
Citation: Mohino-Herranz, I.;

García-Gómez, J.; Aguilar-Ortega, M.;

Utrilla-Manso, M.; Gil-Pita, R.;

Rosa-Zurera, M. Introducing the

ReaLISED Dataset for Sound Event

Classification. Electronics 2022, 11,

1811. https://doi.org/10.3390/

electronics11121811

Academic Editor: Byung-Gyu Kim

Received: 26 April 2022

Accepted: 6 June 2022

Published: 7 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Introducing the ReaLISED Dataset for Sound
Event Classification
Inma Mohino-Herranz *,† , Joaquín García-Gómez * , Miguel Aguilar-Ortega, Manuel Utrilla-Manso ,
Roberto Gil-Pita and Manuel Rosa-Zurera

Department of Signal Theory and Communications, University of Alcalá, Ctra. Madrid-Barcelona km 33.6,
28805 Alcalá de Henares, Spain; miguel.aguort@gmail.com (M.A.-O.); manuel.utrilla@uah.es (M.U.-M.);
roberto.gil@uah.es (R.G.-P.); manuel.rosa@uah.es (M.R.-Z.)
* Correspondence: mmohher@inta.es (I.M.-H.); joaquin.garciagomez@uah.es (J.G.-G.)
† Current address: Human Factors Laboratory, Metrology and Calibration Center, National Institute of Aerospace

Technology (INTA), Ctra. de Torrejon de Ardoz a Ajalvir km 4.5, 28850 Torrejon de Ardoz, Spain.

Abstract: This paper presents the Real-Life Indoor Sound Event Dataset (ReaLISED), a new database
which has been developed to contribute to the scientific advance by providing a large amount of
real labeled indoor audio event recordings. They offer the scientific community the possibility of
testing Sound Event Classification (SEC) algorithms. The full set is made up of 2479 sound clips
of 18 different events, which were recorded following a precise recording process described along
the proposal. This, together with a described way of testing the similarity of new audio, makes the
dataset scalable and opens up the door to its future growth, if desired by the researchers. The full
set presents a good balance in terms of the number of recordings of each type of event, which is
a desirable characteristic of any dataset. Conversely, the main limitation of the provided data is
that all the audio is recorded in indoor environments, which was the aim behind this development.
To test the quality of the dataset, both the intraclass and the interclass similarities were evaluated.
The first has been studied through the calculation of the intraclass Pearson correlation coefficient
and further discard of redundant audio, while the second one has been evaluated with the creation,
training and testing of different classifiers: linear and quadratic discriminants, k-Nearest Neighbors
(kNN), Support Vector Machines (SVM), Multilayer Perceptron (MLP), and Deep Neural Networks
(DNN). Firstly, experiments were carried out over the entire dataset, and later over three different
groups (impulsive sounds, non-impulsive sounds, and appliances) composed of six classes according
to the results from the entire dataset. This clustering shows the usefulness of following a two-step
classification process.

Keywords: new dataset; sound event classification; indoor sounds; real environments

1. Introduction

Nowadays, there is a growing interest in smart environments (e.g., smart cities, smart
buildings, smart homes), which are spaces where a set of sensors, actuators and many
other computational elements provide services for betterment of human life [1]. In these
places, a large number of applications can be developed by combining advanced sensory
systems based on cameras, microphones, motion sensors, etc., and communication and
signal processing systems. Application examples include fields such as identification and
discrimination of microseismic events [2,3], or pavement monitoring and analysis [4]. These
types of systems aim to improve the quality of life of humans in several aspects such as
security, safety, and comfort, among others. Acoustic sensors are potentially important
in these smart environments, since applying the proper sound processing techniques to
the sound waves we can extract information about the sound sources, their positions, and
about the environment in which sensing is carried out. Furthermore, these sensors can
work with or without light, they are inexpensive, and the computational requirements
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for implementing algorithms are affordable, given that the required sampling rates are
relatively low.

Sound processing in smart environments seeks in many cases to solve the problem of
Sound Event Classification (SEC), which consists in recognizing the set of active sounds in
a given audio signal. An example of a growing field where acoustic recognition is applied
is speech emotion recognition [5–7]. Classification is performed once a sound event is
detected, task that is solved by a Sound Event Detection (SED) algorithm, which detects
the onset and offset of sounds in a given audio signal [8]. These approaches have a key
role in different applications, such as the design of “Health Smart Homes” which provide
health care services for people with special needs who wish to remain independent and to
live in their own home [9], the security systems in public transport [10], and the field of
surveillance systems in general [11].

One of the most relevant challenges in both SEC and SED fields is the Detection and
Classification of Acoustic Scenes and Events (DCASE). The current challenge (DCASE
2022) [12], is divided into six different tasks, such as “Low-complexity Acoustic Scene
Classification”, which aims to classify acoustic scenes (urban park, metro station, public
square, etc.). The second task, called “Unsupervised Anomalous Sound Detection for
Machine Condition Monitoring Applying Domain Generalization Techniques”, consists
in identifying whether the sound emitted by a target machine is normal or anomalous.
Another task strongly associated to the present work is carried out in “Sound Event
Detection in Domestic Environments” (task 4), where new systems are developed for SED
using real data, which are unlabeled, weakly labeled or strongly labeled with time stamps.

SEC has been approached using several machine learning methods, such as Hidden
Markov Models [13] and Gaussian Mixture Models [14]. Other approaches use more recent
methods, as in [15–17], where Convolutional Recurrent Neural Network and Support
Vector Machines (SVM) are applied, respectively. Recently, other approaches have used
Deep Neural Networks (DNN) [18], but a large dataset is necessary.

In all cases the use of an appropriate dataset of sounds is crucial. Several examples
of recent acoustic datasets for SEC, which consist of several audio clips and the labels
explaining the class presented in each clip, can be found in the literature. As far as we
know, the largest one at the moment is AudioSet, proposed in [19], which consists of
more than 1.7 million audio clips of more than 500 classes from different acoustic scenes,
with multiple event labels per clip. Its main advantage is the well-structured hierarchy
(6 levels), which covers a great amount of different sounds of each class. All clips were
taken from YouTube videos, without taking the real environment into account. Due to the
huge size of this dataset, the use of big data techniques would be feasible, as more amount
of data enables the use of more deeper and complex learning methods [20]. However, this
database does not provide the waveform but audio features which makes the research on
SEC more difficult, as new features cannot be calculated. To overcome some problems
of AudioSet, the FDS50K set is proposed in [21], an open set based on sounds from the
online platform FreeSound, using a hierarchy similar to the AudioSet one. This set is
composed of 51 k audio clips of 200 weakly labeled classes of everyday sounds, which are
not recorded in real scenarios. In [22], the set GISE-51 is proposed, which is composed of
1.6 k sound clips of 51 isolated sound events which belong to event types such as vehicles,
environmental, musical instrument, speech, and others. These sounds are also mixed
with other soundscapes to complete the set. Another audio set called TUT is presented
in [14], with sounds recorded in streets, parks and homes, covering 15 different acoustic
environments. In the case of TUT-Home, the set is composed of different human-labeled
clips grouped into 11 classes of an average of 60 audio samples of 30 s length. These
general sets are based on audio sounds taken from another greater set, which generally
are extracted from platforms such as YouTube or FreeSound, so the main issue is that new
recordings are not provided. Another drawback is the fact that the background sound
is not recorded with the audio event, but is artificially added. In addition, they are not
oriented to the domestic environment, with the exception of the last one, the TUT-Home
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set. Other proposals oriented their sets to urban sounds, such as SONYC, presented in [23]
and used in DCASE 2019. This set is made up of 3 k real sounds recorded in New York,
representing 23 sound events grouped into eight different human labeled classes. Other
proposals are aimed at other types of environments and applications, such as detecting the
malfunction of industrial machines [24,25].

The dataset presented in [26] is composed of three different kinds of sound sources
(material, noise, and music) recorded in an anechoic chamber. The real scenario was
simulated by the convolution of these sounds and an impulse response, considering a
linear and stable transmission channel. The authors collected some impulse responses in
different locations, using a variable reverberating room, and considering reverberation
times between 0.01 and 2 s. The problem with this methodology is the lack of real audios,
being all of them simulated. Another case is presented in [16], where information about
coordinates is enclosed for the location.

Another public dataset oriented to domestic sounds is DESED, presented in [27] and
used in DCASE challenge for SED. It is composed of 10 domestic sound classes taken from
AudioSet and others synthetically generated. CHiME-Home [28] uses seven human-labeled
classes of domestic sounds and consists of 4378 clips of 4 s recorded by a binaural recorder
and labeled by three people. Its main drawback is that the recordings only take place in one
house, so it could not provide sounds generalized to other spaces. In addition, some of the
classes seem to be too general, such as percussive sounds or broadband noise, while others
are too specific, such as adult male, adult female or child speech. Another dataset [29] is
composed of 11 event classes recorded at several realistic positions in two different rooms,
resulting in a total of 5 h of duration. However, the recordings of this dataset focus on SED
for office environments, so its purpose and proposed classes are not directly applicable to
the domestic sphere.

Developing a new acoustic dataset has its advantages and disadvantages. On the one
hand, it allows having a wide variety of new labeled events recorded by several people in
real environments. This is important because real recordings include the room impulsive
response instead of adding synthetically the room reverberation afterwards. On the other
hand, this development involves a big investment of time and resources for recording,
trimming and labelling each audio individually.

This paper proposes a new audio dataset called ReaLISED, composed of 18 different
classes and 2479 clips recorded in real scenarios. The proposed dataset is very diverse in the
places where the sounds were recorded and in the kinds of audio sources (windows, doors,
objects, etc.). The ultimate objective of this proposal is to provide a real, heterogeneous
and rich dataset susceptible to be used in several studies, and thus contribute to solve
some important issues present in nowadays societies. The dataset is focused on domestic
sounds but it is scalable to other sounds and scenarios. It includes the real waveforms of
isolated sounds that also can be used to propose and calculate new features useful for SED
or SEC, or to apply deep-learning based detectors or classifiers fed directly with the sound
waveform instead of pre-calculated features.

The paper is divided into the following sections. First, Section 2 shows a detailed
description of the proposed database. Later, in Sections 3 and 4 both the intraclass and
interclass similarities are studied. After that, the experiments and results carried out are
presented in Section 5. Finally, Section 6 shows the conclusions drawn from the presented
proposal.

2. Description of the Database

The ReaLISED (Real-Life Indoor Sound Event Dataset) is a new database recorded, la-
beled and developed by the authors of the present proposal. It is composed of eighteen (18)
different events. Some of them are related to daily household tasks, such as cooking, walk-
ing or cleaning, and others include sounds produced by humans or other objects present
in a house. The event classes are the following: beater, cooking, cupboard/wardrobe,
dishwasher, door, drawer, furniture movement, microwave, object falling, smoke extractor,
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speech, switch, television, vacuum cleaner, walking, washing machine, water tap, and
window. There are 2479 clips of isolated sounds, which result in 3624.51 s (slightly more
than one hour).

Apart from the labels related to the class of event, extra information for each recording
is provided in order to be exploited if necessary in the future, with other research purposes.
This extra information completes the description of the sound source. For example, in
events related to objects such as doors, windows, wardrobes or drawers, the action taken
during the clip is specified, e.g., opening or closing. Another example of extra informa-
tion is the material in which an object has fallen when the class is “object falling”. In
addition, descriptions of events such as furniture movement, door, window, cupboard,
and vacuuming are accompanied by labels with information about the material they are
made of.

The recordings were made in different locations, including apartments, semi-detached
houses, and the Polytechnic School of University of Alcalá. The reason for choosing this
heterogeneous set of environments is to try to generalise as much as possible the impulse
responses of the rooms. This would allow the development of classifiers that, working with
real signals, focus on the event class information rather than on the environment in which
the sound source is located.

Four Olympus LS-100 recorders [30] were used during the recording process. They are
equipped with a high-performance directional stereo microphone and a quality amplifier
circuit, with a characteristic frequency response with a lower cut-off frequency of 20 Hz
and an upper cut-off frequency of 20 kHz, and with an upper sound pressure limit of
140 dBSPL. The coding format can be chosen between the linear PCM with a sampling rate
of 96.0/88.2/48.0/44.1 kHz and 16/24 bits per sample, and MP3 with 320/256/128/64 kbps
bitrate.

The recording process of the dataset was based on a robust protocol that included
rules about the parameters selected on the recorder and its proximity to the source. The
sampling frequency was set to 44.1 kHz and 24 bits per sample, which is enough to sample
signals with 20 kHz bandwidth and dynamic range up to 144 dB. The stereo mode was used
although one channel was discarded later, and a medium sensitivity of the microphone
was set, which corresponds to 94 dBSPL, to avoid saturation of sounds, even though it was
checked that saturation did not take place in the recorder sound before starting the records.
Regardless, the audio was later revised and those which still presented saturation were
discarded. Apart from that, the distance between the recorder and the sound source was
set to approximately 30–40 cm.

In Table 1, the description of the dataset is summarized. It includes the event class
recorded in each audio, the number of recordings (audios) of each class, the average
duration of each class (in seconds), and the impulsivity or not impulsivity of the class. The
impulsivity of this audio is characterized by a short duration, an abrupt onset, and a rapid
decay [31]. The number of events in each class is between 104 for the “Window” class and
190 for the “Speech” class, with a mean value of 138 events and a standard deviation of
25. The average duration depends on the type of sound, with the shortest in the impulsive
sound classes (“Object falling”, “Switch”), and the longest for the classes where the sound
source is a person (“Speech”, “Walking”).

The dataset is introduced to the scientific community by providing all the .flac files
which composed it. The name of the files is built with 5 pieces of information, separated
with underscores (“_”), with the format “abc_123_45_67_8. f lac′′. In the following lines the
meaning of each part of the name is explained:

• “abc”: the first three letters indicate the source that produces the sound. This segment
can take 18 different values: ‘bea’ (beater), ‘coo’ (cooking), ‘cup’ (cupboard/wardrobe),
‘dis’ (dishwasher), ‘doo’ (door), ‘dra’ (drawer), ‘fur’ (furniture movement), ‘mic’ (mi-
crowave), ‘obj’ (object falling), ‘smo’ (smoke extractor), ‘spe’ (speech), ‘swi’ (switch),
‘tel’ (television), ‘vac’ (vacuum cleaner), ‘wal’ (walking), ‘was’ (washing machine),
‘wat’ (water tap), ‘win’ (window).
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• “123”: this set of digits identifies the event among the number of events produced by
the source identified with “abc”. This segment can take all the values between ‘001’
and ‘190’, which is the maximum number of events of a particular class we can find in
the dataset (speech).

• “45”: this set of digits identifies the action that produces the sound. This segment can
take 11 different values: ‘01’ (close), ‘02’ (open), ‘03’ (throw), ‘04’ (turn on), ‘05’ (turn
off), ‘06’ (move), ‘07’ (plug), ‘08’ (unplug), ‘09’ (raise), ‘10’ (lower), and ‘00’ (there is no
information about the action).

• “67”: this set of digits identifies the material the sound source is made of. This segment
can take 14 different values: ’01’ (wood), ’02’ (glass), ’03’ (metal), ’04’ (plastic), ’05’
(ceramic), ’06’ (synthetic), ’07’ (cardboard), ’08’ (marble), ’09’ (floating platform), ’10’
(platelet), ’11’ (wicker), ’12’ (carpet), ’13’ (medium-density fibreboard MDF), and ’00’
(there is no information about the material).

• “8”: the last digit gives approximate information about the intensity of the recorded
sound. It can take 4 different values: ’1’ (low intensity), ’2’ (medium intensity), ’3’
(high intensity), ’0’ (there is no information about the intensity).

For clarity, some examples of audio file names with this code are shown hereunder:

• “doo_040_02_00_3.flac” is the name of the 40th file in the “door” class, described as
“opening a door of unknown material with high intensity”.

• “fur_058_06_01_2.flac” is the name of the 58th file in the “furniture movement” class,
described as “moving a wooden furniture with medium intensity”.

• “vac_001_00_00_0.flac” is the name of the 1st audio file in the “vacuum cleaner” class,
described as “using the vacuum cleaner, without information about the action, neither
the material or the intensity”.

The full dataset is available and can be downloaded from [32].

Table 1. Summary of the dataset characteristics, including the number of audios, the average duration
and the impulsivity or non-impulsivity of the different classes.

Event
Class

Number of
Audios

Average
Duration (s)

Impulsive
Sound (Yes/No)

Beater 126 1.02 No
Cooking 176 1.01 No

Cupboard/Wardrobe 156 0.96 Yes
Dishwasher 130 1.01 No

Door 109 1.75 Yes
Drawer 158 1.34 Yes

Furniture movement 152 1.18 No
Microwave 124 1.03 No

Object falling 119 0.49 Yes
Smoke extractor 142 1.01 No

Speech 190 4.03 No
Switch 108 0.24 Yes

Television 143 2.18 No
Vacuum cleaner 166 1.26 No

Walking 119 2.67 No
Washing machine 117 1.01 No

Water tap 140 1.40 No
Window 104 1.74 Yes

3. Intraclass Similarity

One of the key issues in any new database proposal is how to ensure and measure
its quality. The quality assessment must ensure that data are consistent, there are neither
duplicated data nor duplicated identifiers, and there are no missing values, or incomplete
or imprecise metadata [33]. In this sense, all data, metadata and identifiers were reviewed
following a standard procedure.
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Furthermore, we measured the intraclass Pearson correlation coefficient, to find sound
events with similar information. Events that are similar should be detected with the
objective of keeping only one of them, since the rest would not provide relevant new
information and would be unbalancing the database. The maximum Pearson correlation
coefficient r of two different discrete signals x1[n] and x2[n], is determined by evaluating
the maximum of the cross correlation of the signals, divided by the standard deviation
of each of the two signals [34], as shown in Equation (1). It is important to highlight
that the average value of each signal must be removed previously to the evaluation of
the cross-correlation.

r =
max

m
(En{(x1[n]− x̄1)(x2[n−m]− x̄2)})√

En{(x1[n]− x̄1)2}En{(x2[n]− x̄2)2}
, (1)

where m is the shift applied to the signal x2[n], x̄i = En{xi[n]} represent the average value
of the signal xi, and E{·} represent the expected value.

This r parameter gives us an idea of the similarity between the signals. If in any
case this value is very close to unity, one of the two signals should be discarded from the
database. So, to measure the similarity of the database, we measured the cross-correlation
over the signals belonging to a given class. It is important to highlight that the comparison
must be made between signals of the same class.

4. Interclass Similarity

When using a database for SEC, it is not only necessary to ensure that sound events
within a class are loosely correlated, but it is also necessary to know the similarity between
classes that could affect the performance of the classifiers. For this purpose, a set of
classifiers was created, trained and tested, and the results obtained have allowed us to
know which classes are most similar to each other and which give rise to the highest
number of classification errors.

The general scheme of the classification process is presented in Figure 1. In the first
stage, every audio signal is divided into frames of 20 ms and the features are extracted
to obtain valuable information for the following stage. Once the relevant information is
obtained, the classifier assigns each audio signal to one of the classes. To guarantee the
validity of results, k-fold cross-validation method is used. Furthermore, several metrics
are used in order to be compared easily for future works. These parts are defined in this
section as follows.

Audio signal Classification EventsFeature 
Extraction

Figure 1. Stages of the classification process followed to evaluate the interclass similarity of
the dataset.

4.1. Feature Extraction

The feature extraction stage determines the relevant information for classification from
each audio signal. In this work, features are obtained by calculating MFCCs (Mel-Frequency
Cepstral Coefficients) and some statistical parameters. MFCCs have been regarded as one
of the essential techniques of parametrization used in audio and speech processing [35].
Perceptual analysis pretends to emulate the human ear non-linear frequency response by
creating a set of filters on non-linearly spaced frequency bands. Mel cepstral analysis uses
the Mel scale and a cepstral smoothing to get the final smoothed spectrum. The procedure
can be found in [36] and is presented in the scheme shown in Figure 2.
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Windowing logFilter Bank
MEL DCT|DFT |2

Figure 2. Steps involved in the MFCC feature extraction.

This scheme is composed of five blocks or tasks. The first task is windowing, in
which the signal is divided into several short-time overlapping segments to avoid loss of
information. Each segment is windowed and the squared magnitude of the Discrete Fourier
Transform (DFT) is obtained. The next block is the filter bank, in which the frequency do-
main information of the previous block is multiplied by a set of triangular shape frequency
response filters whose bandwidth is directly related to the central frequency in the band.
The output of this block is a vector which elements are the summation of the weighted
frequency components in each band. The next block applies a logarithmic function to the
previous result, and this is the input to the last block, where the Discrete Cosine Transform
(DCT) is applied. The spectral coefficients are transformed to the frequency domain, that is,
they are converted into cepstral coefficients.

Once MFCCs are obtained, features are calculated as some statistics of the MFCCs set.
Some of the most commonly used statistics are the mean and the standard deviation. It
is also normal to use statistics from differential values of the MFCCs, denominated delta
MFCC or ∆MFCCs. These ∆MFCCs are determined using Equation (2).

∆MFCC f t = MFCC f t −MFCC f (t−d), (2)

being f -th the triangular filter of the t- time frame and d the differentiation shift. The
features used by the classifiers are the mean of the MFCCs, the standard deviation of the
MFCCs, and the standard deviation of the ∆MFCCs with d = 2. Related to the number
of MFCCs, 5, 15 and 20 coefficients were tested to study the impact of this parameter on
the SEC task. Therefore, there will be a total of 4 feature sets: the one which calculates
5 MFCCs (15 features in total), the one which calculates 15 MFCCs (45 features in total),
the one which computes 20 MFCCs (60 features in total), and the one which combines the
previous three sets (120 features in total).

4.2. Classification Stage

The classification stage assigns the input pattern to one of the classes, being the pattern
the input vector composed of the extracted features. The classifiers used in this work are
the following:

• Least Squares Linear Classifier (LSLC), where the values of the weights of the linear
combinations are those that minimize the Mean Squared Error (MSE) obtaining the
Wiener-Hopf equations [37].

• Least Squares Quadratic Classifier (LSQC). This classifier linearly combines first and
second degree combinations of the input data, generally obtaining better results than
the LSLC without greatly increasing the computational complexity [38].

• k-Nearest Neighbors (kNN). This classifier measures the distance of the input vector x
to k vectors representing the class in question and choosing the class with the smallest
average distance [39].

• Support Vector Machine (SVM) with linear kernel [40]. SVMs project the observation
vector to a higher dimensional space, using a set of kernel functions. The centers of
the kernel functions are chosen from the design set and are denominated “support
vectors”. Once the observation vector is projected, a linear discriminant is used to
determine the SVM’s output and take the decision.

• Multilayer Perceptron (MLP). It consists of three layers of nodes (one input layer,
one hidden layer and one output layer). Except for the input nodes, each node is a
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neuron that uses a nonlinear activation function. The most common type of neuron is
McCulloch–Pitts neuron [41], which consists of a weighted sum of the inputs, followed
by the application of a non-linear function (sigmoidal function or hyperbolic tangent,
commonly). In this work, MLPs were trained with the Scaled Conjugate Gradient
training function, a fast supervised learning algorithm [42].

• Deep Neural Networks (DNN). It consists of at least four layers of nodes (one input
layer, two or more hidden layers and one output layer). This type of classifier is an
extension of the MLP included within deep learning techniques.

4.3. Validation Stage

To test the results adequately, cross-validation methods were used to reduce overfitting
(generalization loss) and maximize the accuracy in estimating the classification error rate.
Specifically, we used the k-fold cross-validation consisting in partitioning the dataset into k
different folds and running k times the whole design process. So, for each experiment, a
given fold is used as the test set, and the remaining k− 1 folds are used as the design set.
The absolute error is averaged over the k experiments. In the present case, the data were
divided into k = 4 folds. It must be noted that the events are proportionally distributed
in each of them before the sound processing take place. This ensure an adequate balance
in the experiments so that it is avoided the emergence of low prediction accuracies when
some algorithms try to classify rare categories in a dataset. The dataset was divided into
a set used for training and a set used for testing, being the 75% of the events assigned to
the training set and the 25% to the test set. Additionally, this process is repeated 10 times
to minimize the randomization of the experiments. Finally, the results considered and
presented later are the average of the results of each experiment.

4.4. Evaluation Metrics

To evaluate the obtained results, we used several parameters. These are the Accuracy
(ACC), Precision (P), Recall (R), and F1-Score (F1):

• ACC is calculated using the number of True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (FN):

ACC(%) =
TP + TN

TP + TN + FP + FN
· 100 (3)

• P and R are defined as follows:

P(%) =
TP

TP + FP
· 100 (4)

R(%) =
TP

TP + FN
· 100 (5)

• Once we have the values of P and R, F1 is directly calculated as shown in Equation (6).

F1(%) =
2 · P · R
P + R

· 100 (6)

5. Experiments and Results

This section shows the experiments carried out and the obtained results to show the
properties of the dataset. The results of the analysis of intraclass similarity were used to
discard similar sound events. Only those events whose information is not similar to that of
other events of the same type in the database are kept. The resulting database was applied
to the interclass similarity analysis, mainly based on the analysis of classification results.
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5.1. Results of Intraclass Similarity Analysis

Figure 3 shows the distribution of the maximum values of the Pearson correlation
coefficients (r), which were computed according to Equation (1), when comparing all
the possible pairs of different events within the same class. Each column of the figure
(displayed in a different color) represents the histogram of the r values that were obtained
for a given class in the database, so the taller the height of the column bar the more frequent
that range of r value is obtained. The average histogram taking into account all the events
is also displayed in yellow in the rightmost part of the figure. From the results, none of
the pairs have a Pearson correlation coefficient greater than 0.9. Furthermore, 99% of the
comparisons between instances gave r values lower than 0.8, and 95% of the comparisons
were concentrated between 0 and 0.6. All this indicates the level of consistency of the files
in the database, as the similarity between audio from the same class is very small according
to the Pearson correlation coefficient (r).

Figure 3. Distribution of the maximum of the Pearson correlation coefficient (r) over the different
classes considered in the paper. The event classes are placed in increasing order of intraclass similarity
from left to right. The rightmost part of the axis refers to the average distribution of all the events.

The sound event classes with worse similarity results are “Microwave” and “Dish-
washer”, as their r values are mainly concentrated in the 0.2–0.4 range. They are two
examples of household appliances which produce stationary sounds that tend to present
larger r values. To increase the number of uncorrelated sound events, very different models
of these appliances might be used. This task will be completed in a future work.

The sound events maintained in the database present a low correlation between them,
which is indicative that they share little information, concluding that the database was
generated so that the ratio between the amount of information and the number of events is
high. This is a desirable property to properly train a classification system, as the richness
and diversity of data always contributes to making more generalized and robust algorithms.

5.2. Results of Interclass Similarity Analysis

Different classifiers were trained and tested, to infer if the classes are linearly separable
or not, and if they could be separated in the features domain or is better to project the
features to a higher dimension space where the classes are linearly separable. In addition,
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knowledge of the similarity measure between the classes included in the database is
interesting to explore the possibility of using layered classification strategies. The number
of features is another parameter tested. In the case of MLP, where one hidden layer is
used, the number of neurons tested has taken values in powers of two: 8 neurons (MLP8),
16 neurons (MLP16), . . . , 512 neurons (MLP512). In the case of DNN, different numbers
of neurons and different number of hidden layers were tested: 2 (DNN2), 3 (DNN3), . . . ,
5 (DNN5). For reasons of simplification, only the most significant results will be presented.
In the case of using DNN, all the experiments presented have hidden layers made up of
128 neurons.

5.2.1. Interclass Analysis with the Whole Set of Classes

First of all, we trained and tested classifiers to classify the whole set of sound event
classes, to find out the classes of events with the highest probability of confusion. The results
were used to define the groups or categories of sound events with similar characteristics
that are responsible for most of the confusions.

• In Figure 4, the ACC is represented according to the classifiers used and the number
of features selected. It is observed that the more features used, the better results are
obtained for all classifiers. The best results are obtained when combining the three sets
of MFCCs (120 features). When the sets are tested separately, the number of MFCCs
that gets the best results is 20 in most cases (60 features), followed closely by 15 MFCCs
(45 features). The classifiers most sensitive to the number of features are LSLC, LSQC
and SVM, while the performance of the rest of them is not as dependent on the number
of features. Regarding the classifiers applied, the best results are obtained when using
the DNN with two hidden layers (DNN2) and the LSQC.

LS
LC

LS
QC

KNN
SVM

MLP 32

MLP 64

MLP 12
8

DNN 2
DNN 3

Classifiers

45

50

55

60

65

70

75

80

85

90

AC
C

 (%
)

15 features
30 features
60 features
120 features

Figure 4. ACC values obtained when applying the seven classifiers mentioned in Section 4.2, and
selecting different number of features.

• The results of ACC, P, R and F1, obtained with the whole set of event classes using the
complete set of features (120) are presented in Table 2. The best results are obtained
using the DNN2, getting 85.33% of ACC and 84.44% of F1. If we focus on machine
learning based classifiers, the best results are provided by the LSQC, which gets 83.58%
of ACC and 82.12% of F1. These results also indicate that the problem of SEC with
this database can only be solved satisfactorily if the number of free parameters in the
classifier is high. Therefore, the performance with simpler classifiers such as LSLC,
kNN or SVM are worse.
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Table 2. Results obtained when testing the full dataset with the maximum number of features (120).

Classifier ACC (%) P (%) R (%) F1 (%)

LSLC 79.75 78.25 78.59 77.69

LSQC 83.58 82.24 82.82 82.12

kNN 77.86 76.45 77.40 76.53

SVM 78.62 77.54 76.72 76.55

MLP32 78.55 76.67 77.96 76.55

MLP64 81.34 79.65 80.88 79.79

MLP128 83.01 81.53 82.86 81.74

DNN2 85.33 84.15 85.02 84.44

DNN3 85.09 83.86 84.73 84.17

The confusion matrix obtained when testing all the events with the DNN2 using
120 features is shown in Figure 5. It must be noted that these results include the average of
the 4-fold cross-validation method and the 10 repetitions of the experiment. The vertical axis
represents the true classes (labels) and the horizontal axis represents the assigned classes
(outputs of classifiers). A summary of the results from the columns and rows can be shown
at the right and the bottom of the figure. It can be observed that most events are classified
very well (more than 90% of the tested events of these classes are correctly classified). These
classes are “beater”, “cooking”, “dishwasher”, “smoke extractor”, “microwave”, “speech”,
“water tap”, “television”, and “vacuum cleaner”.

The worst classified classes are “window”, “cupboard” and “door”, since only 33.4%
of windows, 45.4% of cupboards and 53.4% of doors sound events are correctly assigned to
the corresponding class. These classes are confused mainly with “drawers”, and with each
other. The class “furniture movement” is easily confused with “walking” class, although
it does not happen the same in the contrary. In fact, “walking” is usually confused with
“drawer”. Besides, “object falling” gives rise to many errors in classification, since it is easily
confused with many other classes, especially “switch” and “cupboard”.

In order to analyze the classification results within each event class, we present the
results in terms of ACC, P, R, and F1 in Figure 6. The results presented are those obtained
with the DNN2 (2 hidden layers). Regarding the event classes, some of them (beater,
cooking, dishwasher, microwave, smoke extractor, speech, television, vacuum cleaner,
washing machine and water tap) are classified very well, reaching more than 95% of F1.
They correspond to non-impulsive events or events produced by different appliances. On
the contrary, the worst results are obtained with impulsive sounds (produced by cupboards,
doors, drawers, object falling, switches and windows). This suggests to carry out a previous
classification into impulsive and non-impulsive events to improve the classification results.
Furthermore, some event classes are more prone to be misclassified due to FP errors
(cupboard, door, object falling, switch, window), as their P is substantially smaller than
their R. For its part, in drawer and walking classes the errors are mainly produced by the
large number of FN.
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Figure 5. Confusion matrix obtained when applying the DNN2 to the full dataset with the maximum
number of features (120).
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Figure 6. Results in terms of P, R and F1 when testing the full dataset. The classifier tested is the
DNN2, which provided the best results in Table 2.

5.2.2. Interclass Analysis by Grouping the Classes

The events were grouped according to the types of sounds to know the performance
of classifiers when the sound events have similar acoustic properties, making classifica-
tion more difficult. Three different groups were proposed, composed of six classes each,
according to the results in the previous subsection.
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• Group 1: Impulsive sound events, is composed of six different classes: cupboard/
wardrobe, door, drawer, object falling, switch, and window. In Table 3, the event class,
the number of files and their lengths are shown.

Table 3. Event classes that make up Group 1: Impulsive sound events, as well as the number of
audios and length of each of them.

Event Class Number of Files Length (s)

Cupboard/Wardrobe 156 149.52

Door 109 119.89

Drawer 158 121.47

Object falling 119 38.43

Switch 108 26.03

Window 104 181.21

• Group 2: Non-impulsive sound events encompasses six different events: furniture
movement, speech, television, vacuum cleaner, walking, and water tap. Table 4 shows
the classes, the number of files in each class, and their lengths.

Table 4. Event classes that make up Group 2: Non-impulsive sound events, as well as the number of
audios and length of each of them.

Event Class Number of Files Length (s)

Furniture movement 152 178.78

Speech 190 764.86

Television 143 311.87

Vacuum cleaner 166 208.58

Walking 119 317.52

Water tap 140 196.25

• Group 3: Appliances includes six classes of sound events produced typically in the
kitchen by different household appliances and by a person which is cooking (e.g.,
frying, roasting): beater, cooking, dishwasher, microwave, smoker extractor, and
washing machine. Table 5 shows the classes, the number of files in each class, and
their lengths.

Table 5. Event classes that make up Group 3: Appliances, as well as the number of audios and length
of each of them.

Event Class Number of Files Length (s)

Beater 126 128.67

Cooking 176 177.85

Dishwasher 130 131.72

Microwave 124 125.64

Smoke extractor 142 144.10

Washing Machine 117 117.88

Hereinafter, the results were obtained with the maximum number of features selected
(120). The following tables show the ACC, P, R, and F1 in percentage for each group
of events using the different classifiers. It must be noted that the F1 was calculated by
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averaging the F1 values obtained with the different events groups, folds (as k-fold cross-
validation is applied) and number of repetitions of the experiment, so the value obtained
when replacing the values of P and R from the table to the F1 equation will not correspond
to the F1 value showed. It applies to all the tables showed in this section.

Firstly, Table 6 shows the aforementioned parameters in the case of testing Group 1
(impulsive events). The best performance is obtained with the DNN3 in terms of ACC
(77.21%) and F1 (76.09%), followed closely by the LSLC. In general, the complexity of
the classifiers does not substantially affect the performance in Group 1. Regarding the
values of P and R, they are very similar to each other for all the classifiers. This means the
misclassified events are due to FP and FN in equal proportion.

Table 6. Results obtained when testing Group 1: Impulsive sound events with different classifiers.

Classifier ACC (%) P (%) R (%) F1 (%)

LSLC 76.48 75.38 75.41 75.26

LSQC 75.94 75.22 75.02 75.03

kNN 73.44 72.43 72.50 72.32

SVM 73.22 70.96 71.36 70.51

MLP32 76.54 75.12 75.49 75.17

MLP64 76.25 74.96 74.88 74.78

MLP128 76.74 75.59 75.77 75.56

DNN2 76.26 75.02 75.32 74.97

DNN3 77.21 76.07 76.30 76.09

The results obtained for the next combination of events, Group 2 (non-impulsive
events), are showed in Table 7. In this case, the best results of ACC and F1 are obtained with
the DNN3 (77.75% and 78.03%, respectively), but the LSQC from the traditional machine
learning methods also gets proper results (77.48% of ACC and 77.11% of F1). In this case, it
can be observed that R is better than P for all the classifiers. It means that the errors made
by the system are due to the number of FP rather than to the number of FN.

Table 7. Results obtained when testing Group 2: Non-impulsive sound events with different classifiers.

Classifier ACC(%) P (%) R (%) F1 (%)

LSLC 75.08 74.66 75.61 75.04

LSQC 77.48 76.93 77.39 77.11

kNN 76.63 76.15 76.79 76.35

SVM 73.20 72.98 74.34 73.47

MLP32 76.91 76.40 78.11 77.08

MLP64 76.64 76.19 77.86 76.82

MLP128 76.78 76.28 77.43 76.76

DNN2 77.67 77.19 78.83 77.82

DNN3 77.75 77.38 79.11 78.03

Table 8 shows the results obtained when testing Group 3 (appliances). In this case,
the best results are obtained with the DNN3, achieving 84.34% of ACC and 83.36% of F1,
although other classifiers such as LSLC, LSQC or and MLP present really close values.
With Group 3, the results are better than with the previous ones (between 6 and 8 points of
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ACC, depending on the classifier applied). This may be due to the distinctive sound of the
different appliances, which can make them easily separable.

Table 8. Results obtained when testing Group 3: Appliances with different classifiers.

Classifier ACC (%) P (%) R (%) F1 (%)

LSLC 83.29 82.17 82.40 82.21

LSQC 83.66 82.65 82.92 82.60

kNN 79.44 78.02 78.58 77.93

SVM 80.83 79.31 79.56 79.36

MLP32 83.55 82.52 82.86 82.53

MLP64 83.64 82.53 82.78 82.58

MLP128 83.80 82.77 83.17 82.74

DNN2 83.64 82.57 83.00 82.63

DNN3 84.34 83.36 83.67 83.36

These results show a high similarity among the classes included in each group, but a
low similarity between two classes of different groups, so it may be interesting to approach
the problem of classifying sound events in two stages. In a first one, we would classify
between groups of events, and in a second one, we would classify between classes within
each group. This strategy will be probably developed in a future work.

6. Conclusions

In this proposal, a dataset composed of real indoor audio is presented for SEC
tasks. The characteristics of the different events, the recording conditions and the ex-
periments were explained. The dataset is composed of 2479 sound events, belonging to
18 sound classes. The number of sound events in each class ranges from 104 to 190, with a
mean value of 138 events per class and a standard deviation of 25 events. The sampling
frequency is 44.1 kHz and each sample is encoded in PCM with 24 bits. The large number
of sound event classes gives the database sufficient generality to be used in a wide range
of applications.

The sound events included in each class were carefully chosen to maximize the amount
of information for the size of the database. To achieve this, a sound event is included in the
dataset if the correlation with other sound events in the same class is low, thus minimizing
redundancy.

The sound database includes classes of sound events with similar properties, in order
to be used to train and test classifiers in very demanding applications with similar sound
sources. The sound event classes can be grouped into three large groups, with six similar
classes each. Within each group, the classes have a certain similarity, but the classes of
different groups are not similar. This is evident because it is easy to correctly classify
sounds belonging to classes of different groups, but it is more complicated to correctly
classify sounds of classes included in the same group. Additionally, we tried to ensure that
the sound events included in the same class are poorly correlated with each other, thus
increasing the ratio between the amount of information and the number of events.

This clustering allows the database to be used to train simple classifiers or complex
classifiers, and also to address the problem of classifying the 18 sound classes in two
stages. The first stage would consist of a simple classifier to distinguish between groups
and the second stage would consist of a more complex classifier to distinguish between
similar classes.
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Finally, it should be noted that this database is scalable. As the conditions of the
sound recording are described in detail, more events could be easily added, as long as
the properties of bandwidth and number of bits per sample are maintained. In addition,
a procedure for deciding whether or not a sound event is added to the database, based
on the correlation with sounds of the same class, was proposed and should be followed
in the future when increasing the number of sound events in the database, so as to avoid
including sounds that add little new information. The main limitation of the provided
dataset is that all the audio is recorded in indoor environments, which was the aim behind
this development.
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