
Citation: Gad, G.; Gad, E.; Cengiz, K.;

Fadlullah, Z.; Mokhtar, B. Deep

Learning-Based Context-Aware Video

Content Analysis on IoT Devices.

Electronics 2022, 11, 1785. https://

doi.org/10.3390/electronics11111785

Academic Editors: Leonardo Galteri,

Claudio Ferrari and Stefanos Kollias

Received: 3 May 2022

Accepted: 30 May 2022

Published: 4 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Deep Learning-Based Context-Aware Video Content Analysis
on IoT Devices
Gad Gad 1,* , Eyad Gad 2 , Korhan Cengiz 3,4, Zubair Fadlullah 1,5 and Bassem Mokhtar 3,6

1 Department of Computer Science, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
zubair.fadlullah@lakeheadu.ca

2 School of Engineering and Applied Sciences, Nile University, Giza 12677, Egypt; e.gad@nu.edu.eg
3 College of Information Technology, University of Fujairah, Fujairah 1207, United Arab Emirates;

korhancengiz@uof.ac.ae (K.C.); bmokhtar@alexu.edu.eg (B.M.)
4 Department of Electrical-Electronics Engineering, Trakya University, Edirne 22030, Turkey
5 Thunder Bay Regional Health Research Institute (TBRHRI), Thunder Bay, ON P7B 7A5, Canada
6 Department of Electrical Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
* Correspondence: ggad@lakeheadu.ca

Abstract: Integrating machine learning with the Internet of Things (IoT) enables many useful applica-
tions. For IoT applications that incorporate video content analysis (VCA), deep learning models are
usually used due to their capacity to encode the high-dimensional spatial and temporal represen-
tations of videos. However, limited energy and computation resources present a major challenge.
Video captioning is one type of VCA that describes a video with a sentence or a set of sentences.
This work proposes an IoT-based deep learning-based framework for video captioning that can
(1) Mine large open-domain video-to-text datasets to extract video-caption pairs that belong to a
particular domain. (2) Preprocess the selected video-caption pairs including reducing the complexity
of the captions’ language model to improve performance. (3) Propose two deep learning models: A
transformer-based model and an LSTM-based model. Hyperparameter tuning is performed to select
the best hyperparameters. Models are evaluated in terms of accuracy and inference time on different
platforms. The presented framework generates captions in standard sentence templates to facilitate
extracting information in later stages of the analysis. The two developed deep learning models offer
a trade-off between accuracy and speed. While the transformer-based model yields a high accuracy
of 97%, the LSTM-based model achieves near real-time inference.

Keywords: video content analysis; LSTM; transformer-based model; video captioning; Internet of
Things (IoT)

1. Introduction

Video content analysis (VCA) is the task of processing a sequence of frames to ex-
tract temporal and spatial information. Video captioning is a category of VCA where the
goal is to generate the text description of an input video. Generating natural language-
based captions is particularly useful if the output caption is received directly by a human.
However, when the generated description is itself an input to another stage in an auto-
mated pipeline, restricting captions’ sentence structure to simple templates reduces their
complexity, making modeling them and applying postprocessing in later stages easier.

Video captioning tasks can be divided into two categories: single sentence captioning
and multi sentence (dense captioning). While in single sentence captioning the goal is to
summarize the input video in one abstract sentence, dense captioning systems are more
flexible since they can describe multiple events simultaneously or generate a more detailed
description of the input video. This work presents a dense captioning framework that
generates multiple template-based captions describing multiple events of an input video.

Electronics 2022, 11, 1785. https://doi.org/10.3390/electronics11111785 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11111785
https://doi.org/10.3390/electronics11111785
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9177-9950
https://orcid.org/0000-0003-0982-3065
https://orcid.org/0000-0002-7138-4721
https://doi.org/10.3390/electronics11111785
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11111785?type=check_update&version=1

Electronics 2022, 11, 1785 2 of 15

Current video captioning approaches are based on an encoder–decoder architecture
that combines convolutional neural networks (CNN) for spatial features extraction, and
recurrent neural networks (RNN) for temporal encoding and decoding. Transformers [1]
are also widely used due to their ability to learn patterns with long dependencies.

Due to the high dimensionality of videos and their captions, supervised video-to-
text datasets are usually huge, open-domain datasets and are therefore not suitable for
training lightweight models in a resource-limited environment. These datasets include the
MPII Movie Description corpus (MPII-MD) [2]; the Microsoft Video Description dataset
(MSVD) [3]; the Montreal Video Annotation Dataset (M-VAD) [4]; and the Microsoft
Research Video to Text (MSR-VTT) [5]. Additionally, M-VAD and MSR-VTT datasets
were annotated using the Amazon Mechanical Turk (AMT); therefore, annotations have
inconsistent sentence structures. Generating natural language-based descriptions works
best when the output is presented to a human user. However, standardizing captions’
sentence structures (language model) in the intermediate stages of the analysis pipeline is
important for the efficient postprocessing of the generated captions because every position
in the sentence will have a fixed meaning.

The proposed framework can be used for classroom/lab monitoring, as shown in
Figure 1, where a smart camera monitors the classroom and processes the collected frames
in real-time to generate a description of the scene in a predefined sentence template. The
generated caption is further processed to extract names, dates, and entities based on the
application-specific metadata (context) that is given to the system. Finally, the information
is stored in a database.

Electronics 2022, 11, x FOR PEER REVIEW 2 of 16

that generates multiple template-based captions describing multiple events of an input

video.

Current video captioning approaches are based on an encoder–decoder architecture

that combines convolutional neural networks (CNN) for spatial features extraction, and

recurrent neural networks (RNN) for temporal encoding and decoding. Transformers [1]

are also widely used due to their ability to learn patterns with long dependencies.

Due to the high dimensionality of videos and their captions, supervised video-to-text

datasets are usually huge, open-domain datasets and are therefore not suitable for train-

ing lightweight models in a resource-limited environment. These datasets include the

MPII Movie Description corpus (MPII-MD) [2]; the Microsoft Video Description dataset

(MSVD) [3]; the Montreal Video Annotation Dataset (M-VAD) [4]; and the Microsoft Re-

search Video to Text (MSR-VTT) [5]. Additionally, M-VAD and MSR-VTT datasets were

annotated using the Amazon Mechanical Turk (AMT); therefore, annotations have incon-

sistent sentence structures. Generating natural language-based descriptions works best

when the output is presented to a human user. However, standardizing captions’ sentence

structures (language model) in the intermediate stages of the analysis pipeline is im-

portant for the efficient postprocessing of the generated captions because every position

in the sentence will have a fixed meaning.

The proposed framework can be used for classroom/lab monitoring, as shown in Fig-

ure 1, where a smart camera monitors the classroom and processes the collected frames in

real-time to generate a description of the scene in a predefined sentence template. The

generated caption is further processed to extract names, dates, and entities based on the

application-specific metadata (context) that is given to the system. Finally, the information

is stored in a database.

Figure 1. Overview of the proposed framework applied in a classroom monitoring application.

The rest of this paper is structured as follows: In Section 2, recent related work is

discussed. The methodology, including data processing and deep learning-model details

are presented in Section 3. Experimental results are given in Section 4. Finally, our conclu-

sion is discussed in Section 5.

Figure 1. Overview of the proposed framework applied in a classroom monitoring application.

The rest of this paper is structured as follows: In Section 2, recent related work is
discussed. The methodology, including data processing and deep learning-model details are
presented in Section 3. Experimental results are given in Section 4. Finally, our conclusion
is discussed in Section 5.

Electronics 2022, 11, 1785 3 of 15

2. Related Work

Following an era of combining traditional object/action detection methods to describe
videos, deep learning (DL) models have stretched the limitations of spatiotemporal feature
extraction, achieving state-of-the-art performance in applications such as machine transla-
tion [6], speech recognition [7], and image captioning [8]. Many of these approaches are
based on an encoder–decoder architecture that starts with extracting features from input
images using CNN and merging these features with a sequence learning model such as
RNN or LSTM which predicts the output tokens sequence. An LSTM-based model was
used [9] to generate natural language-based descriptions of cooking videos. One of the
first sequence-to-sequence approaches was presented in [10], which relies on a stack of two
LSTMs where the first LSTM layer encodes visual features, and the second layer decodes
the output words sequentially. The model in [10] was trained on a YouTube video collec-
tion of MPII-MD [2] and M-VAD [11]. The authors of [12] uses a CNN feature extractor
to calculate the embeddings for each input image before averaging them, and an LSTM
decoder is then used to predict the output caption. Averaging the extracted features of
video frames reduces complexity but results in losing the order of the frames.

Reinforcement earning (RL) is also used in video captioning. For example, [13] pro-
poses a hierarchical reinforcement learning (HRL) video captioning framework that utilizes
a two-level mechanism that views the textual and video context as an RL environment
and trains two agents: a high-level agent (the manager) for goal setting at a low temporal
resolution, and a low-level agent (the worker) for choosing actions according to the goals
set by the manager. The authors in [14] used RL to address redundancy and inconsistency
between sentences in dense video captioning by generating an event sequence, before
feeding each proposed event to a video captioning network that was trained by RL with
both event and episode rewards. Additionally, [15] presented an online RL algorithm
for solving coupled algebraic Riccati equations of non-zero sum games using a policy
iterative algorithm.

Self-attention [1] is a mechanism that relates elements at different positions in a
sequence, resulting in a better representation of the same sequence. The self-attention
mechanism recalculates the input sequence by giving more weights to relevant features
which improves performance, especially for long temporal dependencies. Zhou et al. [16]
train a transformer (attention-based network) end-to-end to produce video event proposals
and captions simultaneously, allowing the direct influence of the language model to the
video event proposal. Transformer networks were also applied to detect and recognize
the actions of the person of interest [17] by, first, detecting people in video clips with a
bounding box using a 3D CNN and a region proposal network (RPN). Secondly, a sequence
of transformer blocks generates features for RPN proposals which are finally classified
into action classes. Some methods [11,18] include audio or other elements of the video
in video analysis. The authors of [18] present a weakly supervised multi-modal video
captioning model. Lashin et al. [19] introduced a multi-modal dense video captioning
module (MDVC), a multi-modal architecture to analyze audio, speech, and video to localize
and describe events. Hessel et al. [11] used automatic speech recognition (ASR) to improve
performance and a transformer-based model to encode video frames and speech tokens,
generating captions for instructional videos. An industrial video analysis framework is
proposed in [20] which is based Mask R-CNN image segmentation model [21] to detect
objects along with a template-based sentence generation model.

The authors in [22,23] use generative adversarial networks (GAN) [24] and a YOLOv3
object detection model [25], respectively, to detect students’ actions in a lab. In the first
method, both the discriminator and the generator in the DCGAN are trained in parallel to
classify behavior. The latter method proposes a framework based on the YOLOv3 object
detector to recognize students’ activities. These methods perform video classification
and use large model sizes. Our proposed framework is unique in that it performs video
captioning (which more informative compared with classification) while using lightweight
models, enabling it to run on IoT devices. Additionally, this work is inspired by [26] but

Electronics 2022, 11, 1785 4 of 15

presents a new transformer-based model and achieves a high accuracy of 97%, compared to
only 45% that was reported by [26]. Table 1 presents an overview of the existing literature
with key differences.

Table 1. Summary of related work.

Category Methods Advantages Disadvantages

Natural language-based
video captioning

Uni-modal (visual features):
[9,10]: LSTM-based seq-to-seq model.
[16]: Transformer-based model to
generate captions and event proposals.
[13,14]: Reinforcement learning
(RL)-based dense captioning methods
Multi-modal (visual features + audio +
other features):
[11]: Automatic speech recognition ASR
and transformer-based model.
[18]: Weakly supervised trained model.
[19]: Dense video captioning (Localize
and caption one event or more).

1. Generating human-like
sentences is more
user-friendly compared with
the other approaches.

2. Many huge natural
language-based video-to-texts
are available for training.

1. Computationally intensive
and have a large memory
footprint, therefore cannot
be deployed on
resource-limited devices.

2. Use large model sizes and
need high computational
power for training.

Template-based
video captioning

[26]: Preliminary results of this work
using custom model.
[27]: Language processing to estimate
activity–object correlation to improve
activity recognition systems.
[20]: Mask R-CNN [21] and
template-based captioning.
The proposed method trains a
transformer model on SVO templates
converted from natural
language-based captions.

1. Use moderate computational
power and memory footprint,
making it a suitable option for
resource-limited devices.

2. Require less data for training.
3. Restricting the language

model of the output caption
makes extracting
information/adding context
in postprocessing stage easier
compared with natural
language sentences.

1. Require custom dataset
annotation since most
video-to-text datasets use
natural language-
based captions.

2. Lack of proper language
model conversion
techniques to convert
natural language-based
captions of existing
open-domain datasets to
template-based captions.

Classification-based
video description

[17]: 3DCNN for object detection and
transformer-based for
action classification.
[22]: A generative adversarial network
(GAN) [24] is used to
recognize activities.
[23]: Uses YOLOV3 [25] to classify
students’ behavior.

1. Use the least computational
power compared to the other
two approaches, therefore can
be deployed on
resource-limited devices.

2. Due to their relatively small
model sizes, ensemble of
specialized classifiers can be
used to recognize a limited set
of actions/objects.

1. Classification/Recognition
of objects and actions is
less informative
than captioning.

Our proposed framework starts with collecting and preprocessing a dataset of video-
caption pairs to train the neural network model on understanding the scene (video) and
generate a description of it.

The preprocessing steps are described in Figure 2. The objective of this phase is to
reduce vocabulary size and restrict captions to a predefined template. Our contribution
includes how to create a subject-verb-object-based (SVO) caption from a natural language-
based caption and replace several words with one representative word to reduce the
vocabulary size. Finally, the developed video captioning models are lightweight and can be
used on computationally limited IoT platforms. The performed analysis is optimized by:

1. Restricting the captions’ language model to simple sentence templates to decrease the
complexity and size of the model that is required to achieve a certain accuracy.

2. Developing two lightweight video captioning models, optimizing their parameters
with hyperparameter tuning and evaluating their performance in terms of accuracy
and inference time.

3. Predicting captions that have predefined sentence structures to make post processing
of these captions easier relative to processing natural language-based captions.

Electronics 2022, 11, 1785 5 of 15

Electronics 2022, 11, x FOR PEER REVIEW 5 of 16

recognize a limited set of

actions/objects.

Our proposed framework starts with collecting and preprocessing a dataset of video-

caption pairs to train the neural network model on understanding the scene (video) and

generate a description of it.

The preprocessing steps are described in Figure 2. The objective of this phase is to

reduce vocabulary size and restrict captions to a predefined template. Our contribution

includes how to create a subject-verb-object-based (SVO) caption from a natural language-

based caption and replace several words with one representative word to reduce the vo-

cabulary size. Finally, the developed video captioning models are lightweight and can be

used on computationally limited IoT platforms. The performed analysis is optimized by:

1. Restricting the captions’ language model to simple sentence templates to decrease

the complexity and size of the model that is required to achieve a certain accuracy.

2. Developing two lightweight video captioning models, optimizing their parameters

with hyperparameter tuning and evaluating their performance in terms of accuracy

and inference time.

3. Predicting captions that have predefined sentence structures to make post processing

of these captions easier relative to processing natural language-based captions.

Figure 2. Left: Preprocessing steps to perform on MSR-VTT and custom dataset for retrieving rele-

vant data and converting captions to the subject-verb-object (SVO) template. Right: An example

showing the result of applying these steps on a video caption.

3. Methodology

In this section, the proposed framework is explained in detail. The Dataset subsection

describes how the MSR-VTT dataset is preprocessed to select video-caption pairs that be-

long to our use-case application (classroom monitoring) before the captions are converted

to the SVO sentence format. Section 3.2 presents the proposed deep learning models in-

cluding (1) transformer-based model; (2) LSTM-based model; (3) CNN feature extractor.

Third, Section 3.3 describes caption generation.

3.1. Dataset

The dataset used in this work is the MSR-VTT dataset, an open-domain video-to-text

dataset that has 10,000 videos, 200,000 descriptions in total, and 20 captions per video. The

first preprocessing step is to select a subset of video-caption pairs that belong to a partic-

ular domain/application. Since we use classroom monitoring as a use case, the dataset is

filtered to include only the pairs of video descriptions that are relevant to that application.

Although the videos are already tagged in MSR-VTT, none of these categories match our

Figure 2. Left: Preprocessing steps to perform on MSR-VTT and custom dataset for retrieving
relevant data and converting captions to the subject-verb-object (SVO) template. Right: An example
showing the result of applying these steps on a video caption.

3. Methodology

In this section, the proposed framework is explained in detail. The Dataset subsection
describes how the MSR-VTT dataset is preprocessed to select video-caption pairs that
belong to our use-case application (classroom monitoring) before the captions are converted
to the SVO sentence format. Section 3.2 presents the proposed deep learning models
including (1) transformer-based model; (2) LSTM-based model; (3) CNN feature extractor.
Third, Section 3.3 describes caption generation.

3.1. Dataset

The dataset used in this work is the MSR-VTT dataset, an open-domain video-to-text
dataset that has 10,000 videos, 200,000 descriptions in total, and 20 captions per video. The
first preprocessing step is to select a subset of video-caption pairs that belong to a particular
domain/application. Since we use classroom monitoring as a use case, the dataset is filtered
to include only the pairs of video descriptions that are relevant to that application. Although
the videos are already tagged in MSR-VTT, none of these categories match our application.
The preprocessing pipeline is illustrated in Figure 2 (left), as well as an example showing
the result of applying these steps on a video caption (right). We first mined captions by
searching for sentences that contained a whitelist of words, such as ‘teacher’, ‘student’,
and ‘class’. We used part-of-speech (POS) tags to exclude adjectives, adverbs, pronouns,
etc., keeping only nouns and verbs. Lemmatization is then applied to return the basic
form of each noun and verb so that later it is easy to calculate the frequency of words
and compare the semantic distance between words more accurately. After applying the
preprocessing steps shown in Figure 2, each of the 20 captions per video provided by the
MSR-VTT dataset is compared to the SVO sentence structure. If the caption length and POS
tags align with that of SVO, the video-caption pair is added as a standardized instance to a
new dataset to train the proposed deep learning models. This simple approach is effective
but has its limitations which are investigated in the results section.

To further reduce vocabulary size, words’ embeddings are clustered and one repre-
sentative word (the most frequent) replaces all the words in that cluster in their respective
sentences. This is achieved by converting words to their Global Vectors for Word Repre-
sentation (GloVe) [28], a vector representation of words where linear distances reflect the
semantic relations between words. This is particularly important in our application since
we use the distance between words’ embeddings and apply a manually tuned threshold to

Electronics 2022, 11, 1785 6 of 15

cluster close embeddings (which represent semantically related words) and replace them
with the embeddings vector that corresponds to the most frequent word. This process
is applied to nouns and verbs separately. Figure 3 shows the 2D plot of the PCA of the
GloVe representation nouns. To cluster word embeddings, we use Euclidean distance
(Equation (1)), which was used in [29] to estimate the semantic similarity between words.

euclidean distance = (∑(wi|(ui − vi)|2)1/2 (1)

where u and v are the two input 1D arrays, u and v are the means of the elements of u and v,
respectively, and w is a 1D weights array. After comparing the generated clusters from each
distance algorithm to what is expected, Euclidean distance is used because it was found to
yield relatively better results. Words in each cluster are replaced by the most frequent word
in that cluster to reduce the vocabulary size and simplify the language model.

Electronics 2022, 11, 0 6 of 15

to return the basic form of each noun and verb so that later it is easy to calculate the
frequency of words and compare the semantic distance between words more accurately.
After applying the preprocessing steps shown in Figure 2, each of the 20 captions per
video provided by the MSR-VTT dataset is compared to the SVO sentence structure. If the
caption length and POS tags align with that of SVO, the video-caption pair is added as a
standardized instance to a new dataset to train the proposed deep learning models. This
simple approach is effective but has its limitations which are investigated in the results
section.

To further reduce vocabulary size, words’ embeddings are clustered and one repre-
sentative word (the most frequent) replaces all the words in that cluster in their respective
sentences. This is achieved by converting words to their Global Vectors for Word Repre-
sentation (GloVe) [28], a vector representation of words where linear distances reflect the
semantic relations between words. This is particularly important in our application since
we use the distance between words’ embeddings and apply a manually tuned threshold to
cluster close embeddings (which represent semantically related words) and replace them
with the embeddings vector that corresponds to the most frequent word. This process is
applied to nouns and verbs separately. Figure 3 shows the 2D plot of the PCA of the GloVe
representation nouns. To cluster word embeddings, we use Euclidean distance (Equation
(1)), which was used in [29] to estimate the semantic similarity between words.

euclidean distance =
(

∑(wi|(ui − vi)|2
)1/2

(1)

where u and v are the two input 1D arrays, u and v are the means of the elements of u and v,
respectively, and w is a 1D weights array. After comparing the generated clusters from each
distance algorithm to what is expected, Euclidean distance is used because it was found to
yield relatively better results. Words in each cluster are replaced by the most frequent word
in that cluster to reduce the vocabulary size and simplify the language model.

Figure 3. Left: 2D plot of the first two principal components of a subset of nouns’ GloVe represen-
tations of the MSR-VTT dataset. Right Top: samples of verbs and their respective neighbor verbs
measured by the Euclidean distance between their GloVe vectors. Right Bottom: samples of nouns
and their respective neighbor nouns measured by the Euclidean distance between their GloVe vectors.

Figure 3. Left: 2D plot of the first two principal components of a subset of nouns’ GloVe represen-
tations of the MSR-VTT dataset. Right Top: samples of verbs and their respective neighbor verbs
measured by the Euclidean distance between their GloVe vectors. Right Bottom: samples of nouns
and their respective neighbor nouns measured by the Euclidean distance between their GloVe vectors.

3.2. Deep Learning-Based Models

Figure 4 demonstrates a diagram of the proposed framework. The diagram shows
the model, which will be explained later, at the core as well as two input branches. A
sequence of the frames’ embeddings, generated from a separate CNN feature extractor, is
fed to the first branch, and a sequence of caption tokens (words that were already predicted
or placeholder tokens) is fed to the other branch, simultaneously, to generate the next
caption token. The input caption tokens are stacked between two special tokens that
indicate the beginning and end of a caption: “seq_start” and “seq_end”. Additionally,
the “seq_extra” special token works as a placeholder for the tokens to be predicted in the
following iterations. After that, the tokens are replaced by their respective indices that

Electronics 2022, 11, 1785 7 of 15

are fed to the network. The following two subsections describe the details of the two
proposed models.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 16

Figure 4. Overview of the proposed system. The block “Model” refers to any of the two proposed

models.

3.2.1. Transformer-Based Model

A transformer-based network (also called attention-based) is based on the trans-

former block (block diagrams of both architectures are shown in Figure 5). The network

has two branches; the first branch receives the sequence of the frames’ embedding vectors

(generated by a pre-trained CNN feature extractor), and the second branch receives a se-

quence of token indices.

The tokens are converted to a sequence of meaningful embeddings with an embed-

ding layer. An embedding layer can either be trained as part of the model to learn repre-

sentative embeddings for each token, or import embeddings from a pre-trained global

word representation, such as GloVe [28]. After that, the weights of the imported embed-

dings layer are made untrainable. In our case, we trained the embedding layer since the

target language model (sentence structure) is SVO-based which is more constrained than

the natural language-based corpuses that global word embeddings are trained on. Then,

the frames’ embeddings and tokens pass through the transformer layers. Finally, the

frames’ embeddings are given to an LSTM layer and the output is used as an initial state

to another LSTM layer that is applied on caption embeddings (as shown in Figure 5). Fi-

nally, a linear layer reduces the output size to the vocabulary size and a softmax activation

is applied to generate a one-hot encoded token. A distinctive feature of transformer blocks

is that the sizes of the input and the output are the same, but individual element in the

output sequence is more “context-aware”, relative to the input sequence.

The main component of the transformer block is the multi-head self-attention layer.

Hyperparameter tuning is applied to select the number of heads. Figure 5 shows the com-

ponents of the transformer block which includes a dropout activation function, linear

transformations, and layer normalization.

Figure 4. Overview of the proposed system. The block “Model” refers to any of the two
proposed models.

3.2.1. Transformer-Based Model

A transformer-based network (also called attention-based) is based on the transformer
block (block diagrams of both architectures are shown in Figure 5). The network has
two branches; the first branch receives the sequence of the frames’ embedding vectors
(generated by a pre-trained CNN feature extractor), and the second branch receives a
sequence of token indices.

The tokens are converted to a sequence of meaningful embeddings with an embedding
layer. An embedding layer can either be trained as part of the model to learn representa-
tive embeddings for each token, or import embeddings from a pre-trained global word
representation, such as GloVe [28]. After that, the weights of the imported embeddings
layer are made untrainable. In our case, we trained the embedding layer since the target
language model (sentence structure) is SVO-based which is more constrained than the
natural language-based corpuses that global word embeddings are trained on. Then, the
frames’ embeddings and tokens pass through the transformer layers. Finally, the frames’
embeddings are given to an LSTM layer and the output is used as an initial state to another
LSTM layer that is applied on caption embeddings (as shown in Figure 5). Finally, a linear
layer reduces the output size to the vocabulary size and a softmax activation is applied
to generate a one-hot encoded token. A distinctive feature of transformer blocks is that
the sizes of the input and the output are the same, but individual element in the output
sequence is more “context-aware”, relative to the input sequence.

The main component of the transformer block is the multi-head self-attention layer.
Hyperparameter tuning is applied to select the number of heads. Figure 5 shows the

Electronics 2022, 11, 1785 8 of 15

components of the transformer block which includes a dropout activation function, linear
transformations, and layer normalization.

Electronics 2022, 11, 0 8 of 15

Figure 5. Left: the transformer block. Right: the proposed transformer-based model architecture.

The tokens are converted to a sequence of meaningful embeddings with an embedding
layer. An embedding layer can either be trained as part of the model to learn representa-
tive embeddings for each token, or import embeddings from a pre-trained global word
representation, such as GloVe [28]. After that, the weights of the imported embeddings
layer are made untrainable. In our case, we trained the embedding layer since the target
language model (sentence structure) is SVO-based which is more constrained than the
natural language-based corpuses that global word embeddings are trained on. Then, the
frames’ embeddings and tokens pass through the transformer layers. Finally, the frames’
embeddings are given to an LSTM layer and the output is used as an initial state to another
LSTM layer that is applied on caption embeddings (as shown in Figure 5). Finally, a linear
layer reduces the output size to the vocabulary size and a softmax activation is applied
to generate a one-hot encoded token. A distinctive feature of transformer blocks is that
the sizes of the input and the output are the same, but individual element in the output
sequence is more “context-aware”, relative to the input sequence.

The main component of the transformer block is the multi-head self-attention layer.
Hyperparameter tuning is applied to select the number of heads. Figure 5 shows the
components of the transformer block which includes a dropout activation function, linear
transformations, and layer normalization.

3.2.2. LSTM-Based Model

The second model, shown in Figure 6, is an LSTM-based model also consisting of two
branches, one for captions and the other for frames. However, this model relies on LSTM
layers to encode the temporal data in both modalities. The output embeddings from each
branch are then concatenated and fed to the LSTM layers. Finally, a linear layer reduces the
output size to the vocabulary size and a softmax activation is applied to generate a one-hot
encoded token.

Figure 5. Left: the transformer block. Right: the proposed transformer-based model architecture.

3.2.2. LSTM-Based Model

The second model, shown in Figure 6, is an LSTM-based model also consisting of two
branches, one for captions and the other for frames. However, this model relies on LSTM
layers to encode the temporal data in both modalities. The output embeddings from each
branch are then concatenated and fed to the LSTM layers. Finally, a linear layer reduces the
output size to the vocabulary size and a softmax activation is applied to generate a one-hot
encoded token.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 16

Figure 5. Left: the transformer block. Right: the proposed transformer-based model architecture.

3.2.2. LSTM-Based Model

The second model, shown in Figure 6, is an LSTM-based model also consisting of two

branches, one for captions and the other for frames. However, this model relies on LSTM

layers to encode the temporal data in both modalities. The output embeddings from each

branch are then concatenated and fed to the LSTM layers. Finally, a linear layer reduces

the output size to the vocabulary size and a softmax activation is applied to generate a

one-hot encoded token.

Despite that every activity is represented by only one caption and each caption in

strictly three tokens (subject, verb, and object), the length of any caption is set to eight.

This is due to two reasons (1) The model can detect up to two activities, each with three

tokens. (2) The special tokens “seq_start” and “seq_end” must be included at the begin-

ning and end of the caption; for example, the description “a teacher writes on a chalk-

board” is processed as in Figure 2. Therefore, the total number of tokens to be generated

is 3 + 3 + 2 = 8 tokens.

Figure 6. The LSTM-based model architecture.

Figure 6. The LSTM-based model architecture.

Electronics 2022, 11, 1785 9 of 15

Despite that every activity is represented by only one caption and each caption in
strictly three tokens (subject, verb, and object), the length of any caption is set to eight. This
is due to two reasons (1) The model can detect up to two activities, each with three tokens.
(2) The special tokens “seq_start” and “seq_end” must be included at the beginning and end
of the caption; for example, the description “a teacher writes on a chalkboard” is processed
as in Figure 2. Therefore, the total number of tokens to be generated is 3 + 3 + 2 = 8 tokens.

3.2.3. CNN Feature Extractor

Three CNN backbone architectures that were pre-trained on ImageNet [30] were
evaluated and compared in terms of their inference time: GoogLeNet [31], ResNet-18 [32],
and ResNet-50. Since the CNN model is used to extract embeddings/features of the input
frames, it is separated from the rest of the model to balance the time cost of the CNN
inference and the informativeness of the generated vector.

3.3. Generating Captions

For an input video, caption generation starts with the CNN feature extractor generating
the embeddings vector of each frame. Captions are tokenized into words, and special
tokens such as “seq_start”, “seq_end”, “seq_extra”, and “seq_unkown” are added where
appropriate. Algorithm 1 describes how captions are generated from an input list of frames.
Algorithm 1 uses ix2word, a dictionary that maps indices to words, to return a list that starts
with “seq_start”, ends with “seq_end”, and has one or two SVO-based captions in between.

Algorithm 1. Sequential Caption Generation

Input: frames (list of frames),
maxlen (Maximum length of the generated description sentence),
word2ix (a dictionary mapping each token to index),
ix2word (a dictionary mapping each generated index to token),
model (trained model)
Output: caption (generated sentence)

1. caption ← [“seq_start”]
2. vectors ← []
3. for (i = 1 to length(f rames)) do
4. vectors← add CNN (frames[i])
5. for (i = 1 to maxlen) do
6. ix_tokens = Algorithm2 (caption, word2ix, maxlen)
7. props←model.predict (vectors, ix_token)
8. index← argmax (props)
9. token← ix2word (index)
10. caption← add token
11. if (token = “seq_end”) then
12. break
13. return caption

In each iteration (forward pass), a single token is generated. However, the input size is
fixed because the structure of the network is static. Therefore, Algorithm 2 pads the input
sequence with a special token called the padding_element to reach the defined input size,
maxlen. In the first iteration, the only known token is the “seq_start” token. Algorithm 2 is
used to add “seq_extra” tokens to reach a fixed input length. It then converts input tokens
to indices. When the model predicts the next token in the input sequence it is compared
to the stopping token, “seq_end”. If this is the predicted token, it means that the network
has predicted the whole caption; if not, then the predicted token is appended to the input
sequence, and a new iteration starts until the “seq_end” token or a certain number of
iterations is reached.

Electronics 2022, 11, 1785 10 of 15

Algorithm 2. Padding Captions

Input: word_tokens (list of tokens to pad),
word2ix (a dictionary mapping each token to index),
maxlen (maximum length of the caption),
Output: ix_tokens (list of padded indices tokens)

1. padding_element ← “seq_extra”
2. paddinglen ← maxlen − length(word_tokens)
3. for (i = 1 to paddinglen) do
4. word_tokens← add padding_element
5. for (i = 1 to length(word_tokens)) do
6. ix_tokens← add word2ix (word_tokens[i])
7. return ix_tokens

4. Results

In this section, the results of caption generation, conversion of natural language-based
captions to SVO-based sentences, hyperparameter tuning, and models’ inference-time
comparison results are presented. Generated SVO captions are evaluated using accuracy
for two reasons:

1. The length of SVO-captions is relatively small and fixed, therefore, comparing the
corresponding words of the predicted and the ground truth captions makes more
sense than machine translation (MT) quality metrics like BLEU [33] which is more
suitable for assessing natural language-based captions.

2. Accuracy is used by other template-based methods [20,26] and is therefore needed
for comparison.

Figure 7 shows examples of correct and incorrect SVO-based sentences that were
generated from the natural language-based sentences of the original dataset (MSR-VTT) [5].
Correctness here refers to whether the generated caption is meaningful to be further
processed and stored in the database. For each example, samples of the video frames,
original caption, POS tagging of each token in the original caption, and the generated
SVO-based caption are shown. The generated captions are tokenized, and the number
of unique tokens is reduced by applying the Euclidean distance thresholding approach
described earlier. For example, the SVO captions’ tokens of the first, third, fourth, and fifth
samples in Figure 7 were reduced by replacing “teacher” and “student” with “person”.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 16

Figure 7. Examples of good and bad conversions of captions from the natural language descriptions

to the SVO-based captions used in our framework.

Table 2. Selected hyperparameters for tuning while training the two proposed models.

Model

Selected Hyperparameters

Accuracy (%) # of Attention

Heads
Learning Rate

Word Embed-

dings

Transformer

1 0.001 100 69.8

1 0.005 100 80.2

1 0.0005 100 95.6

2 0.001 100 83.3

4 0.001 100 81.2

4 0.0005 100 97

LSTM-based model

N/A 0.005 20 52.1

N/A 0.005 100 52.1

N/A 0.001 80 54.2

N/A 0.001 256 65.6

N/A 0.0005 20 25

N/A 0.0005 256 59.4

Figure 7. Examples of good and bad conversions of captions from the natural language descriptions
to the SVO-based captions used in our framework.

Electronics 2022, 11, 1785 11 of 15

Hyperparameter tuning includes the following parameters: number of heads of the
transformer block (shown in Figure 5), learning rate, word embeddings vector size, etc. A
sample of validation accuracies obtained in the hyperparameter tuning experiments are
plotted in Figure 8. Table 2 shows the exact parameter values and the obtained accuracy
for each experiment. While Table 2 and Figure 8 compare the transformer-based model
and the LSTM-based model in terms of accuracy, Table 3 and Figure 9 compare both
models as well as CNN feature extractors in terms of their inference time on different
platforms. The LSTM-based model is found to be 13× faster than the transformer-based
model, generating a single token in 0.2 s as measured on the MAXN power mode of the
Nvidia Jetson nano board.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 16

Figure 8. Transformer-based VS LSTM-based models performance comparison with different hy-

perparameters settings. Accuracies of transformer-based models are significantly better than accu-

racies of LSTM-based models.

In addition to the parameters’ values used in Table 2, other parameters were also

included in hyperparameter tuning, such as batch size, number of epochs, and layers’

configurations like the keep probability of the dropout layer and the choice of activation

layers. However, the subset of parameters presented in Table 2 were experimentally

found to have the most influence on performance. As can be seen from Figure 9, The trans-

former-based model obtained higher accuracy than the LSTM-based model. Moreover,

compared with the model presented in [26] on the same task, the transformer-based model

also achieved an accuracy of 97%, compared to 45% by the model in [26].

To evaluate the computing time of the different components of the proposed frame-

work, the developed caption generation models and the off-the-shelf CNN feature extrac-

tors that were used were tested on a Nvidia Jetson Nano board, a 128-core Maxwell GPU

and a Quad-core ARM A57 @1.43 GHZ CPU. The board has two power modes depending

on the capability of the power source: 5 W and MAXN modes. We tested the performance

of our framework in both modes. Equation (2) calculates the total time (TT) in seconds to

generate a description sentence composed of ���MNO��P words from a sequence of frames

of length ���QRST�P.

UU = (���MNO��P V 0.21) Y 0.33 (2)

The previous equation assumes using GoogLeNet as the CNN feature extractor, as

well as the LSTM-based model, and the Jetson MAXN mode. This equation is not depend-

ent on ���QRST�P because at any time � , the system uses the ���QRST�P − 1 embedding

vectors that were processed in previous steps and needs to apply CNN only on the current

frame at time �.

Table 3. Time cost (in seconds) for a single inference by the CNN and for generating one token by

the video captioning models on both power modes of the Jetson nano board.

Category Model
Power mode

MAXN 5 W

CNN feature extractor

GoogLeNet 0.33 [0.003 s 0.49 [0.009 s

RESNET-18 0.65 [0.006 s 1.09 [0.007 s

RESNET-50 1.166 [0.304 s 1.536 [0.056 s

Token generation LSTM-based 0.21 s 0.3 s

Figure 8. Transformer-based VS LSTM-based models performance comparison with different hyper-
parameters settings. Accuracies of transformer-based models are significantly better than accuracies
of LSTM-based models.

Table 2. Selected hyperparameters for tuning while training the two proposed models.

Model
Selected Hyperparameters

Accuracy (%)
of Attention Heads Learning Rate Word Embeddings

Transformer

1 0.001 100 69.8

1 0.005 100 80.2

1 0.0005 100 95.6

2 0.001 100 83.3

4 0.001 100 81.2

4 0.0005 100 97

LSTM-based model

N/A 0.005 20 52.1

N/A 0.005 100 52.1

N/A 0.001 80 54.2

N/A 0.001 256 65.6

N/A 0.0005 20 25

N/A 0.0005 256 59.4

Electronics 2022, 11, 1785 12 of 15

Table 3. Time cost (in seconds) for a single inference by the CNN and for generating one token by the
video captioning models on both power modes of the Jetson nano board.

Category Model
Power Mode

MAXN 5 W

CNN feature extractor
GoogLeNet 0.33± 0.003 s 0.49± 0.009 s
RESNET-18 0.65± 0.006 s 1.09± 0.007 s
RESNET-50 1.166± 0.304 s 1.536± 0.056 s

Token generation LSTM-based 0.21 s 0.3 s
Transformer 2.8 s 3.2 s

Electronics 2022, 11, x FOR PEER REVIEW 14 of 16

Transformer 2.8 s 3.2 s

Figure 9. Model inference time comparison on different platforms.

Table 3 shows the time comparison of a single inference among three CNN architec-

tures: GoogLeNet [31], ResNet-18 [32], and ResNet-50 on both power modes, as well as

the time cost for a single token generation. GoogleNet has the lowest time cost which is

expected due to its smaller size relative to the other two CNN models. Since in the pro-

posed system the CNN model is used for feature extraction (to generate vector embed-

dings of frames), GoogleNet is selected for its low inference time. Figure 9 compares the

inference time of the transformer model vs. the LSTM-based model on different platforms.

5. Conclusions and Discussion

We proposed a deep learning-based light-weight video content analysis framework

to be deployed on IoT platforms. Firstly, the presented framework performs data mining

on a massive open-domain video-to-text dataset: MSR-VTT to extract video-caption pairs

that are relevant to a particular domain (classroom in this case). Second, it generates SVO

sentence templates from natural language-based captions to simplify the language model

of captions and consequently reduce the size of the deep learning model to be trained on

the dataset. Third, reduces the vocabulary size by clustering similar words based on the

distance between their GloVe [28] representations to replace the words of each cluster

with its most frequent word. finally, we presented two video captioning deep learning-

based models: a transformer-based model and an LSTM-based model of which the accu-

racy is optimized through hyperparameter tuning and the inference time is measured on

different platforms, including IoT and GPU-enabled devices. The transformer-based

model achieved high accuracy while the LSTM-based model has low inference time mak-

ing it suitable for IoT devices.

While template-based video captioning methods have many benefits such as reduc-

ing the complexity of the language model and making information extraction from the

generated caption easier, the scarcity of video-to-text datasets with template-based cap-

tions poses a challenge to adopting these methods. Points 1 and 2 in the conclusion present

a suggested technique to address this problem. However, the proposed language model

conversion technique also has its limitations that should be addressed in future work, in-

cluding the fact that some natural language captions cannot be converted into SVO cap-

tions and others produce meaningless SVO captions. Therefore, manually annotated, tem-

plate-based datasets are required to train high quality template-based video captioning

models.

Figure 9. Model inference time comparison on different platforms.

In addition to the parameters’ values used in Table 2, other parameters were also
included in hyperparameter tuning, such as batch size, number of epochs, and layers’
configurations like the keep probability of the dropout layer and the choice of activation
layers. However, the subset of parameters presented in Table 2 were experimentally found
to have the most influence on performance. As can be seen from Figure 9, The transformer-
based model obtained higher accuracy than the LSTM-based model. Moreover, compared
with the model presented in [26] on the same task, the transformer-based model also
achieved an accuracy of 97%, compared to 45% by the model in [26].

To evaluate the computing time of the different components of the proposed frame-
work, the developed caption generation models and the off-the-shelf CNN feature extrac-
tors that were used were tested on a Nvidia Jetson Nano board, a 128-core Maxwell GPU
and a Quad-core ARM A57 @1.43 GHZ CPU. The board has two power modes depending
on the capability of the power source: 5 W and MAXN modes. We tested the performance
of our framework in both modes. Equation (2) calculates the total time (TT) in seconds to
generate a description sentence composed of lentokens words from a sequence of frames of
length len f rames.

TT = (lentokens × 0.21) + 0.33 (2)

The previous equation assumes using GoogLeNet as the CNN feature extractor, as well
as the LSTM-based model, and the Jetson MAXN mode. This equation is not dependent on
len f rames because at any time t, the system uses the len f rames − 1 embedding vectors that
were processed in previous steps and needs to apply CNN only on the current frame at
time t.

Electronics 2022, 11, 1785 13 of 15

Table 3 shows the time comparison of a single inference among three CNN architec-
tures: GoogLeNet [31], ResNet-18 [32], and ResNet-50 on both power modes, as well as
the time cost for a single token generation. GoogleNet has the lowest time cost which is
expected due to its smaller size relative to the other two CNN models. Since in the proposed
system the CNN model is used for feature extraction (to generate vector embeddings of
frames), GoogleNet is selected for its low inference time. Figure 9 compares the inference
time of the transformer model vs. the LSTM-based model on different platforms.

5. Conclusions and Discussion

We proposed a deep learning-based light-weight video content analysis framework
to be deployed on IoT platforms. Firstly, the presented framework performs data mining
on a massive open-domain video-to-text dataset: MSR-VTT to extract video-caption pairs
that are relevant to a particular domain (classroom in this case). Second, it generates SVO
sentence templates from natural language-based captions to simplify the language model
of captions and consequently reduce the size of the deep learning model to be trained on
the dataset. Third, reduces the vocabulary size by clustering similar words based on the
distance between their GloVe [28] representations to replace the words of each cluster with
its most frequent word. finally, we presented two video captioning deep learning-based
models: a transformer-based model and an LSTM-based model of which the accuracy is
optimized through hyperparameter tuning and the inference time is measured on different
platforms, including IoT and GPU-enabled devices. The transformer-based model achieved
high accuracy while the LSTM-based model has low inference time making it suitable for
IoT devices.

While template-based video captioning methods have many benefits such as reducing
the complexity of the language model and making information extraction from the gen-
erated caption easier, the scarcity of video-to-text datasets with template-based captions
poses a challenge to adopting these methods. Points 1 and 2 in the conclusion present a
suggested technique to address this problem. However, the proposed language model con-
version technique also has its limitations that should be addressed in future work, including
the fact that some natural language captions cannot be converted into SVO captions and
others produce meaningless SVO captions. Therefore, manually annotated, template-based
datasets are required to train high quality template-based video captioning models.

Author Contributions: Conceptualization, G.G.; methodology, G.G.; Formal analysis, G.G.; valida-
tion, E.G. and Z.F.; supervision, Z.F. and B.M.; funding acquisition, G.G., K.C., Z.F. and B.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is partially funded by the Vector institute through the VI scholarship in AI.

Data Availability Statement: The code that was implemented in this project for creating both neural
networks, training, hyperparameter tuning, and evaluation is available at: https://github.com/
gadm21/videoToSeq (accessed on 1 May 2022). The video-description pairs that were mined from
the MSR-VTT dataset are available at the same GitHub repository.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

In Advances in Neural Information Processing Systems. June 2017, Volume 2017-December, pp. 5999–6009. Available online:
https://arxiv.org/abs/1706.03762v5 (accessed on 17 March 2021).

2. Rohrbach, A.; Rohrbach, M.; Tandon, N.; Schiele, B. A dataset for Movie Description. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [CrossRef]

3. Chen, D.L.; Dolan, W.B. Collecting highly parallel data for paraphrase evaluation. In ACL-HLT 2011, Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, Oregon, 19–24 June 2011; IEEE:
Manhattan, NY, USA, 2011; Volume 1.

4. Torabi, A.; Pal, C.; Larochelle, H.; Courville, A. Using Descriptive Video Services to Create a Large Data Source for Video
Annotation Research. March 2015. Available online: http://arxiv.org/abs/1503.01070 (accessed on 13 March 2021).

https://github.com/gadm21/videoToSeq
https://github.com/gadm21/videoToSeq
https://arxiv.org/abs/1706.03762v5
http://doi.org/10.1109/CVPR.2015.7298940
http://arxiv.org/abs/1503.01070

Electronics 2022, 11, 1785 14 of 15

5. Xu, J.; Mei, T.; Yao, T.; Rui, Y. MSR-VTT: A large video description dataset for bridging video and language. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
Volume 2016-December. [CrossRef]

6. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [CrossRef]

7. Bahdanau, D.; Chorowski, J.; Serdyuk, D.; Brakel, P.; Bengio, Y. End-to-end attention-based large vocabulary speech recognition.
In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China,
20–25 March 2016; Volume 2016-May. [CrossRef]

8. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [CrossRef]

9. Donahue, J.; Saenko, K.; Darrell, T.; Austin, U.T.; Lowell, U.; Berkeley, U.C. Long-term Recurrent Convolution Networks for
Visual Recognition and Description. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2625–2634. [CrossRef] [PubMed]

10. Venugopalan, S.; Rohrbach, M.; Donahue, J.; Mooney, R.; Darrell, T.; Saenko, K. Sequence to sequence—Video to text. In Proceed-
ings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; Volume 2015, pp. 4534–4542.
[CrossRef]

11. Hessel, J.; Pang, B.; Zhu, Z.; Soricut, R. A case study on combining ASR and visual features for generating instructional video
captions. arXiv 2019, arXiv:1910.02930. [CrossRef]

12. Venugopalan, S.; Xu, H.; Donahue, J.; Rohrbach, M.; Mooney, R.; Saenko, K. Translating videos to natural language using deep
recurrent neural networks. arXiv 2015, arXiv:1412.4729. [CrossRef]

13. Wang, X.; Chen, W.; Wu, J.; Wang, Y.F.; Wang, W.Y. Video captioning via hierarchical reinforcement learning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4213–4222.

14. Mun, J.; Yang, L.; Ren, Z.; Xu, N.; Han, B. Streamlined dense video captioning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 6588–6597.

15. Xin, X.; Tu, Y.; Stojanovic, V.; Wang, H.; Shi, K.; He, S.; Pan, T. Online reinforcement learning multiplayer non-zero sum games of
continuous-time Markov jump linear systems. Appl. Math. Comput. 2022, 412, 126537. [CrossRef]

16. Zhou, L.; Zhou, Y.; Corso, J.J.; Socher, R.; Xiong, C. End-to-End Dense Video Captioning with Masked Transformer. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [CrossRef]

17. Girdhar, R.; Carreira, J.J.; Doersch, C.; Zisserman, A. Video action transformer network. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; Volume 2019-June.
[CrossRef]

18. Rahman, T.; Xu, B.; Sigal, L. Watch, listen and tell: Multi-modal weakly supervised dense event captioning. In Proceedings of the
IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; Volume 2019-October. [CrossRef]

19. Iashin, V.; Rahtu, E. Multi-modal dense video captioning. arXiv 2020, arXiv:2003.07758.
20. Namjoshi, M.; Khurana, K. A Mask-RCNN based object detection and captioning framework for industrial videos. Int. J. Adv.

Technol. Eng. Explor. 2021, 8, 1466. [CrossRef]
21. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,

Venice, Italy, 22–29 October 2017; pp. 2961–2969.
22. Cheng, Y.; Dai, Z.; Ji, Y.; Li, S.; Jia, Z.; Hirota, K.; Dai, Y. Student Action Recognition Based on Deep Convolutional Genera-

tive Adversarial Network. In Proceedings of the 32nd Chinese Control and Decision Conference, CCDC 2020, Hefei, China,
22–24 August 2020; pp. 128–133. [CrossRef]

23. Rashmi, M.; Ashwin, T.S.; Guddeti, R.M.R. Surveillance video analysis for student action recognition and localization inside
computer laboratories of a smart campus. Multimed. Tools Appl. 2021, 80, 2907–2929. [CrossRef]

24. Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks:
An overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [CrossRef]

25. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. April 2018. Available online: http://arxiv.org/abs/1804.02767
(accessed on 2 July 2021).

26. Gad, G.; Gad, E.; Mokhtar, B. Towards Optimized IoT-based Context-aware Video Content Analysis Framework. In Proceedings
of the 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 14 June–31 July 2021; pp. 46–50.
[CrossRef]

27. Motwani, T.S.; Mooney, R.J. Improving video activity recognition using object recognition and text mining. In ECAI 2012;
IOS Press: Amsterdam, The Netherlands, 2012; pp. 600–605.

28. Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014. [CrossRef]

29. Ayeldeen, H.; Hassanien, A.E.; Fahmy, A.A. Lexical similarity using fuzzy Euclidean distance. In Proceedings of the 2014
International Conference on Engineering and Technology (ICET), Cairo, Egypt, 19–20 April 2014; pp. 1–6.

30. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [CrossRef]

http://doi.org/10.1109/CVPR.2016.571
http://doi.org/10.3115/v1/d14-1179
http://doi.org/10.1109/ICASSP.2016.7472618
http://doi.org/10.1109/CVPR.2015.7298935
http://doi.org/10.1109/TPAMI.2016.2599174
http://www.ncbi.nlm.nih.gov/pubmed/27608449
http://doi.org/10.1109/ICCV.2015.515
http://doi.org/10.18653/v1/k19-1039
http://doi.org/10.3115/v1/n15-1173
http://doi.org/10.1016/j.amc.2021.126537
http://doi.org/10.1109/CVPR.2018.00911
http://doi.org/10.1109/CVPR.2019.00033
http://doi.org/10.1109/ICCV.2019.00900
http://doi.org/10.19101/IJATEE.2021.874394
http://doi.org/10.1109/CCDC49329.2020.9164040
http://doi.org/10.1007/s11042-020-09741-5
http://doi.org/10.1109/MSP.2017.2765202
http://arxiv.org/abs/1804.02767
http://doi.org/10.1109/WF-IoT51360.2021.9595891
http://doi.org/10.3115/v1/d14-1162
http://doi.org/10.1109/cvpr.2009.5206848

Electronics 2022, 11, 1785 15 of 15

31. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston,
MA, USA, 7–12 June 2015. [CrossRef]

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; Volume 2016-December.
[CrossRef]

33. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: A method for automatic evaluation of machine translation. In Proceedings of
the 40th annual meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 7–12 July 2002; pp. 311–318.

http://doi.org/10.1109/CVPR.2015.7298594
http://doi.org/10.1109/CVPR.2016.90

	Introduction
	Related Work
	Methodology
	Dataset
	Deep Learning-Based Models
	Transformer-Based Model
	LSTM-Based Model
	CNN Feature Extractor

	Generating Captions

	Results
	Conclusions and Discussion
	References

