the cluster center
(see Figure 2c). Therefore, to smooth the edges, the proposed easy shrinking strategy
is quite simple: move the selected outermost data towards the corresponding cluster
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centers. Intuitively, the step length for each movement should reflect its specific location.
In Algorithm 1, we formulate this movement with the following equation:

x′i = xi + τb · ni. (8)

Here, ni is the convergence direction of xi, and τb is a speed factor for the movement,
with a recommended range of (0, 1]. After this movement, the obtained edges by MBS will
be new data samples that are not in X . Thus, according to lines 13–17, their convergence
directions should be changed in accordance with the new neighbor relationship. Figure 2d
depicts a special example with τb = 1.

Algorithm 1 Movable Boundary Selection

Require: Dataset Xk, thresholds γl , γu, τb, integer k1

Ensure: Original edges Xek and normal vectors Vek; New edges X ′ek and normal vectors
V ′ek

1. Xek ← ∅, Xek ← ∅, X ′ek ← ∅, X ′ek ← ∅
2. for a given data sample xi in Xk do
3. find the k1 nearest neighbors xj of xi

4. ni ← ∑k1
j=1 vji, where vji = xj − xi

5. `i ← 1
k1

∑k1
j=1 g(nT

i · vji)

6. if γl ≤ `i ≤ γu then
7. x′i = xi + τb · ni

8. Xek ← Xek ∪ xi

9. X ′ek ← X
′
ek ∪ x′i

10. Vek ← Vek ∪ ni

11. end if
12. end for
13. for a given data sample xei in Xek do
14. find the nearest neighbor xj of Xk

15. nei ← nj

16. V ′ek ← V
′
ek ∪ nei

17. end for
18. return Xek, Vek, X ′ek and V ′ek

3.1.2. Boundary Aggregation with Border Elimination

Due to the inherent defects of k-means++, irregularly shaped clusters might be split
into multiple components. Based on local geometrical and statistical information, edge
patterns collected by MBS can be adjacent and are assigned to different clusters. In fact,
they are located in the same cluster as the irregular shapes. As depicted by Figure 3a,
the Chameleon [16,17] with eight clusters is divided into ten clusters by k-means++, with
K = 10. However, the collected edge patterns give us an illusion of 20 components,
i.e., C1, C2, · · · , C20. If we can eliminate those fake edge patterns connecting two adjacent
components, such as the data samples connecting C16 and C17, the remaining edge patterns
from different components can be aggregated to better describe the true cluster shapes. In
the literature, these fake edge patterns can be likened to border patterns [15] or transition
points [18]. To correctly remove them, as shown in Figure 3b, we zoom in on a local region
between C16 and C17 in order to analyze the fake edge pattern.

Let x0 be the current data sample. Three out of its five nearest neighbors have conver-
gence directions towards C17, while the other two converge on C16. Therefore, if a cluster
has been divided into multiple components, the fake edge patterns are usually located at
the division position. Since boundaries are independently selected from each component,
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the data samples at the division position can have different convergence directions. Fur-
thermore, the closer a data sample’s corresponding cluster center is, the more balanced the
number of data samples in different convergence directions will be. The balance degree
of the convergence directions of a data sample’s k nearest neighbors can be formulated
as follows:

Df =
k

∑k
j=1 g(nT

ei · nej)
− 1, (9)

where (·)means inner product, and g(x) returns 1 if x ≥ 0; otherwise, it returns 0. Algorithm 2
illustrates the procedure of boundary aggregation with border elimination in which fake edge
patterns are removed. All the local edges Xek,X ′ek(k = 1, · · · , K) are aggregated into Xe
in lines 1 and 2. From a global perspective, fake edge patterns are collected based on the
balance degree analysis in lines 6–9 and eliminated in line 11. Thus, the final edge patterns
are globally considered to describe the clusters.

Algorithm 2 Boundary Aggregation with Border Elimination

Require: Local original edges Xek and normal vectors Vek(k = 1, · · · , K); Local new edges
X ′ek and normal vectors V ′ek(k = 1, · · · , K), k2 and τf

Ensure: Global edges Xge with their normal vectors Vge

1. Xe ←
⋃K

k=1 Xek, Ve ←
⋃K

k=1 Vek

2. X ′e ←
⋃K

k=1 X ′ek, V ′e ←
⋃K

k=1 V ′ek
3. Ife ← ∅
4. for a given data sample xei in Xe do
5. find the k2 nearest neighbors xej of xei

6. Df ← k2

∑
k2
j=1 g(nT

ei ·nej)
− 1

7. if Df ≥ τf then
8. Ife ← Ife ∪ i
9. end if

10. end for
11. Xge ← X ′e \ ∀xei, Vge ← V ′e \ ∀nei where i ∈ Ife

12. return Xge, Vge
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Figure 3. Fake edge analysis for elimination based on the convergence directions of a data sample’s
five nearest neighbors. The data set used is Chameleon [16], with eight irregular clusters after noise
elimination by [17]. Here, MBS is conducted, with K = 10, k1 = 30, γl = 0.85, and γu = 0.95,
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3.2. Improved Hypersphere Construction

The final edge patterns obtained by MES are generally the candidate SVs, which
construct the expected minimal hypersphere with the radius R. To filter out non-SVs, BSVC
reformulates Equation (7) by Equation (10) with H̃ ij = 2H ij, which allows 0 ≤ β j ≤ 1 and
removes fewer informative points with β j ≤ 10−plg Mq.

min
β

1
2

βT H̃β

s.t. 0 ≤ β j ≤ 1, j = 1, . . . , M.
(10)

However, to traverse the same edge patterns, we can frequently find out distinct paths
that might suggest different shapes and relationships of clusters. Generally, more optional
paths exist if we allow more edge patterns to have β j = 0. Intuitively, more edge patterns
are expected to be the final SVs in order to provide a better description of the clusters.
Meanwhile, BSVs with β j = 1 are no longer recommended even though most of them
are replaced by Equation (8). Thus, with a constraint relaxation, the dual problem (10) is
further formulated by the equation below:

min
β

1
2

βT H̃β

s.t. 0 < β j < 1, j = 1, . . . , M.
(11)

After solving problem (11), the obtained β constructs the expected hypersphere by
following Equations (3) and (4).

3.3. Improved Solver for Dual Problem

Let ξ be a scalar moving towards 0, i.e., ξ → 0. Following [8], the optimization process
of (11) can be started from β0 ∈ RM and generates a sequences of vectors {βk}∞

k=1. For each
outer iteration, β1, β2, · · · , βM are updated in M inner iterations, respectively. Thus, each
outer iteration generates βk,i ∈ RM, i = 1, 2, · · · , M + 1. By fixing the other variable to get
an updated βk,i+1 from βk,i , we solve the following one-variable sub-problem:

min
θ

f (βk,i + θei) =
1
2

H̃ iiθ
2 +∇i f (βk,i)θ + constant

s.t. ξ ≤ βk
i + θ ≤ 1− ξ,

(12)

where ei = [0, . . . , 0, 1, 0, . . . , 0]T . Different from Equation (16) of [8], this objective function
has an updated projected gradient ∇P

i f (β) with new constraints:

∇P
i f (β) =


∇i f (β) if ξ < βi < 1− ξ

min(∇i f (β), ξ) if βi = ξ

max(∇i f (β), ξ) if βi = 1− ξ.

(13)

We move to the index i + 1 without updating βk,i
i if ∇P

i f (βk,i) = 0. If H̃ ii > 0, the
solution will be as follows:

βk,i
i = min

(
max

(
βk,i

i −
∇i f (βk,i)

H̃ ii
, ξ

)
, 1− ξ

)
, (14)

and will then continue the search in the current index.
Combining the formulas mentioned above with the analysis in [8], we can get an

improved solver (iSolver) for the problem (11), which is shown in Algorithm 3. By using
the iSolver, all the M items of β will be kept in the range of [ξ, 1− ξ], which will reduce the
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ambiguity of the data description caused by the removal of the edge point, with βi = 0 or
βi ≤ 10−plg Mq. In fact, without the constraint, a certain percentage of edge points have
zero coefficients. Furthermore, to reduce unnecessary iterations, in line 1, we introduce
an initialization strategy for β based on normal vectors Vge. According to the principle
of SVDD and the rules of connectivity analysis [13,17], BSVs with βi = C , SVs with
0 < βi < C, and Inners with βi = 0 are located outside, above, and inside the cluster
boundary, respectively. These characteristics are similar to the relationship between a data
sample’s location and its convergence direction, discussed in Section 3.1. Thus, following
Algorithm 2, we initialize the coefficient βi of xei by normalizing its normal vector’s
modulus as follows:

βi =
|nei|

maxj=1,··· ,M |nej|+ ξ
. (15)

In Algorithm 3, line 2 adopts FPS to decide an appropriate kernel width q for the
Hessian matrix H. FPS is detailed in Section 3.4. Due to the new constraints, all the global
edges will be kept for the hypersphere construction. Therefore, without any adjustment,
the radius R can be directly measured with a distance from any xei(i ∈ [1, M]) to the center.

Algorithm 3 iSolver for the Dual Problem (11)

Require: Global edges Xge, normal vectors Vge, and ξ

Ensure: Coefficient vector β

1. Strategically initialize each item of β by Equation (15)
2. Kernel width q decided by FPS
3. Hessian matrix H ← QTQ following Equation (6)
4. While β is not the optimal
5. for i = 1, 2, . . . , M do
6. β̂i ← βi

7. Ĝ = 2×∑N
j=1 β j H ji

8. G ← Ĝ + (βi − β̂i)

9. PG =


G if ξ < βi < 1− ξ

min(G, ξ) if βi = ξ

max(G, ξ) if βi = 1− ξ

10. if |PG| 6= 0 then
11. βi ← min(max(βi − 1

2 G, ξ), 1− ξ)

12. end if
13. end for

3.4. Flexible Parameter Selection of Q

The kernel width q is critical for the accurate description of data patterns because
different q values mean different resolutions. A greater q value generally leads to a tighter
fitting with more SVs, while a smaller q value considers more connected clusters. Therefore,
an exploration of the kernel width q cannot be avoided before an optimal division of
data space is obtained. Ref. [1] discussed different strategies in the literature. Notice that
Algorithm 3 keeps using all the edges collected by Algorithm 2 as the final SVs. Thus, we
intuitively need a new strategy to optimize the parameter selection of q with the known
SVs and their relative location on the corresponding boundary.

In [19], J. Lee and D. Lee proved that the support function (3) could be considered as a
dynamical system. In this system, there is a stable equilibrium point (SEP) which can be
reached by an optimization algorithm starting at any point, e.g., the gradient descent. To
preserve the topological structure, following [20], the generalized gradient descent process
can be formulated with the following equation:
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∇ f (xi) =
M

∑
j=1

4qβk
j K(xj, xi)︸ ︷︷ ︸

coefficient

·
[
xj − xi

]︸ ︷︷ ︸
vector

. (16)

Here, 4qβk
j K(xj, xi) scales [xj − xi] and contributes to the final convergence direction.

The convergence direction ~xi in the k-th iteration for xi is the negative gradient of f (xi), i.e.:

~xi = −γ∇ f (xi), (17)

where γ is a constant factor. This is the fundamental of the convex decomposition strategy
proposed by [21]. Furthermore, in each convex hull, SEP is the innermost point that is the
closest to the center α (see Equation (4)) of the constructed hypersphere. Geometrically,
for each xi, the vector field ~xi in (16) is orthogonal to the constructed hypersphere. On the
basis of SVDD and Equation (8) of [15], ~xi plays the same role as the normal vector ni in
Equation (8). Intuitively, the core idea behind the proposed FPS is quite simple, i.e., an
appropriate kernel width q improves the accumulated similarity between ~xi and ni, where
i = 1, · · · , M.

Thus, in theory, FPS can find out the q value by employing the following equation:

q← arg max
q

M

∑
i=1

cos(ni,~xi). (18)

Apparently, the gradient descent-like process starts early in Algorithm 1. For the sake
of simplicity and efficiency, and in line with MBS, we recommend a randomly selected
M′(� M) edge pattern to find a suitable q value. Based on the initialized β, FPS works in
line 2 of Algorithm 3.

3.5. The Framework of IBSVC

By combining the aforementioned methods, we present the framework of IBSVC in
Algorithm 4 by following a similar description to that of the classic SVC.

Even though several parameters are required, in Algorithm 4, most of them are not
strongly depended upon by IBSVC, which will be discussed in Section 4. The training
phase ranges from lines 1 to 6, in which lines 1–5 constitute the procedure of the MES. The
k-means++ divides X into K subsets for an efficient edge collection in lines 2–4. Thus, we do
not expect an accurate K as the prior knowledge. The MES in lines 2–4 can also be conducted
in parallel. Based on the local edges Xei and their normal vectors Vei (i = 1, · · · , K), BABE
in line 5 obtains the global version through a combination with the fake edge removal.
In line 6, the iSolver obtains the coefficient vector β for all the global edges Xge. This
procedure is optimized by considering the edge locations and by introducing the kernel
width q selection. Therefore, q is not included in the list of required parameters. Lines
7–14 step into the labeling phase. Without any constraints on the labeling strategy, we can
generally choose any of the cluster prototypes for XR and any sampling strategy to match
it for the connectivity analysis in lines 7–8. After that, line 9 decides on the labels of the
chosen prototypes, which will be utilized in lines 10–13 to label all the remaining data.
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Algorithm 4 Description of IBSVC

Require: Dataset X , integers K, k1, k2, and thresholds γl , γu, τb, τf , ξ

Ensure: Clustering labels for all the data samples
1. {X1, · · · ,XK} ← k-means++(X , K)
2. for each Xi(i = 1, 2, · · · , K) do
3. {Xei,Vei,X ′ei,V ′ei} ←MBS(k1, γl , γu, τb)
4. end for
5. {Xge,Vge} ← BABE(∀Xei, ∀Vei, ∀X ′ei, ∀V ′ei ; k2, τf ) with i = 1, · · · , K
6. β← iSolver(Xge,Vge, ξ)
7. P ← finding cluster prototypes for Xge

8. A← sampling for connectivity analysis with P
9. Labels← finding connected components using A

10. for each x ∈ X\Xge do
11. inx← find the nearest prototype from x
12. Labels[x]← Labels[xinx]
13. end for
14. return Labels

4. Performance Analysis
4.1. Complexity Analysis

As a hybrid method, IBSVC focuses on achieving an improvement in the training
phase of BSVC [8] as well as on optimizing the kernel width q selection that has not been
considered. In fact, besides [8], the fast and scalable SVC (FSSVC) [7] is another variant of
BSVC. Meanwhile, the faster and reformulated SVC (FRSVC) [12] also employs a classic
form of the dual coordinate descent method, which is one of the sources of inspiration
for the proposed iSolver. In the literature, the Voronoi cell-based clustering (VCC) [6] is
a typical data division method. To fairly evaluate IBSVC’s time complexity, let N be the
number of samples in a data set, NSV be the number of SVs, ` be the average number of
iterations for each data sample to locate its corresponding local minimum via the steepest
descent process [19], `iter be the self-defined iteration number for BSVC and IBSVC, Nc be
the final number of convex hulls (CHs), M be the size of the selected cluster boundaries by
FSSVC [7], and m be the average sample rate. M1 and M2 are the numbers of the final edge
patterns obtained by BSVC and IBSVC, respectively. Due to different strategies of edge
removal, M1 and M2 are not equal but are on the same scale. Even though the collected
edges and the way the problem is constructed frequently influence the labeling performance,
we focus on efficient training and refer to [8] for the baseline of the labeling phases.

In the training phase, the employed k-means++ [22] consumes O(NK). Since each
subset Xi has N

K data samples, the proposed MES requires O((N
K )2). Then, BABE requires

O(k2M2) to remove the fake edges, while the iSolver takes O(M2
2) to get β for the support

vector function in Equation (3). Therefore, the total time complexity for the training phase
of IBSVC is O(NK + (N

K )2 + k2M2 + M2
2). Generally, we have K � N and k2 � M2.

Thus, this complexity can be simplified by O((N
K )2 + M2

2). By contrast, BSVC consumes
O(N2 + M2

1). Both of them are much lower than the O(N3) required by the conventional
methods [1]. For the labeling phase, both IBSVC and BSVC adopt the construction of CHs
and the performance of connectivity analyses between them. The prior decomposition
respectively uses self-defined `iter iterations from the M2 and M1 data samples. The latter
analysis is flexible to any sampling strategy based on CHs, e.g., the strategy from the FSSVC
or the faster and reformulated SVC (FRSVC) [12]. Thus, we denote it with a linear function
f (ζ), where ζ can be either Nc or NSV.

We compare IBSVC with the state-of-the-art methods, i.e., FRSVC [12], FSSVC [7],
Voronoi cell-based clustering (VCC) [6], fast support vector clustering (FSVC) [5], and the
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reformative SVC with elementary operations (RSVC-EO) [20]. In addition, we consider k-
means++ as one of the baselines for it is a classic clustering method and plays an important
role in IBSVC. In Table 1, γ ranges from 1/N to 1, Ntr is the number of data that is uniformly
sampled with a predefined sample rate θ, and Nb is the number of small balls extracted,
either from the Ntr data samples for VCC or from the whole data set for the others. Even
though two optional modes of the labeling phase are presented for VCC, in this study, Mode
I, which has a fast phase for labeling the remaining data, is preferred for its relative stability.
Even though FRSVC and RSVC-EO have solvers that are similar to BSVC, their problems
and data forms are different. A large N makes FRSVC and RSVC-EO adopt calculation on
demand, which takes O(dN2); in this case, d is the data dimension. Therefore, their time
complexities in the training phase should be O(d̃N2), with 1 ≤ d̃ ≤ d. The difference is in
the labeling phases, where the RSVC-EO performs non-iteration convex decomposition
and a connectivity analysis irrespective of the sampling separately costing O(N2

SV) and
O(ρNCH) (ρ ∈ (2, 3]). For all the methods, labeling the remaining data sample is omitted
since the time complexity is linear to Nc or NSV.

Table 1. Time complexity analysis of the state-of-the art methods.

Index Method SVC Training Labeling

1 FSVC O(N3) O(`Nb + γN2)

2 VCC O(N3
tr)

Mode I: O(`Ntr + mN2
c )

Mode II: O(`Nb + γN2
tr + mN2

b )

3 FSSVC O(N2 + M3) O(`NSV + 2mNc) or O(N2
SV)

4 FRSVC O(d̃N2) O(`NSV + m̄Nc)

5 RSVC-EO O(d̃N2) O(N2
SV + ρNCH + NNSV)

6 BSVC O(N2 + M2
1) O(`iter M1 + f (ζ))

7 IBSVC O(( N
K )2 + M2

2) O(`iter M2 + f (ζ))

8 k-means++ O(NK)

Note: d̃ ∈ [1 ≤ d̃ ≤ d], m̄ ∈ [1, 2], ρ ∈ (2, 3], Ntr = θ N with θ ∈ (0, 1].

4.2. Datasets and Experimental Settings

Derived from the BSVC [8], the proposed IBSVC adopts at least three distinct ways for
improvements, i.e., a k-means++ based MES to support large-scale data, the iSolver with
optimal constraints for ambiguity reduction in SVDD, and the FPS for a direct kernel width
search without complete clustering procedure attempts. To achieve a full performance
analysis, we conduct the following five experiments:

(1) Check whether the MES correctly and efficiently obtains informative edges for data descrip-
tion.

(2) Find out how the β initialization strategy affects the number of iterations required by
the iSolver and whether the effect can be maintained if we limit the iteration number
to a small one, such as with the BSVC.

(3) Make several comparisons between the FPS and the traditional strategy to collect
evidence corresponding to its efficiency and usability. The former is about the run-
time, while the latter is closely related to the gap between the discovered kernel width
q and the ideal value.

(4) Perform a comprehensive analysis of the IBSVC based on its comparison with the
state-of-the-art variants of the SVC listed in Table 1, which adopt a method similar to
clustering.

(5) Compare IBSVC with the typical k-means++ [22] to verify the cost–performance ratio
since k-means++ is well-known for its efficiency.

The aforementioned experiments are conducted on typical data sets from various
domains: Synthetic Chameleon is a noise-eliminated version of DS 4 from [16]. A breast
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cancer dataset called wisconsin and imbalanced shuttle data are provided by the UCI
repository [23] . One classic text corpora known as 20Newsgroups [24], with twenty full cat-
egories, were processed by [25] following the method of DCGLI-CCE. UNIBS Anonymized
2009 Internet Traces UNIBS-AIT [26] consists of 9209 flows in four imbalance-distributed cat-
egories, i.e., WEB (HTTP and HTTPS), MAIL (POP2, IMAP as well as their encrypted flows),
BitTorrent, and eMule. It was supplied by TNG@UniBS Lab and processed by [27] for
early traffic behavior analysis. Following the work of [28], kddcup99 is a nine-dimensional
data set extracted from the KDD Cup 1999 Data [29], which was used to build a network
intrusion detector. The statistical information of the sixteen employed data sets are listed in
Table 2.

Table 2. Description of the benchmark data sets.

Data Sets
Data Set Description

Size Dims # of Classes

wisconsin 683 9 2

Chameleon 7670 2 8

UNIBS-AIT 9209 4 4

20Newsgroups 13,998 20 20

shuttle 43,500 9 7

kddcup99 494,021 9 5

To evaluate the accuracy, we adopted the widely used similarity metrics known as the
adjusted rand index (ARI) [30], formulated by Equation (19). In Equation (19), Nij is the
number of data points with a true label i but is labeled with j, while Ni· and N·j are the
number of data points with the labels i and j, respectively.

ARI =
∑i,j (

Nij
2 )−

[
∑i (

Ni·
2 )∑j (

N·j
2 )
]
/(N

2 )

1
2

[
∑i (

Ni·
2 ) + ∑j (

N·j
2 )
]
−
[
∑i (

Ni·
2 )∑j (

N·j
2 )
]
/(N

2 )
(19)

In this study, we implemented the IBSVC and all the compared methods in MATLAB
2021b without the use of any parallelization tricks. As with the previous settings, the
flexibility and usability of the proposed IBSVC prompted the most amount of concern in
this study. Efficiency improvement is a matter of course. Therefore, the employed testbed
is a computer running Windows 10-X64 on Intel I7-10700@2.90 GHz and 16 GB RAM. For
fair comparisons, the run-time cost for each data set is an average of ten times that of
the execution.

4.3. Performance of MES for Informative Edges

MES is a hybrid method that consists of three critical components, i.e., k-means++,
MBS, and BABE. Compared with BEPS [15], theoretically, MES shrinks the cluster boundary
by restricting the upper bound γu < 1. Thus, noise interference is weak since a proportion
of outliers is separated. Based on BSVC, MES supports data division, data movements, and
the generation of more informative edge patterns. To check whether MES correctly and
efficiently obtains informative edge patterns, we utilized an additional synthetic data DS3
from [16] as a representative. The selected edge patterns and run-time cost on average are
depicted in Figure 4.

Intuitively, irregular cluster shapes of DS3 are captured well by all the three methods,
and the difference is that they keep different proportions of the noise data. The number
of remaining noises have an apparent sequence of NBEPS > NSBS > NMES. From an SVDD
perspective, these noise samples are generally recognized as outliers or bound support
vectors (BSVs), which contribute to the formulation of the support vector function (3) for
β j approximating 1; they affect the connectivity analysis among clusters, especially for
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high-dimensional data. Therefore, many data preprocessing methods in the literature have
been designed and introduced before clustering. Comparatively, as shown in Figure 4c,
MES removed most of the noise samples while keeping relatively clear boundaries (without
borders). It is worth mentioning that the average run-time cost of 0.39 s by MES, as can
be seen in Figure 4d, is far less than the 2.07 s and 2.08 s consumed by BEPS and SBS of
BSVC, respectively.
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(a) Edges collected by BEPS (b) Edges found by SBS
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Figure 4. Edges collected by BEPS [15], SBS of BSVC [8], and MES of IBSVC on DS3 provided
by [16]. (a) BEPS: k1 = 30, γ = 0.8. (b) BSVC: k1 = 30, γl = 0.8, γu = 0.95. (c) MES: K = 20, k1 = 30,
k2 = 5, γl = 0.8, γu = 0.95, τf = 0.25. (d) The average run-time cost in seconds.

4.4. Validity Analysis of the Coefficient Vector Initialization Strategy

Generally, different coefficient vector β initialization strategies directly influence the
iterative analysis of a solver. For the proposed iSolver, the β initialization strategy is also
related to the decision concerning the kernel width q. Therefore, the chosen strategy indi-
rectly impacts the final accuracy and when the iteration should be stopped. Traditionally,
zero and random initialization strategies are frequently preferred, which respectively start
the solver by setting β j = 0 and 0 < β j < 1 for j = 1, · · · , M. For a validity analysis
of the proposed β initialization strategy, we compared it with both the zero and random
initialization strategies on Chameleon. Since the latter two do not match the proposed
FPS, we adopted a fixed and optimal kernel width q = 0.0070 for them, separately denoted
by “Zero Init. (Fixed q)” and “Random Init. (Fixed q)”. Meanwhile, we also considered
two cases for the proposed β initialization strategy: one case uses the fixed kernel width
q = 0.0070 denoted by “IBSVC Init. (Fixed q)”, and the other case follows the proposed
self-adapted strategy denoted by “IBSVC Init. (Adapted q)”. For this fair comparison,
the labeling phase of FRSVC is adopted to replace lines 7–14 of Algorithm 4. Figure 5
depicts the accuracies obtained by different β initial strategies. “# of iter” denotes the fixed
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number of iterations of iSolver (Algorithm 3). Notice that each value of “# of iter” means
an independent evaluation.

 Random Init. (Fixed q)
 Zero Init. (Fixed q)

Figure 5. Accuracies of different β initial strategies and # of iterations.

From Figure 5, the accuracy does not increase stably as the number of iterations
increases. It fluctuates within a certain range, partly because the k-means++ employed by
IBSVC is non-deterministic. Another reason is related to the principle of SVC, which does
not strictly require high-fidelity models. Similar to what is shown in Figure 3 of [8], all the
compared strategies can achieve acceptable accuracies with a small number of iterations.
“Zero Init. (Fixed q)” usually requires more iterations to reach its best performance. For
instance, its best ARI 0.6798 was reached at the ninth iteration, while “IBSVC Init. (Fixed q)”
obtained a comparable result of 0.6867 at the third iteration and the best result of 0.7004 at
the seventh iteration. Particularly, “IBSVC Init. (Adapted q)” can always obtain comparable
results with “IBSVC Init. (Fixed q)”, and it outperforms “Zero Init. (Fixed q)” and “Random
Init. (Fixed q)” when “# of iter” is smaller than 7, especially when we only perform the
iteration once. Undoubtedly, “IBSVC Init. (Adapted q)” significantly reduces the requisite
number of iterations before achieving acceptable results. This phenomenon also confirms
the validity of the idea behind MES.

4.5. Adaptivity Analysis of FPS for Usable Kernel Width Q

Based on the prior section’s discussions, a selected kernel width q is not always the
best for each evaluation due to the k-means++ in MES. Furthermore, searching for an
optimal kernel width q is a critical and inevitable process. Although “IBSVC Init. (Adapted
q)” cannot always outperform the others, it often finds a sub-optimal q value for the
collected edges. Therefore, its performance is relatively stable. In the literature [1], the
way q exploration is performed generally consists of two critical steps with personalized
strategies, i.e., fixing q in a relatively small query range and finding a relatively stable
region of cluster division by changing q. Unfortunately, pricey computations are frequently
required because the former needs prior knowledge (e.g., density analysis) while the latter
wants multiple rounds of the complete training and labeling phases. To check the adaptivity
of FPS for a usable kernel width q, we continued to use Chameleon and compared the
proposed FPS with the traditional strategy in terms of the average run time (in seconds) of
10-round attempts, the ARIs achieved with the discovered q, and the corresponding cluster
number Nc. The results are illustrated in Table 3. Since strategies of the state-of-the-art
methods require the full clustering process, whether to use the iteration control has a certain
impact on the efficiency. Column 4 confirms that we strictly followed the iteration control
strategies suggested by the corresponding references.
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Table 3. q exploration with 10 rounds of analyses on Chameleon.

Methods Run Time (s) ARI Nc Iteration Control?

CCL 5289.71 0.5004 30 No ([31])

FSVC 1582.19 0.5319 9 No ([5])

VCC 85.32 0.4820 9 No ([6])

FSSVC 123.73 0.5894 23 No ([7])

FRSVC 631.61 0.7060 14 No ( [12])

BSVC 102.65 0.5808 12 # of iter = 10 [8]

RSVC-EO 81.13 0.5898 10 # of iter = 3 [20]

IBSVC 0.57 0.7004 8 No iteration
Note: The sample rate θ = 0.5 for VCC.

Given ten different q values, FPS conducts a direct calculation of Equation (18) without
iteration dependency and finds out the optimal q. Randomly selected M′(< M) samples
help the further improvement of efficiency. For instance, we set M′ = 10 for IBSVC.
Therefore, by employing FPS, IBSVC performed at least 142 times better than the second
fastest method RSVC-EO [20]. Meanwhile, it obtained the second best ARI of 0.7004,
following FRSVC closely [12], which was more than 1000 times faster. Among these
methods, the cluster number discovered by IBSVC with the adapted q was the same as
the ground truth. Influenced by the k-means++ in MES, the optimal q changed as the final
edge patterns changed, which was similar to VCC for random sampling. Although the
optimal q changed in the 10 rounds, our main concern was whether the found q met the
data description requirement. Fortunately, the average number of clusters found by IBSVC
was 8.6, which confirms the adaptivity of FPS to usable kernel width.

4.6. Performance Contrast with the State-of-the-Art Methods

For a deeper analysis, we conducted full comparisons between the proposed IBSVC
and the state-of-the-art SVC variants listed in Table 1. Even though RSVC-EO [20] was
designed for computation outsourcing in the encrypted domain, we added it for its excel-
lent performance in the plain domain. All the data sets in Table 2 were utilized, except
for Chameleon.

Table 4 details the experimental results, including the ARI, run time in seconds, and
the number of clusters discovered by each method. The ranks of the two prior metrics are
separately given, depending on the corresponding performance. In particular, the first rank
is highlighted by a boldface font, while the second and third ranks are marked with † and ‡,
respectively. Three points are important and noteworthy. Firstly, data sampling is the first
phase of VCC. The sample rate θ is set to 0.0001 for kddcup99 and 0.1 for the others. For a
comprehensive comparison and fairness, we then included an additional evaluation for
IBSVC, which adopted a near maximin and random sampling (NMMRS) strategy [32] in
the training phase. The NMMRS samples were similar in data size to VCC on the kddcup99
and shuttle. The results are listed in the final row, with the method denoted by IBSVC§.
Secondly, BSVC and IBSVC adopted the same labeling strategies although they had many
choices. In this strategy, the connectivity analysis was conducted between the cluster
prototype of the convex hulls and the once sample method of FRSVC was selected. Thirdly,
based on the analysis of [8], the maximum number of iterations for the solvers FRSVC,
BSVC, RSVC-EO, and IBSVC was restricted to three for efficiency, but with sub-optimal
results. Some methods required more than 10,000 s to complete the cluster analysis without
any parallel strategy and pre-computed kernel matrix. These results are marked with “—”.
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Table 4. Benchmark results on five typical data sets.

Method
Wisconsion UNIBS-AIT 20Newsgroups Shuttle kddcup99

ARI Time(s.) Nc ARI Time(s.) Nc ARI Time(s.) Nc ARI Time(s.) Nc ARI Time(s.) Nc

CCL 0.9076 † 0.21 2 — — — — — — — — — — — —
FSVC 0.6687 2.02 153 0.8367 426.15 4 — — — 0.58 [5] — — — — —
VCC 0.8543 2.60 2 0.7455 7.94 ‡ 5 0.4858 14.62 † 27 0.6096 11.41 14 0.7955 ‡ 175.96 9

FSSVC 0.9248 0.71 6 0.8815 3.23 † 4 0.3628 17.92 ‡ 105 0.6857 86.81 ‡ 33 — — —
FRSVC 0.8798 0.66 2 0.8678 ‡ 37.60 4 0.4927 ‡ 145.81 26 0.8050 † 380.91 13 — — —
BSVC 0.8963 ‡ 0.88 2 0.8565 8.61 4 0.4752 21.05 23 0.8843 108.55 7 0.8677 † 6191.20 ‡ 8

RSVC-EO 0.8632 0.35 ‡ 2 0.8807 † 9.24 4 0.6084 32.13 26 0.7337 ‡ 343.46 9 0.7621 9489.38 5
IBSVC 0.8739 0.31 † 2 0.7482 2.82 5 0.5796 † 4.23 24 0.6929 19.89 † 8 0.9120 5500.93 † 12

IBSVC § 0.8395 ‡ 0.84 6 0.8862 1.55 4

Note: (1) Boldface rank 1, † rank 2, ‡ rank 3; — means not available or more than 10,000 s. (2) VCC sets θ to 0.001
for kddcup99 and 0.1 for the others, while IBSVC § attempts similar sizes of shuttle and kddcup99 for training.
(3) The maximum number of iterations is three for FRSVC, BSVC, RSVC-EO, and IBSVC.

On the basis of the data description in Table 2 and the results shown in Table 4, the
following critical information is revealed:

(1) In terms of accuracy, both IBSVC and IBSVC§ outperform the others on kddcup99
while achieving an equivalent level of sub-optimal results on most of the other data
sets. For further verification, we also present the results of the pair comparisons in
Table 5, following the work of Garcia and Herrera [33]. Here, IBSVC§ is the control
method, and the results of Table 3 are taken into account. A nonparametric statistical
test, namely the Friedman test, was employed to obtain the average ranks and the
unadjusted p values. By introducing an adjustment method, namely the Bergmann–
Hommel procedure, the adjusted p value denoted by pHomm and corresponding to
each comparison was obtained. IBSVC§ reached the best performance in terms of the
average ranking, while IBSVC’s performance was close to FRSVC and is comparable
with that of RSVC-EO and BSVC. Unlike the other methods that adopt the manually
discovered optimal parameters, IBSVC utilizes FPS to find the kernel width q in the
training phase. Therefore, there is a self-adaptive adjustment of q for each evaluation
due to subtle changes in edge patterns. Since the Bergmann–Hommel procedure
rejects those hypotheses with p values ≤ 0.0071, together with run-time costs, we
further confirm that IBSVC and IBSVC§ can achieve a comparable accuracy using the
state-of-the-art methods with the optimal parameters and achieve better performance
on relatively large data sets with clearer shapes.

(2) In terms of efficiency, IBSVC has significant advantages over the other methods, except
for VCC. When we integrated NMMRS into the training phase, IBSVC§ showed its
advantage in efficiency without affecting the accuracy. For instance, IBSVC§ reached
better accuracies and was 13.58 and 113.53 times faster than VCC on shuttle and
kddcup99, respectively. This suggests that the k-means++ indeed contributes to the
improvement in efficiency, while its drawbacks are effectively controlled by MES.
Thanks to the sampling strategy, the absolute proportion of data samples can be
directly labeled according to their distances from the cluster prototypes (lines 11–13
of Algorithm 4). If we do not consider the labeling strategy, FSSVC and BSVC take
much more time to collect global edges, while FRSVC and RSVC-EO consume too
much time in collecting SVs from the entire data through their solvers. Without an
appropriate noise elimination strategy integrated, a process similar to that in lines 7–9
of Algorithm 4 is also time-consuming. Therefore, FSVC, FSSVC, and FRSVC cannot
complete the cluster analysis in 10,000 s.

(3) Without sufficient prior knowledge, the discovered cluster number Nc is a critical
indicator that shows whether a method can capture data distribution accurately.
Generally, if fake edge patterns cannot be eliminated appropriately, the discovered Nc
is frequently greater than the ground truth. Meanwhile, if the noise data samples (or
outliers) are not removed correctly, many more cluster prototypes (e.g., convex hulls
in IBSVC) will be assumed to be connected, which reduces Nc. Apparently, IBSVC,
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FRSVC, BSVC, and RSVC-EO often obtain an Nc decision, which is close or equivalent
to the real number given in Table 2.

Table 5. Comparison under the non-parametric statistical test.

Methods Average Ranks Unadjusted p pHomm
Control Method: IBSVC§ , Average Rank = 3.5000

FSVC 7.5000 0.0114 0.0913
CCL 7.3333 0.0153 0.1073
VCC 6.8333 0.0350 0.2101

FSSVC 4.5833 0.4932 2.4662
BSVC 3.8333 0.8330 3.3321

RSVC-EO 3.8333 0.8330 3.3321
IBSVC 3.8333 0.8330 3.3321
FRSVC 3.7500 0.8743 3.3321

4.7. Finding Improvement Evidence over K-Means++

As shown in Figure 1, the k-means++ divides data into K subsets, which reduce the
number of sample comparisons required by MBS. Although this leads to the appearance of
fake edges, significant efficiency improvement is evident in Table 4. However, is k-means++
the major contributor to the accuracy? To answer this question, we conducted additional
experiments for IBSVC to observe accuracy changes with respect to the baselines of the
k-means++. Without the accurate prior knowledge K, we compared them with five different
cluster numbers employed as the prior knowledge on these six datasets. The results are
depicted in Figure 6, where the best accuracy in ten evaluations for each K is introduced.
For each evaluation, IBSVC and k-means++ used the same K values.

In Figure 6, the horizontal axis represents the attempted K values. The left Y-axis
corresponds to the achieved accuracies by the k-means++ (gray bar) and the corresponding
improvements made by IBSVC (red bar). The numerical value marked on the red bar is the
quantized improvement. As can be seen, there are significant improvements in accuracy,
except for 20Newsgroup with K = 20, 25, Wisconsin with K = 2, and kddcup99 with K = 5.
In fact, the corresponding K values are equivalent to or close to the ground truth of the
class number (see Table 2). Since the k-means++ insists on dividing the data space into
K clusters, we only present the number of clusters discovered by IBSVC using a scatter
diagram, which refers to the right Y-axis. For most cases, the discovered cluster numbers
Nc do not fluctuate dramatically with the change of K. In fact, Nc is also equivalent or
close to the ground truth. As with the results above, IBSVC makes a major contribution to
accuracy improvement. Meanwhile, clear evidence confirms the adaptive ability of IBSVC
in cluster discovery. It performs stably even though there is no sufficient prior knowledge
about K. Therefore, before setting K, the first thing we should consider is efficiency.

0.241
0.1527 0.1846

0.2999 0.2396

4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

A
RI

K

 Improvement (IBSVC)   k-means++

0

2

4

6

8

N
c

0.022
0.0641 0.0971 0.0942 0.0911

2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

A
RI

K

 Improvement (IBSVC)   k-means++

1

2

3

N
c

(a) Chameleon (b) Wisconsin

Figure 6. Cont.



Electronics 2022, 11, 1854 19 of 22

0.6433

0.4241
0.5607

0.4785 0.55

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

A
RI

K

 Improvement (IBSVC)    k-means++

2

4

6

8

10

N
c

0.1538
0.0501

0.0108
0 0.0258

10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

A
RI

K

 Improvement (IBSVC)   k-means++

12

15

18

21

24

27

N
c

(c) UNIBS-AIT (d) 20Newsgroups

0.2101

0.3746 0.1954
0.3167

0.1783

3 5 7 9 11
0.0

0.2

0.4

0.6

0.8

1.0

A
RI

K

 Improvement (IBSVC)    k-means++

2

4

6

8

10

N
c

0.2532

0.0083

0.253
0.3632

0.252

3 5 7 9 11
0.0

0.2

0.4

0.6

0.8

1.0

A
RI

K

 Improvement (IBSVC)   k-means++

0

2

4

6

8

10

N
c

(e) shuttle (f) kddcup99

Figure 6. Improvements over k-means++ made by IBSVC.

5. Related Works

Inspired by the support vector machine (SVM), SVC is well-known for its capability
of handling arbitrary cluster shapes. However, evident challenges are also affecting its
utilization, i.e., parameter selection, dual problem (2) solver, and cluster labeling. Recently,
the latter two have received more attention, while few works have tried to tackle the first
one, which is strongly related to the dual problem solver.

For the classic SVC, parameter selection includes the exploration of kernel width q,
penalty factor C, and sample rate m. q is the major factor affecting the decomposition of
clusters. For an optimal q, many works [1] limit it to 1/ maxi,j ||xi − xj||2 or 1

2 (maxi,j ||xi −
xj||2 −mini,j ||xi − xj||2), and then incrementally increase it to force the cluster to split until
an appropriate number of clusters is obtained. Another insightful work [34] defined a
dissimilarity measure between basion cells (components of a cluster) by using a transition
equilibrium vector (TEV); it then introduced a merging strategy to control the number of
numbers. By restricting R < 1− 1

N , Lee and Daniels adopted a tangent approximation to
yield an optimal q with fewer iterations. For these methods, the termination conditions can
be either the available cluster number or the relatively stable region as the achieved cluster
number changes. In fact, the former termination condition is difficult to determine without
prior knowledge, similar to K for the k-means++. On the other hand, how to make the
best choice from among the many stable regions is another challenge. Furthermore, before
making the decision, many complete clustering processes that require pricey computation
are inevitable.

In contrast, a consensus has been reached on the setting of C and m. Following [13],
C is frequently set in order to control the number of BSVs or outliers, i.e., nBSV < 1/C.
Currently, along with the appearance of reconstructed dual problems [7,8], C is no longer
considered important. The choice of the sample rate m is strongly related to the labeling
strategy. Traditionally, it is set to any number from 10 to 20. By introducing a convex
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decomposition cluster labeling strategy [21], the average of m is reduced from 10 to 5 [7],
and then to <2 [12]. Recently, [20] presented a novel connectivity analysis strategy for the
labeling phase where sampling is no longer required.

A dual problem solver is the core of the training phase in which complex operations,
huge iterations, and unaffordable memory by the pre-computed kernel matrix are critical
and relevant tasks. To improve the robustness, [9] characterized the optimal sphere by
introducing the first-order and second-order statistics. For complexity reduction, [4]
rewrote the dual problem by introducing the Jaynes maximum entropy, while [35] started
the solver with a position-based weight. Furthermore, [7] was the first work that directly
utilized the relationship among the SVs to reformulate an equivalent model. Then, [8]
transferred the traditional solvers to a dual coordinate descent (DCD) solver extended
from [12]. The reconstruction process was also accompanied by the relaxation of constraints
on the dual problem. Thus, the huge iterations were also effectively alleviated. For instance,
statistical tests of [8,20] confirmed that the iteration number could be less than or equal to
10 with the DCD solver while obtaining acceptable results. It does not matter whether the
original solver or the DCD solver is employed, the collected SVs for data description are a
part of the whole data set. There, VCC [6] randomly selects θN(θ ∈ (0, 1]) samples, while
FSSVC [7] and BSVC [8] prefer the boundaries collected by BEPS [15] and its improved
method SBS, respectively. In general, using cluster boundary to construct the objective dual
problem can significantly reduce the memory consumption of the pre-computed kernel
matrix from O(N2) to O(N2

SV), where NSV � N. However, a small NSV cannot have an
efficient pattern description ability when dealing with high-dimensional data. Therefore,
another feasible way is to calculate the kernel function on demand or to utilize a divide-
and-conquer strategy [1]. However, bottlenecks frequently occur due to insufficient prior
knowledge or self-adapted parameters, e.g., pricey time-consumption, instability, etc.

Cluster labeling is frequently related to the method types of the dual problem solver.
For instance, various labeling strategies are widely accepted for the proposed IBSVC, similar
to BSVC. The major consideration is whether strong dependence exists with the assumed
cluster prototype. For the classic SVC, a complete graph (CG) leads to sampling between all
the data sample pairs, while position-regularized SVC [35] reduces to SV-pairs. Inherited
from a nonlinear dynamics system, R-CG [19] extracted SEVs as the cluster prototypes,
whereas E-SVC [18,36] found the transition points (TS) for the connectivity analysis between
the nearest neighboring basins. Both of them suffered from pricey iterations of seeking SEVs
or TS. Another method using basin as the prototype appeared in [37], which introduced a
cell growth strategy that starts at any data sphere, expands by absorbing new neighboring
spheres, and splits if its density is reduced to a certain degree. Another strategy employs
the convex hull as the prototype, which can be decomposed from any cluster. Sampling
strategies for the connectivity analysis between two neighboring convex hulls can be
linear [21], nonlinear [7], once sample [12], or no-sample [20,31]. CCL is a special strategy
that checks the connectivity of two SVs through once distance calculation. However, overly
strict constraints emphasized on the solver degrade its applicability. In fact, for these
methods, the pricey consumption is the adjacent matrix, which usually ranges from O(N2

SV)
to O(N2).

Different from the aforementioned works, another insightful attempt [38] is the transfer
of knowledge from the sphere of Equation (1) to the framework of k-means. Although k is
still a requisite knowledge, it might serve as an inspiration to design ensemble learning
with SVC.

6. Conclusions

For further performance improvements in boundary utilization and parameter selec-
tion, we proposed an IBSVC with self-adaption support for reasonable boundaries and
comfortable parameters. As an improved method of BSVC, the first core idea was to reduce
the comparisons in the whole data set, in which the vast majority of samples are useless
for boundary determination. By introducing a divide-and-conquer strategy, MES was
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designed for edge pattern collection in local regions divided by the k-means++. Thus, the
first series of self-adaption strategies were presented to remove the fake edges and retrain
the outliers by adaptive data movement. Distinct from the state-of-the-art methods, the
second core idea was to find the optimal kernel width q without prior knowledge that
further contributes to the discovery of clusters. Accordingly, we proposed the second
series of self-adaption strategies, which consist of a reasonable β initialization method for
the improvement of the effectiveness of iteration control in the proposed iSolver, and an
FPS method that automatically determines the kernel width q by simple computations.
FPS tries to reduce the difference between the data description drawn by the possibly
formed model and the actual pattern that does not require any result from tentative cluster
analyses. Due to the absence of restrictions on prototype types, IBSVC contributes to the
first phase of cluster analysis and accepts various labeling strategies. For simplicity, we
chose a convex decomposition-based strategy in order to complete cluster checking and
labeling. Experimental results confirm that IBSVC greatly restrains the unstable influence
of the k-means++ while achieving excellent efficiency and applicability.

Although IBSVC features efficiency and parameter self-adaptation, further improve-
ments in the accuracy and flexibility of the matrix construction in iSolver have become
ever-lasting issues. How to make the setting of the step size in MES and the determination
of the kernel width q more elaborate and intelligent are worthy of further investigations.
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