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Abstract: Spatial crowdsourcing is a mode that uses distributed artificial computing power to solve
specific function sets through Internet outsourcing. It has broad application value in the networked
command and control of current joint air defense operations. In this paper, we introduce the spatial
crowdsourcing theory into the field of target allocation for joint air defense operations and establish a
weapon-target assignment model based on spatial crowdsourcing mode, which is more appropriate
to the real situation and highlights the system cooperation capability of joint air defense operations.
To solve the model, we propose a heuristic variable weight nonlinear learning factor particle swarm
optimization (VWNF-PSO). This algorithm can significantly improve the efficiency and adaptability
to weapon-target assignment problems under large-scale extreme conditions. Finally, we establish
two kinds of joint air defense operation scenarios to verify the proposed model, then compare the
proposed algorithm with variable weight PSO (VWPSO) and adaptive learning factor PSO (AFPSO),
to validate the effectiveness and efficiency of the VWNF-PSO algorithm proposed in this paper.

Keywords: regional air defense operations; weapon-target distribution; variable weight nonlinear
learning factor particle swarm optimization algorithm

1. Introduction

With the development of ground attack aircraft, unmanned aerial vehicles, ballistic
missiles and cruise missiles, air attack has become a very common means of operation in
modern war. As the current air defense combat situation presents the characteristics of mul-
tiple targets and large scale, the existing combat mode based on equipment autonomous
engagement has been difficult to adapt to the battlefield environment. The rational al-
location of operational resources to improve interception efficiency and the reduction of
operational cost have become urgent problems to be solved in air defense operations.

Spatial crowdsourcing [1] is a mode that uses distributed artificial computing power
to solve specific function sets through Internet outsourcing. It has attracted wide attention
since being proposed in 2006, and is now widely used in image and video marking classifi-
cation, road condition detection, text recognition, Uber, takeout food delivery and other
applications [2]. The efficient assignment of tasks to workers represents a research hotspot
in the field of spatial crowdsourcing. The existing research objectives include maximizing
the number of one-time task matching, realizing the optimal task scheduling scheme for
a single worker, pursuing the quality and diversity of task completion, and iterating task
allocation and task scheduling to maximize the number of global task allocation [3].

Regional air defense operation refers to intercepting enemy air attack targets to protect
assets. The most important intercepting targets are cruise missiles, ballistic missiles, rockets
and various types of enemy aircraft, etc. Assets mainly include cities, airports, ports and
other important facilities. The main objective of defense is to maximize the destruction
of enemy targets or to maximize the self-protection of assets. The multiple resources and
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high timeliness requirements of regional air defense operation control are in line with the
characteristics of collaborative intelligence and efficient processing of spatial crowdsourcing
mode. At the same time, the relationship between combat units and incoming targets is
highly similar to the “worker-task” relationship in spatial crowdsourcing mode. As a
problem-solving framework, spatial crowdsourcing has a broad application prospect in the
target allocation of regional cooperative air defense operations.

Since Manne (1957) put forward the WTA issue [4], the study on missile assignment
has been continued up to now. Matlin provided literature on missile assignment before
1970 [5]. Soland studied the weapon target assignment of the anti-ballistic missile in area
defense and point defense [6]. Wacholder analyzed the WTA problem in ICBM defense,
minimizing the residual threat to the incoming target as the target, and considering the
upper limit of interceptor weapons owned by each combat unit and the upper limit of inter-
ceptor weapons assigned to a target [7]. Liu studied the WTA problem of maximizing the
interception of enemy weapons based on different kill zones with multiple target channels
of the ground-to-air missile defense system, taking into account time constraints, space
constraints and resource constraints [8]. Meng analyzed the WTA problem of multi-layer
ballistic missile defense systems [9]. Wang mainly studied target assignment in air defense
command and control system of the tactical unit of surface-to-air missile and proposed
the concept of shooting superiority of intercepting target of firepower unit [10]. Wang
studied the WTA problem of general ballistic missile defense [11]. Li studied the WTA
problem of interception of the multi-layer incoming ballistic missiles. Multi-layer mainly
refers to the high-altitude defense layer and low-altitude defense layer. The defense side
launches different interceptors according to different defense layers and considers the time
window when assigning interceptors [12]. Xu studied the multi-target WTA problem under
uncertain conditions based on the static perspective, to obtain the maximum interception
efficiency and minimum interception loss [13]. Li studied the WTA problem of static multi-
target ground air defense to maximize the protection of assets while minimizing interceptor
consumption [14]. Jang focused on the WTA problem of intercepting enemy missiles by
interceptors with high hit probability [15]. Guo mainly studied the problem of multi-target
missile interception with fixed and adaptive grouping constraints, and the grouping strat-
egy mainly considers the limitation of the number of weapons allocated to each target [16].
Zhang proposed a dynamic sensor/heterogeneous weapon-target integration assignment
problem by extracting key factors of typical ground-air anti-penetration scenarios, that
is, multiple types of near, medium, and far defense weapons and sensors are deployed
to intercept the target during the penetration process of the target from far to near [17].
The current research directions of the WTA problem mainly focus on simplifying models
and assumptions that more closely resemble actual operations, multi-weapon cooperation,
interception cost-effectiveness optimization, and timeliness.

Since WTA has its characteristics under different combat patterns, our research mainly
studies WTA in-ground joint air defense operations. Compared with the current research
on WTA issues, our research is more in-depth. In terms of problem size, our study includes
large, medium, and small scales. From the perspective of complexity, our research considers
the cooperation between combat units and the cooperation between combat units and
sensors. In addition, the model construction takes full account of the requirements of actual
application scenarios, and the complexity is further improved. From the perspective of
timeliness, as it involves intercepting tactical ballistic missiles, timeliness is required to a
certain extent, but in general, optimality is more important than timeliness.

In spatial crowdsourcing mode, workers usually have a relatively fixed work scope
(such as a circle with their location as the center and a radius of the distance affected
by many personal preferences) and can complete dynamic tasks that are influenced by
personal preference. In regional air defense operations, combat units, as “workers”, are
usually unable to move after completion. As a “working range of workers”, the kill zone of
the combat unit has great differences in intercepting different types of incoming targets. The
incoming target is a moving individual with a specific threat level as a “worker assignment”.
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To adapt to the target assignment of joint air defense operations, the traditional spatial
crowdsourcing model needs to be improved to adapt to the target assignment of regional
air defense operations.

The target assignment problem of air defense operation is an integer nonlinear multi-
dimensional combinatorial optimization problem, which belongs to the non-deterministic
problem (NP) [18]. The Hungarian algorithm [19], particle swarm algorithm [20–22],
ant colony algorithm [23], artificial fish swarm algorithm [24], simulated annealing algo-
rithm [25,26], cuckoo algorithm [27] and so on are widely used in solving this kind of
problem. Compared with other evolutionary algorithms, particle swarm optimization
bears the advantages of fewer control parameters, better convergence, and easier imple-
mentation. Because of these advantages, PSO has attracted extensive attention in the field
of evolutionary computing since its introduction. As with other swarm-based stochastic
optimization algorithms, PSO is initialized with a population of random solutions (position
of each particle) in the search space, and subsequently begins to enter a loop to continue
searching for optimal solutions by updating the particle’s velocities and positions until
some termination conditions are satisfied [28]. Thus, the methodology of generating high-
quality initial particles represents a worthy research direction in the PSO field. Moreover,
the proper selection of control parameters, such as inertia weight and learning factor, can
significantly influence the convergence of PSO. Therefore, the current research on PSO is
mainly aimed at improving the above two aspects.

For swarm initialization, Tian used two kinds of chaotic maps to improve the quality
of the initial swarm for PSO with promising results [29]. Gao offered a similar chaotic
opposition-based swarm initialization [30]. Li applied two kinds of chaotic maps to ini-
tialize the swarm in which the logistic map was for positions while the cubic map was for
velocities of the particles [31].

For parameter selection, Clerc introduced a constriction factor into the standard PSO
that was a function of learning factors c1 and c2 to insure the convergence of particle swarm
optimization [32]. Ratnaweera put forward a self-organizing hierarchical particle swarm
optimizer (HPSO) with time-varying acceleration coefficients (TVAC) to control the local
search and convergence to the global optimum solution. Conducted experiments revealed
that the performance of HPSO with TVAC was markedly better than that of HPSO with
fixed learning factor [33]. Tang brought forward a modified particle swarm optimization
by exploiting the exponential time-varying acceleration coefficients [34].

Compared with the existing spatial crowdsourcing model applied to ride-hailing and
takeout delivery services, the main difficulties to be solved in this problem are as follows:

A single incoming target may be intercepted by too many combat units, which will
seriously occupy combat resources.

The performance parameters of different types of combat units are quite different,
combat units with better performance will be used under heavy load in conventional
assignment algorithms. This would leave more economical combat units idle. Combat unit
targets are not evenly distributed.

Aiming at the above difficulties, we introduce the spatial crowdsourcing theory into
the weapon-target assignment problem of joint air defense operations. To adapt to the
real scene and highlight the system coordination capability of joint air defense operations,
according to the characteristics of the WTA problem, we establish a target allocation model
of joint air defense operations based on spatial crowdsourcing mode. Firstly, we preprocess
the data, and calculate the potential intercept task matrix, combat unit synergy relation
diagram, and intercept mission reward matrix by combat unit data and incoming target data.
Then we use the tree decomposition algorithm to segment the combat units set according to
the cooperative relationship between combat units, to reduce the size of the solution space
and improve the efficiency of the optimization algorithm. To solve the model, we propose
a heuristic variable weight nonlinear learning factor particle swarm optimization (VWNF-
PSO). We use the potential interception capability matrix to constrain the generation of the
primary particles to further compress the solution space in the initialization stage, and use it
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to constrain the particle movement velocity to avoid the particles moving out of the solution
space in the optimization stage; then we add the adaptive mutation method, calculate the
mutation probability according to the particle individual fitness and population average
fitness to improve the ability to jump out of local optimal; finally, we improve the algorithm
inertia weight and learning factor value strategy, adjust the inertia weight timely according
to the individual fitness and the average fitness of the population, adjust the learning factor
by using the nonlinear cloud selection method according to the number of iterations, and
improve the ability of the particles to move to the optimal solution at different stages of
the search. Through the above improvements, the efficiency of the algorithm is effectively
improved, and the adaptability is stronger in the face of large-scale extreme conditions.

2. Problem Definition

This paper defines regional air defense operations as a model similar to the typical
spatial crowdsourcing model, including workers (combat units), requestors (incoming
targets), space missions (interception missions), and platforms (command and control
systems). Different combat units are equipped with interceptors of different performance.
They communicate with the command and control (C2) system and other combat units
through communication links, and dynamically inform the C2 system of their position,
channel status, and the number of interceptors. Different combat units have different
reward indicators for different incoming targets. The incoming target issues an intercept
mission with a clear message. The C2 system receives all the information from the combat
unit and the incoming target, and assigns the incoming target to the combat unit through
the designed target assignment mechanism.

The main symbols in this paper are shown in Table 1.

Table 1. Summary of notations.

Symbol Definition Symbol Definition

w Combat unit Ft Latest completion time of target
interception mission

w.tp Type of combat unit Tr A set of incoming targets
w.l Location of the combat unit Tw An interception task set of w

rt Average response time of
combat units ETS(w)

An effective interception task set
of w

A Kill zone parameters of
combat units EETS(w)

Extremely effective interception
task set of w

tr Incoming target t(w, tr) The time when w completes the
interception task of tr

T The trajectory of the
incoming target P Interception capability matrix

ch Characteristic parameters of
the incoming target S Interception task assignment

scheme

Definition 1. Combat unit.

In this paper, combat units generally refer to ground air defense units that carry
out joint air defense operations in the region and are capable of intercepting incoming
targets in the air. A single combat unit is defined by a five-dimensional cell array such
as wi = 〈w.tpi, w.li, Ai, rti, ci, ai〉. w.tpi is the type of combat unit. w.li = 〈loni, lati, hi〉 is
the position of the combat unit, it includes longitude, latitude and altitude data of the
combat unit.Ai = (Pi, hmaxi, hmini, dmaxi, dmini, γmaxi, εmaxi, εmini, αi, βi, K) is the kill
zone parameter of the combat unit.Pi is the combat unit radar normal direction.hmaxi is
the high limit of the kill zone, hmini is the low limit of the kill zone, dmaxi is the far limit
of the kill zone, dmini is the near limit of the kill zone, γmaxi is the maximum route angle,
εmaxi is the maximum high and low angle. εmini is the minimum high and low angle, αi
is the azimuth of the radar sector of the combat unit. βi is the pitching angle of the radar
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sector, K is the radar power coefficient, rti is the average response time of combat units, ci is
the number of combat unit fire channels, and ai is the number of combat unit interceptors.

Definition 2. Incoming target.

The incoming target is defined by a three-dimensional cell array such as trj =〈
Tj, chj, Ftj

〉
. Tj is the trajectory of the incoming target, consisting of multiple sets of

longitude, latitude, and altitude data. chj =
〈
rcsj, tr.tpj

〉
is the characteristic parameter of

the incoming target and is a two-dimensional array composed of the RCS of the incoming
target and the target type. Ftj is the latest completion time of target interception task set by
the command and control system according to the characteristics of the incoming target.
After receiving the target intercept order, the combat unit needs to complete the intercept
before the latest completion time.

Definition 3. Task sequences.

Tw is the set of incoming targets assigned to the combat unit w. Tr(Tw) is a sequential
sequence of Tw, represents the time sequence in which the combat unit intercepts the
incoming target. t(w, tr) is the time when the combat unit w finishes intercepting the
incoming target $tr$, and must meet the condition: t(w, tr) ≤ Ft(tr).

Definition 4. Effective interception task set (ETS).

The interception task set Tw is called the effective intercept task set of combat unit w if
and only if the following conditions hold:

∀trj ∈ Tw, t(w, trj) ≤ Ftj; a ≥ 0. (1)

Definition 5. Extremely effective interception task set (EETS).

If any superset of the effective blocking task set $T_{w}$ is not the effective intercepting
task set, it is the extremely effective task set.

Definition 6. Interception task assignment.

Given the combat unit set W and the incoming target set $Tr$, the intercept task
assignment is S = {〈w1, ETS(w1)〉, 〈w2, ETS(w2)〉, . . . , 〈wn, ETS(wn)〉}. S.Tr = ∪w∈W Tw
is defined as the set of interception missions assigned to all operational units.

Definition 7. Intercept mission reward metrics.

The intercept mission reward parameter refers to the interception effect parameter
calculated by various factors when the combat unit completes an interception mission.
According to the characteristics of combat units, the factors that need to be considered
in the judgment of reward parameters are compared and screened, and the important
and relatively independent factors are extracted as the basic elements for the judgment of
reward parameters. In this paper, the direct assessment method is used to judge the threat
mainly by the target type and supplemented by other factors.

1. Incoming target property parameter

(1) Intercept arc length (time parameter)
The longer the target passes through the kill zone of the combat unit, the more likely

the combat unit will capture and intercept it successfully, and the higher the success rate of
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interception. Normalized, the duration of the target passing through the kill zone to obtain
the intercept arc length parameters of the incoming target:

µ1(t) =

{
tij−timin

timax−timin
0

t > 0
t = 0

. (2)

In this formula, tij is the time for the incoming target trj to pass through the kill
zone of combat unit wi. timin and timax are the minimum and maximum arc lengths of
intercepting all incoming targets by combat unit wi, respectively.

(2) The target type
For different types of targets, their flight speed and attack capability are different, and

therefore their threat level is different. Usually, according to the threat degree, the order is
anti-radiation missile, typical target, slow target, cruise missile target, and jamming target.
The target type parameter function is:

µ2(l) =


1

0.7
0.6
0.5
0.2

anti-radiation missile
typical target

cruise missile target
slow target

jamming target

. (3)

(3) Electronic jamming
When the enemy carries out an air raid, they usually add electronic jamming equip-

ment to the air raid weapon to improve its penetration ability. The purpose of jamming:
Disturbing the search radar, affects the ability of radar to detect the target, so that it

cannot receive the correct information about the target;
Jamming the tracking guidance radar in the surface-to-air missile weapon system

makes it unable to track the target effectively;
Interferes with the on-board electronic equipment of surface-to-air missile to make the

missile lose control and reduce the hit probability;
Destroying ground air defense weapons directly to render it incapable of anti-aircraft

operations.
The parameter function of electronic interference capability is:

µ3(e) =


0.8 very strong
0.6 strong
0.4 normal
0.2 weak
0 none

. (4)

According to the calculation of the above function, the comprehensive attribute pa-
rameter of target j is given by the above formula:

tdj =
3

∑
k=1

ωkµkj. (5)

The weight vector composed of each weight value is:

→
ω = [ω1, ω2, ω3],

3

∑
k=1

ωk = 1. (6)

According to the influence of each attribute factor on the threat degree, the com-
prehensive target attribute parameters can be obtained by integrating the weights set by
experts.

2. Combat unit adaptability parameters
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(1) Combat unit effectiveness indicators
Since the effectiveness of combat units in intercepting different incoming targets is

different, when setting the reward mechanism, it is necessary to introduce the effectiveness
index eij of combat units based on the evaluation of incoming target attribute parameters,
which is given by experts according to combat unit type w.tpi and incoming target type
tr.tpj.

(2) Interceptor cost penalty
To avoid excessive consumption of interceptors and maximize the benefits of air

defense operations, it is necessary to set the penalty parameter pui for the consumption
of interceptors. If the combat unit fires n interceptors, its total penalty parameter is:
Pui = n× pui.

The combat unit adaptability parameter is: adij = eij − Pui.
Finally, the elements of the intercept mission reward matrix R are:

rij = tdj + adij. (7)

Problem definition:
The problem is to find the task allocation problem in the crowd-sourcing mode based

on the reward mechanism under the limitation of the latest completion time of the target
interception task and the number of interceptors of the combat unit, under the condition
that the combat unit set W and the incoming target set Tr are determined. The objective
is to find a globally optimal task assignment scheme Sopt to achieve ∀Si ∈ S, S.r ≤ Sopt.r.
S represents all target assignment schemes, and S.r represents the total value of reward
parameters for this target assignment scheme.

3. Algorithm

The global optimal task assignment scheme in spatial crowdsourcing mode is a typical
NP problem. Greedy algorithms can be used to find the most efficient set of interceptor
tasks for this unit, and then the assigned interceptor tasks can be weighted. However,
for the incoming targets that can be intercepted by multiple combat units, if the target
is randomly assigned to any combat unit for the interception, other incoming targets
may not be intercepted. To solve this problem, firstly, using the dynamic programming
method to find all extremely effective interception task sets for each combat unit, and the
optimal assignment scheme is some combination of maximum effective task sets for each
combat unit. Secondly, using the tree decomposition technology to divide unrelated combat
units into different combat unit sets and then employing the tree index to search combat
unit sets to improve the search efficiency of the extremely effective interception task sets.
Finally, introducing the reward mechanism, and searching the search tree established in the
previous step by the search algorithm combined with the success rate of interception.

3.1. Calculate the Effective Interception Task Set
3.1.1. Finding Potential Interception Missions

Due to the limitation of deployment position and equipment performance of combat
units, each combat unit can only form interception conditions for part of the incoming
targets. Therefore, it is necessary to find the incoming target set with potential interception
conditions for each combat unit under the condition of satisfying constraints. The set of
incoming targets with potential interception conditions of combat unit w is Tr.Tw, and
combat unit A shall meet the following conditions:

∀tr ∈ Tr.Tw, t(w, tr) ≤ Ft(tr). (8)

∀tr ∈ Tr.Tw, T(tr) ∩ D(w) 6= ∅. (9)

∀tr ∈ Tr.Tw, T(tr) ∩ A(w) 6= ∅. (10)

∀tr ∈ Tr, t(T(tr) ∩ A(w)) > rt(w). (11)
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T(tr) ∩ D(w) refers to the overlap between the trajectory of the incoming target and
the radar detection area of the combat unit. T(tr) ∩ A(w) refers to the overlap between
the trajectory of the incoming target and the combat unit’s kill zone. t(T(tr) ∩ A(w)) is
the time when the incoming target crosses the combat unit’s kill zone. The above four
conditions ensure that a combat unit can effectively fire on an incoming target passing
through its kill zone before the interception mission expires.

3.1.2. Finding Extremely Effective Interception Task Set

To avoid traversing and searching all incoming targets, it is necessary to assign mul-
tiple interceptable incoming targets to the combat unit at one time under the limitation
of the number of fire channels and interceptors. In this paper, a dynamic programming
algorithm is used to solve the extremely effective interception task set of the combat unit.
The algorithm expands the effective interception task set of combat units by gradually
increasing the size of the effective interception task set, and finds all EETS under the set in
each iteration. Given a combat unit w and an interception task set Q ⊆ Tr.Tw, opt(Q, tr)
is the maximum number of interception tasks that can be completed when intercepting
incoming target $tr$ after intercepting an incoming target in Q. R is the target assignment
sequence of Q. tri represents the target before trj in sequence R. opt(Q, sj) can be obtained
by the following formula:

opt
(
Q, trj

)
=

{
1 when|Q|= 1

max
tti∈Q,tri 6=trj

opt
(
Q−

{
trj
}

, tri
)
+ σij others . (12)

σij =

{
1 when t(w, trj) ≤ Ft(trj), T(trj) ∩ D(w) 6= ∅, T(trj) ∩ A(w) 6= ∅, t(T(trj) ∩ A(w)) > rt(w)
0 others

. (13)

σij = 1 indicates that adding the incoming target trj to the end of the sequence R,
and target trj can still be intercepted, meeting the limitation of the number of combat unit
channels and interceptors at the same time. opt(tri, tri) = 1 when Q contains only one
incoming target tri. Q needs to be searched to obtain the full effective interception task set,
and tri is found to achieve the maximum opt(Q, trj), when |Q| > 1.

Meanwhile, constructing the potential interception task matrix M, and its element
mij is:

mij =

{
1 wi have the potential interception ability to intercept trj
0 others

. (14)

3.2. Split the Set of Combat Units

With the increase in the number of combat units and incoming targets, the solution
space of optimal target assignment will increase rapidly. To meet the high real-time
requirements of air defense operations, the search algorithm needs to be optimized to
improve search efficiency.

Definition 8. Combat unit synergy.

Given two combat units wi, wj, and their interceptable mission sets Tr.Twi, Tr.Twj , and
if Tr.Twi ∩ Tr.Twj = ∅, they are independent of each other. Otherwise, there is a synergistic
relationship between the two combat units.

Definition 9. Combat unit synergy relation diagram.

According to the known combat unit set W and incoming target set Tr, the synergy
relation diagram (WTrG)G(N, E) of combat units is constructed, hereinafter referred to as
the synergy relation diagram. Each node n in the diagram represents a weapon system
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wn ∈ W. If two combat units wm and wn have a synergistic relationship, there is an edge
e(m, n) ∈ E between them.

In the mathematical model, synergy relation diagram (WTrG)G(N, E) is represented
as an upper triangular matrix P, where each element pij is:

pij =

{
1 combat unit wi and wj have cooperation relationship
0 combat unit wi and wj don’t have cooperation relationship

. (15)

In the decomposition of the coordination diagram of combat units, the combat units
without synergy relationship can be divided into different sets to divide the synergy relation
diagram in a balanced way [35,36]. This not only improves search efficiency but also further
optimizes interception tasks and avoids wasting interceptor resources. The algorithm flow
is shown in Figure 1.
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Figure 1. Cooperative diagram tree decomposition algorithm.

In each step of decomposition, a node and the node associated with the node are taken
as the cut set, which is used to cut the whole synergy relation diagram. Then, the size of the
cut set (including the number of combat units in the cut set) is recorded and the sum of the
number of combat units in the largest subgraph after the graph is divided. The cut set that
minimizes the sum above is selected to segment the original graph again, and the algorithm
is recursively called for the subgraph after segmentation until the number of nodes in the
sub-synergy relation diagram is less than the threshold set in initialization [37,38].

3.3. Search

After the operation unit synergy diagram is transformed into a tree structure, the
search algorithm is used to solve the optimal task assignment scheme.

Given the combat unit set W and the incoming target set Tr. For each combat unit
wi firstly calculates its maximum interception task set Qwi , Twi is the interception task set,
and constructs the corresponding synergy diagram G. For each subgraph in the synergy
diagram g ∈ G, the tree decomposition algorithm is used to divide the combat units into
different sets of combat units to reduce the search times, and the search tree structure is
established according to the sequence of combat unit sets. Finally, the variable weight
nonlinear factor particle swarm optimization algorithm is used to search the search tree
constructed in the previous step to find the optimal target assignment scheme. Since the
different subgraphs of G are not correlated with each other, the final target allocation scheme
is a collection of assignment schemes of different subgraphs. The detailed optimization
structure is shown in Figure 2.
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3.3.1. Particle Swarm Optimization

Particle swarm optimization (PSO) was first proposed by Eberhart and Kennedy in
1995 based on the foraging behavior of birds [39]. It is a method to find the optimal solution
by iteratively calculating the fitness based on the random solution.

In the PSO, each particle has two attributes: position X and speed V. Position X
represents the candidate solution of the problem, and velocity V represents the position
change between successive iterations. The fitness of each particle in the swarm is calculated,
then compared with the fitness of specific particle Pgbest (whose fitness is the global best
fitness) and the current population best particle Pibest to evaluate the merits and disad-
vantages of the current particle. The result drives the current particle to its position at
a speed determined by the distance between the current particle and Pgbest, the distance
between the current particle and Pibest, while maintaining inertia to prevent falling into
local optimization. The state transition is shown in the following formula:

Vi(t + 1) = w×Vi(t) + c1r1

(
Pgbest(t)− Xi(t)

)
+ c2r2(Pibest (t)− Xi(t)). (16)

Xi(t + 1) = Xi(t) + Vi(t + 1). (17)

In this formula w is the inertia factor of velocity, adjusting its value can balance global
and local optimization. c1 and c2 are the learning factors of speed, and adjusting their
values can realize faster convergence and prevent falling into the local optimum. r1 and r2
are two random numbers evenly distributed between 0 and 1. Set the boundary conditions
to ensure:

Xmin ≤ Xi(t + 1) ≤ Xmax. (18)

Vmin ≤ Vi(t + 1) ≤ Vmax. (19)
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3.3.2. Variable Weight Nonlinear Factor PSO

Because of the disadvantages of traditional PSO algorithms with fixed inertia weight
and learning factors, such as prematurity, and low efficiency in late iteration, they can
easily fall into local optimization. In this paper, a variable weight nonlinear factor PSO
(VWNF-PSO) is proposed to solve the WTA problem. Using the VWNF-PSO can quickly
find the optimal solution to achieve the optimal allocation between the combat unit and
the incoming target. The algorithm improvements are as follows:

By introducing adaptive variation, when the current particle fitness is lower than the
swarm average fitness, the position of particles can be adjusted by mutation operation,
which can avoid prematurity and effectively jump out of local optimum.

The inertia weight w in PSO is used to balance the global and local search capabilities.
Many researchers have advocated that the value of w should be large in the exploration state
and small in the exploitation state. However, it is not necessarily correct to decrease w purely
with time [40]. The learning factor c1 shares some characteristics with the inertia weight w
in that c1 is also relatively large during the exploration state and becomes relatively small in
the convergence state. Hence, it would be beneficial to allow w to follow the evolutionary
states using the variable weight method. When the particle fitness is less than the average
fitness, it means that the particle is relatively far from the maximum value, and the search
scope needs to be expanded to find the maximum value. When the particle fitness is greater
than the average fitness, it means that the particle is close to the maximum value, and the
search scope needs to be narrowed for local accurate search [41]. Using the variable weight
method, according to the particle fitness, express the following formula to adjust the inertia
weight:

wd
i =

wmin + (wmax − wmin)
fmaxd− f (xd

i )
fmaxd− f d

average
f
(

xd
i

)
≥ f d

average

wmax f
(

xd
i

)
< f d

average

(20)

Presetting the maximum and minimum inertia weights: wmin = 0.4, wmax = 0.9; f d
average

is the average fitness of all particles in the d iteration; f d
max = max

{
f
(

xd
1

)
, f
(

xd
2

)
, · · ·, f

(
xd

n

)}
is the maximum fitness of all particles in the d iteration. Through the above improvements,
the algorithm can adjust the inertia weight in real time according to the current fitness
during optimization, so that the particles have strong detection ability and avoid falling
into local optimal.

The learning factor c1 represents the acceleration weight of the particle moving towards
the global optimal particle, and c2 represents the acceleration weight of the particle moving
towards the current swarm optimal particle. In the initial search process, because of the
wide distribution of particles, we should be more inclined to search for the global optimum.
In the later search process, if still using similar learning factors, the particle position will
change too much and jump out of the global optimal group, reducing the efficiency of the
later search [42]. Adopting the strategy of nonlinear cloud learning factor to make the
learning factor c1 nonlinearly decrease with the number of iterations, and c2 nonlinearly
increase with the number of iterations, which can effectively prevent the particles from
clustering into the local optimal early, and quickly gather in the late iteration, and improve
the accuracy and speed of search.

c1 = c1e + (c1i − c1e) · exp
[
−(4t/T)2

]
+ rand(−0.1,+0.1). (21)

c2 = c2e + (c2i − c2e) · exp
[
−(4t/T)2

]
+ rand(−0.1,+0.1). (22)

where, c1i and c2i are the left bounds of their respective value ranges, and c1e and c2e are
the right bounds of their value ranges. The reference range of learning factor is set to
c1 ∈ (0.25, 0.85); c2 ∈ (0.3, 0.9), and its value is shown in the Figure 3.
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For regional joint air defense operations, because combat units usually cannot move
after deployment, a single combat unit does not have the interception capability (i.e., the
interception arc length is 0) for part of the incoming targets. In this case, if using the
traditional PSO algorithm’s particle coding mode, a large number of invalid solutions
outside the boundary conditions will be generated, which will occupy a large number
of computing resources. To solve this problem, a particle coding strategy based on the
interception task is proposed with the proposed model: randomly generating the primary
particles are based on the potential interception mission matrix M. For the combat unit
wi, if its potential interception mission matrix Mwi−trj = [0, 1, 0, 1, · · · , 1︸ ︷︷ ︸

j

], its particle value

space is:

Xwi−trj =

{
rand(0, 1) Mwi−trj = 1

0 Mwi−trj = 0
(23)

The generation of primary particles by this strategy can significantly reduce the search
space, thus improving the search efficiency and avoiding the effects of the algorithm due to
the large search space.

3.3.3. Solution Steps Based on VWNF-PSO

Using VWNF-PSO, the specific steps of the optimization process of the proposed
model are as follows:

Step 1: According to the input combat unit and incoming target data, preprocess
the parameters involved in each combat unit and incoming target. Encoding the target
allocation matrix and randomly setting the initial value to obtain the initial particle swarm,
which is processed according to the particle coding strategy based on the potential inter-
ception task.
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Step 2: Calculate the fitness and update the global extremum. According to the
objective function and constraint conditions of the model, evaluating the fitness of each
particle, and calculating the individual extreme value pibest. Comparing the fitness of each
particle with the global best fitness and updating pgbest, wi, c1, c2.

Step 3: Update particle status.
Step 4: Carry out adaptive mutation operation. To judge whether the particle fitness is

lower than the population average fitness, performing the adaptive mutation operation for
the particle fitness is lower than the population average fitness, and performing boundary
absorption processing for the data beyond the boundary.

Step 5: When the algorithm reaches the stop condition, break the search, output the
results, and obtain the optimal target allocation scheme. Otherwise, return to Step 3 to
continue the loop.

4. Experimental Analysis

All experiments were carried out on a Windows 11 experimental platform configured
with Core I5-10210U, CPU 1.6 GHz, 8G RAM. The simulation calculates in Matlab 2017B
experimental environment. Finally, the VWNF-PSO proposed in this paper is analyzed and
compared with variable weight PSO (VWPSO) and adaptive learning factor PSO (AFPSO).

4.1. Small-Scale Experimental

In order to verify the effectiveness and performance of the algorithm in this paper in
solving WTA problems, constructing a regional air defense operation scenario: C2 center ob-
tains the current combat unit sequence W = (w1, w2, w3, · · · , w7)(Type A weapon systems
A1-A3, Type B weapon systems B1-B4), to intercept 20 targets Tr = (tr1, tr2, tr3, · · · , tr20)
(missile1–missile20) that are attacking secure positions (AreaTarget1–AreaTarget4).

Set type A weapon system combat unit effectiveness at 0.68 and interceptor consump-
tion penalty at 0.5; the Type B weapon system has an operational unit effectiveness indicator
of 0.7 and an interceptor consumption penalty of 0.2. The incoming targets 1–10 are cruise
missiles, 11–20 are anti-radiation missiles, and their electronic jamming capabilities are of
a general level. Set interception arc length, target type and electronic jamming capability
weights as [ω1, ω2, ω3] = [0.4, 0.3, 0.3]. All experiments were carried out on a Windows
11 experimental platform configured with Core I5-10210U, CPU 1.6 GHz, 8G RAM. The
simulation calculates in Matlab 2017B experimental environment. The battle settings are
shown in Tables 2–5. The trajectory of incoming targets and deployment of combat units
are shown in Figures 4 and 5.

Table 2. Combat unit and incoming target information.

Combat Units Incoming Target
Maximum Number of
Interceptors Available

to a Target

Type A: 3
Type B: 4

tr1-tr10: Cruise missile
tr11-tr20: Anti-radiation missile 6

Table 3. Combat unit performance parameters.

Combat Unit
Distance of
Kill Zone

(km) 1

Maximum
Route Angle

Kill Zone
Pitching

Angle

Radar Sector
Azimuth

Radar Sector
Pitching

Angle

Radar Power
Factor

Kill
Probability

A 200/70/150/45 45◦ 30◦~70◦ ±50◦ 30◦~70◦ 1000 0.8
B 30/2/25/2 50◦ −2◦~70◦ ±45◦ 0◦~75◦ 200 0.7

1 Farthest/Nearest/Highest/Lowest.
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Table 4. Combat unit deployment location.

Combat Unit Serial Number Deployment
Location 1

Radar Normal Direction
(0◦ Due East)

A w1 (32.43, 113.14) 0◦

A w2 (31.44, 113.55) 0◦

A w3 (30.58, 113.55) 0◦

B w4 (30.27, 114.02) 15◦

B w5 (31.41, 114.41) 15◦

B w6 (31.71, 113.05) 0◦

B w7 (32.75, 112.77) 0◦

1 (Longitude, Latitude, Altitude).

Table 5. Incoming target parameters.

Incoming Target Serial Number Launching Point
Coordinates 1

Placement
Coordinate 1

Cruise missile tr1 (35.59, 129.20) (30.27, 114.02)
Cruise missile tr2 (34.48, 132.38) (32.75, 112.77)
Cruise missile tr3 (34.48, 132.38) (30.27, 114.02)
Cruise missile tr4 (35.59, 129.20) (32.75, 112.77)
Cruise missile tr5 (26.58, 134.46) (31.41, 114.41)
Cruise missile tr6 (33.57, 130.77) (30.27, 114.02)
Cruise missile tr7 (35.59, 129.20) (31.71, 113.05)
Cruise missile tr8 (34.48, 132.38) (31.71, 113.05)
Cruise missile tr9 (28.32, 133.42) (30.27, 114.02)
Cruise missile tr10 (28.32, 133.42) (31.41, 114.41)

Anti-radiation missile tr11 (28.32, 133.42) (31.71,113.05)
Anti-radiation missile tr12 (33.57, 130.77) (31.41,114.41)
Anti-radiation missile tr13 (28.32, 133.42) (32.75,112.77)
Anti-radiation missile tr14 (28.32, 133.42) (31.41,114.41)
Anti-radiation missile tr15 (35.59, 129.20) (31.41,114.41)
Anti-radiation missile tr16 (26.58, 134.46) (31.41,114.41)
Anti-radiation missile tr17 (26.58, 134.46) (31.71,113.05)
Anti-radiation missile tr18 (26.58, 134.46) (30.27,114.02)
Anti-radiation missile tr19 (26.58, 134.46) (32.75,112.77)
Anti-radiation missile tr20 (33.57, 130.77) (31.71,113.05)

1 (Longitude, Latitude, Altitude).

Electronics 2022, 11, x FOR PEER REVIEW  15  of  23 
 

 

Anti‐radiation missile  tr11  (28.32, 133.42)  (31.71,113.05) 

Anti‐radiation missile  tr12  (33.57, 130.77)  (31.41,114.41) 

Anti‐radiation missile  tr13  (28.32, 133.42)  (32.75,112.77) 

Anti‐radiation missile  tr14  (28.32, 133.42)  (31.41,114.41) 

Anti‐radiation missile  tr15  (35.59, 129.20)  (31.41,114.41) 

Anti‐radiation missile  tr16  (26.58, 134.46)  (31.41,114.41) 

Anti‐radiation missile  tr17  (26.58, 134.46)  (31.71,113.05) 

Anti‐radiation missile  tr18  (26.58, 134.46)  (30.27,114.02) 

Anti‐radiation missile  tr19  (26.58, 134.46)  (32.75,112.77) 

Anti‐radiation missile  tr20  (33.57, 130.77)  (31.71,113.05) 
1 (Longitude, Latitude, Altitude). 

 

Figure 4. 2D schematic diagram of operational scenarios. 

 

Figure 5. 3D schematic diagram of operational scenarios. 

Firstly, preprocess the data to obtain the intercept sequence of the combat unit to the 

incoming target, the result is shown in Figure 6. 

 

Figure 6. Sequence diagram of incoming target interception. 

Figure 4. 2D schematic diagram of operational scenarios.



Electronics 2022, 11, 1779 15 of 22

Electronics 2022, 11, x FOR PEER REVIEW  15  of  23 
 

 

Anti‐radiation missile  tr11  (28.32, 133.42)  (31.71,113.05) 

Anti‐radiation missile  tr12  (33.57, 130.77)  (31.41,114.41) 

Anti‐radiation missile  tr13  (28.32, 133.42)  (32.75,112.77) 

Anti‐radiation missile  tr14  (28.32, 133.42)  (31.41,114.41) 

Anti‐radiation missile  tr15  (35.59, 129.20)  (31.41,114.41) 

Anti‐radiation missile  tr16  (26.58, 134.46)  (31.41,114.41) 

Anti‐radiation missile  tr17  (26.58, 134.46)  (31.71,113.05) 

Anti‐radiation missile  tr18  (26.58, 134.46)  (30.27,114.02) 

Anti‐radiation missile  tr19  (26.58, 134.46)  (32.75,112.77) 

Anti‐radiation missile  tr20  (33.57, 130.77)  (31.71,113.05) 
1 (Longitude, Latitude, Altitude). 

 

Figure 4. 2D schematic diagram of operational scenarios. 

 

Figure 5. 3D schematic diagram of operational scenarios. 

Firstly, preprocess the data to obtain the intercept sequence of the combat unit to the 

incoming target, the result is shown in Figure 6. 

 

Figure 6. Sequence diagram of incoming target interception. 

Figure 5. 3D schematic diagram of operational scenarios.

Firstly, preprocess the data to obtain the intercept sequence of the combat unit to the
incoming target, the result is shown in Figure 6.
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Construct intercept arc length matrix:

T =



0 0 0 0 0 4 0 31 34 25 0 20 0 0 32 27 0 0 9 30
18 13 19 22 16 19 0 0 24 0 14 0 16 13 15 22 0 16 22 0
40 0 2 0 7 2 29 0 0 0 36 0 8 37 0 0 31 6 0 0
7 0 0 0 0 0 6 0 0 0 7 0 0 6 0 0 7 0 0 0
0 7 7 8 6 0 0 0 0 0 0 0 7 0 0 0 0 7 0 0
0 0 0 0 0 6 0 0 7 0 0 0 0 0 7 5 0 0 7 0
0 0 0 0 0 0 0 7 0 7 0 8 0 0 0 0 0 0 0 6


(24)

According to potential interception capability matrix M, synergistic relationship matrix
P can be obtained as follows:

M =



0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1
1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 0 1 1 0
1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1


(25)
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P =



1 1 1 0 0 1 1
1 1 1 1 1 0

1 1 1 1 0
1 0 0 0

1 0 0
1 0

1


(26)

Using the tree decomposition method, as shown in the figure below, to divide the
combat unit into three sub-sets {C1, C2, C3}, the result is shown in Figure 7.
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Use VWNF-PSO, AFPSO and VWPSO to optimize the set of three combat units sun-
sets {C1, C2, C3} respectively. Set the inertia weight of AFPSO as w = 0.8, and the learning
factor of VWPSO as c1 = 0.5, c2 = 0.5, obtain the target allocation matrix:

SVWNF-PSO =



0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1
0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1


(27)

SAFPSO =



0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1
1 0 1 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1


(28)

SVWPSO =



0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0
1 1 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1


(29)
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The target allocation and algorithm contrast are shown in the Tables 6–8 and
Figures 8 and 9.

Table 6. Target assignment result.

Incoming Target Combat Unit Incoming Target Combat Unit

tr1 w3, w4 tr11 w2, w4
tr2 w2 tr12 w1, w7
tr3 w5 tr13 w5
tr4 w2, w5 tr14 w2, w3
tr5 w2, w5 tr15 w1, w2
tr6 w6 tr16 w1, w2, w6
tr7 w3 tr17 w3, w4
tr8 w1, w7 tr18 w2, w5
tr9 w2, w6 tr19 w2, w6
tr10 w7 tr20 w1, w7

Table 7. Algorithm contrast.

Algorithm Test Times Average
Generations Average Results Optimal

Results

VWPSO 50 23.4 16.578 18.563
AFPSO 50 25.1 19.188 19.989

VWAF-PSO 50 20.3 20.225 21.570

Table 8. Interceptor consumption.

Combat Unit VWNF-PSO AFPSO VWPSO

w1 5 9 5
w2 13 12 12
w3 6 8 3
w4 5 5 6
w5 6 8 8
w6 4 6 1
w7 8 5 5
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4.2. Large-Scale Experimental

To verify the adaptability of the model algorithm in dealing with large-scale scenarios,
we set 60 future targets (missile1–missile60), under the condition that the number, type,
and deployment position of combat units are not changed. Among them, incoming targets
1–20 are anti-radiation missiles, 31–50 are cruise missiles, and 21–30 and 51–60 are jamming
targets, the electronic jamming ability of cruise missiles is strong, the electronic jamming
ability of anti-radiation missiles is very strong, and the electronic jamming ability of
jamming target is normal. Set interception arc length, target type and electronic jamming
capability weights as [ω1, ω2, ω3] = [0.4, 0.3, 0.3]. The battle settings of the large-scale
scenario are shown in Table 9.

Table 9. Incoming target parameters.

Serial Number Launching Point
Coordinates 1 Placement Coordinate 1

tr1, tr21, tr41 (35.59, 129.20) (30.27, 114.02)
tr2, tr22, tr42 (34.48, 132.38) (32.75, 112.77)
tr3, tr23, tr43 (34.48, 132.38) (30.27, 114.02)
tr4, tr24, tr44 (35.59, 129.20) (32.75, 112.77)
tr5, tr25, tr45 (26.58, 134.46) (31.41, 114.41)
tr6, tr26, tr46 (33.57, 130.77) (30.27, 114.02)
tr7, tr27, tr47 (35.59, 129.20) (31.71, 113.05)
tr8, tr28, tr48 (34.48, 132.38) (31.71, 113.05)
tr9, tr29, tr49 (28.32, 133.42) (30.27, 114.02)
tr10, tr30, tr50 (28.32, 133.42) (31.41, 114.41)
tr11, tr31, tr51 (28.32, 133.42) (31.71, 113.05)
tr12, tr32, tr52 (33.57, 130.77) (31.41, 114.41)
tr13, tr33, tr53 (28.32, 133.42) (32.75, 112.77)
tr14, tr34, tr54 (28.32, 133.42) (31.41, 114.41)
tr15, tr35, tr55 (35.59, 129.20) (31.41, 114.41)
tr16, tr36, tr56 (26.58, 134.46) (31.41, 114.41)
tr17, tr37, tr57 (26.58, 134.46) (31.71, 113.05)
tr18, tr38, tr58 (26.58, 134.46) (30.27, 114.02)
tr19, tr39, tr59 (26.58, 134.46) (32.75, 112.77)
tr20, tr40, tr60 (33.57, 130.77) (31.71, 113.05)

1 (Longitude, Latitude, Altitude).

Due to the large scale of the data, the intended calculation process is omitted. After
target assignment of the incoming target by three algorithms, the results are shown in
Tables 10–12 and Figures 10 and 11.
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Table 10. Target assignment result.

Combat Unit Incoming Target

w1 tr8, tr9, tr10, tr12, tr16, tr20, tr30, tr32, tr35, tr36, tr40, tr48, tr50, tr52, tr60

w2
tr1, tr2, tr5, tr13, tr15, tr16, tr18, tr21, tr22, tr23, tr24, tr26, tr33, tr38, tr39, tr43,

tr44, tr46, tr49
w3 tr1, tr7, tr11, tr14, tr17, tr21, tr27, tr31, tr34, tr37, tr41, tr47, tr51
w4 tr1, tr7, tr14, tr17, tr21, tr34, tr47, tr57
w5 tr3, tr4, tr13, tr18, tr19, tr22, tr33, tr42, tr44, tr45, tr58
w6 tr6, tr9, tr16, tr19, tr35, tr39, tr46, tr55
w7 tr8, tr10, tr12, tr20, tr32, tr40, tr48

Table 11. Algorithm contrast.

Algorithm Test Times Average
Generations Average Results Optimal

Results

VWPSO 50 298.4 39.88 48.329
AFPSO 50 228.3 15.34 52.391

VWNF-PSO 50 29.7 65.47 69.239

Table 12. Interceptor consumption.

Combat Unit VWNF-PSO AFPSO VWPSO

w1 24 14 19
w2 24 24 23
w3 24 8 9
w4 12 8 8
w5 12 7 9
w6 12 5 6
w7 12 3 3

Electronics 2022, 11, x FOR PEER REVIEW  20  of  23 
 

 

Table 12. Interceptor consumption. 

Combat Unit  VWNF‐PSO  AFPSO  VWPSO 

w1  24  14  19 

w2  24  24  23 

w3  24  8  9 

w4  12  8  8 

w5  12  7  9 

w6  12  5  6 

w7  12  3  3 

 

Figure 10. Algorithm fitness comparison. 

 

Figure 11. Number of interceptors consumed. 

4.3. Data Analysis 

From the perspective of algorithm performance. Under the condition of small‐scale 

experimental, the VWPSO algorithm and the AFPSO algorithm have a small gap with the 

VWNF‐PSO  algorithm  in  the  calculation  of  fitness,  the  output  plans  of VWPSO,  and 

AFPSO can also be used as a feasible solution for target assignment in practical applica‐

tion. However, the abilities of the VWPSO and the AFPSO to jump out of local optimum 

are poor, and they can easily fall into local optimum. In addition, they need more algebra 

to converge. When scaled up to the limits of the combat units’ interception capabilities, 

the disadvantages of the VWPSO algorithm and AFPSO algorithm tendency to fall into 

local optimal are more obvious. There is a big gap between the obtained scheme and the 

actual optimal solution, and the plan is no longer usable as a viable solution. VWNF‐PSO 

algorithm has better global search ability and faster search speed, which can adapt well 

to the requirements of solving the model proposed in this paper. 

Figure 10. Algorithm fitness comparison.



Electronics 2022, 11, 1779 20 of 22

Electronics 2022, 11, 0 22 of 25

Figure 11. Number of interceptors consumed.
Figure 11. Number of interceptors consumed.

4.3. Data Analysis

From the perspective of algorithm performance. Under the condition of small-scale
experimental, the VWPSO algorithm and the AFPSO algorithm have a small gap with
the VWNF-PSO algorithm in the calculation of fitness, the output plans of VWPSO, and
AFPSO can also be used as a feasible solution for target assignment in practical application.
However, the abilities of the VWPSO and the AFPSO to jump out of local optimum are
poor, and they can easily fall into local optimum. In addition, they need more algebra
to converge. When scaled up to the limits of the combat units’ interception capabilities,
the disadvantages of the VWPSO algorithm and AFPSO algorithm tendency to fall into
local optimal are more obvious. There is a big gap between the obtained scheme and the
actual optimal solution, and the plan is no longer usable as a viable solution. VWNF-PSO
algorithm has better global search ability and faster search speed, which can adapt well to
the requirements of solving the model proposed in this paper.

From the perspective of target allocation results. In terms of interception probability,
the interception probability of the three algorithms can all meet the requirements under
small-scale scenarios, but the interception resource consumption of the AFPSO algorithm
is too large. Large-scale scenarios under the condition of incoming target scale have
reached the limit units of intercept capability of the combat units (60 incoming targets,
combat units have 120 interceptors). VWPSO and AFPSO are often trapped in the local
optimal solution, and always miss the targets, which cannot be tolerated in the practical
application of target assignment. In the cooperation of combat units, the VWPSO algorithm
and AFPSO algorithm tend to select type A combat units with higher performance in
small-scale scenarios, resulting in the idle situation of type B weapons. In a large-scale
experiment, this problem of the VWPSO algorithm and AFPSO algorithm remains very
prominent. VWNF-PSO shows excellent stability under two scenarios, and its outstanding
advantage is that it can fully use interceptors to solve the problem of target assignment
under large-scale extreme conditions.

5. Results

This paper studies the regional joint air defense operation unit coordinated target
assignment problem, builds a multi-type of ground air defense weapon system coordination
target assignment model of air defense combat under the spatial crowdsourcing model, and
solves the problem of target assignment plan for dealing with multi-type, multi-target, and
multi-directional threat scenarios. Using the VWAF-PSO to solve the model, the following
conclusions were obtained through simulation:

Based on the requirement of optimal interception quality, this method can generate a
cooperative target assignment plan for a multi-type ground air defense weapon system to
manage complex multi-target threats. Moreover, it provides a new idea for the design and
configuration of regional air defense coordination plans in the future.

By adjusting the inertia weight and learning factor of the basic binary particle swarm
optimization algorithm, there are improvements in the global search ability and the conver-
gence speed of the algorithm.
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The problem of dynamic and real-time target allocation in the cooperative operation
of multi-type ground air defense weapon systems and the anti-saturation attack efficiency
of regional joint air defense will be the focus of future research.

Author Contributions: Conceptualization, S.H.; methodology, S.H., G.W. and J.L.; validation, S.W.,
J.L. and W.L.; formal analysis, S.H., S.Y., S.W., J.L., W.L. and X.G.; writing—original draft preparation,
S.H.; writing—review and editing, S.H. and X.G.; visualization, S.H.; supervision, G.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China: grant number
62106283.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brabham, D.C. Crowdsourcing as a Model for Problem Solving: An Introduction and Cases. Convergence: The International.

Convergence 2008, 14, 75–90. [CrossRef]
2. Shahzad, S.B. The Performance Optimization of Task Assignment in Spatial Crowdsourcing. Ph.D. Thesis, Shanghai Jiao Tong

University, Shanghai, China, 2020.
3. Li, Y. Task Assignment Algorithms in Spatial Crowdsourcing Abstract. Master’s Thesis, Suzhou University, Suzhou, China, 2018.
4. Manne, A.S. A target-assignment problem. Oper. Res. 1958, 6, 346–351. [CrossRef]
5. Matlin, S. A review of the literature on the missile-allocation problem. Oper. Res. 1970, 18, 334–373. [CrossRef]
6. Soland, R.M. Optimal defensive missile allocation: A discrete min-max problem. Oper. Res. 1973, 21, 590–596. [CrossRef]
7. Wacholder, E. A neural network-based optimization algorithm for the static weapon-target assignment problem. ORSA J. Comput.

1989, 1, 232–246. [CrossRef]
8. Xian Liu, F.; Long Wang, Y.; Hua Xing, Q. Study on problems of optimized target assignment in ground to air defense. Fire Control.

Command. Control. 2003, 4, 45–48.
9. Menq, J.Y.; Tuan, P.C.; Liu, T.S. Discrete Markov ballistic missile defense system modeling. Eur. J. Oper. Res. 2007, 178, 560–578.

[CrossRef]
10. Wang, J.; Gao, X.; Zhu, Y. Solving algorithm for TA optimization model based on ACO-SA. J. Syst. Eng. Electron. 2011, 22, 628–639.

[CrossRef]
11. Wang, C.H.; Chen, C.Y.; Hung, K.N. Toward a new task assignment and path evolution (TAPE) for missile defense system (MDS)

using intelligent adaptive SOM with recurrent neural networks (RNNs). IEEE Trans. Cybern. 2014, 45, 1134–1145. [CrossRef]
12. Li, L.; Liu, F.; Long, G.; Guo, P.; Bie, X. Modified particle swarm optimization for BMDS interceptor resource planning. Appl.

Intell. 2016, 44, 471–488. [CrossRef]
13. Xu, H.; Xing, Q.; Tian, Z. MOQPSO-D/S for air and missile defense WTA problem under uncertainty. Math. Probl. Eng. 2017,

2017, 9897153. [CrossRef]
14. Li, X.; Zhou, D.; Pan, Q.; Tang, Y.; Huang, J. Weapon-target assignment problem by multiobjective evolutionary algorithm based

on decomposition. Complexity 2018, 2018, 8623051. [CrossRef]
15. Jang, J.; Yoon, H.G.; Kim, J.C.; Kim, C.O. Adaptive weapon-to-target assignment model based on the real-time prediction of hit

probability. IEEE Access 2019, 7, 72210–72220. [CrossRef]
16. Guo, D.; Liang, Z.; Jiang, P.; Dong, X.; Li, Q.; Ren, Z. Weapon-target assignment for multi-to-multi interception with grouping

constraint. IEEE Access 2019, 7, 34838–34849. [CrossRef]
17. Zhang, K.; Zhou, D.; Yang, Z.; Kong, W.; Zeng, L. A novel heterogeneous sensor-weapon-target cooperative assignment for

ground-to-air defense by efficient evolutionary approaches. IEEE Access 2020, 8, 227373–227398. [CrossRef]
18. Chen, L.; Wang, Z.; Wu, Z.; Wang, B. A Kind of Antiaircraft Weapon-target Optimal Assignment Under Earlier Damage Principle.

Acta Aeronautica et Astronautica Sinica 2014, 35, 2574–2582.
19. Huang, L.W.; Pin-Gang, X.U.; Wang, Q. Firepower Distribution Problems based on Hungarian Method. Fire Control. Command.

Control. 2007, 32, 25–28.
20. Wu, X.J.; Yang, Z.Z.; Zhao, M. A Uniform Searching Particle Swarm Optimization Algorithm. Acta Electron. Sin. 2011, 20,

1261–1266.
21. Xie, C.W.; Li, K.; Xu, J.; Xie, D.; Du, X.; Wang, S. An Improved Multi-Objective Particle Swarm Optimization Algorithm MOPSO-II.

J. Wuhan Univ. Nat. Sci. Ed. 2014, 60, 144–150.
22. Wei, X.; Liu, X.X.; Fan, Y.T.; Yuan, F.G. Weapon-target Assignment with an Improved Multi-objective Particle Swarm Optimization

Algorithm. Acta Armamentarii 2016, 37, 2085.
23. Luo, D.l.; Duan, H.B.; Wu, S.X.; Li, M.Q. Research on Air Combat Decision-making for Cooperative Multiple Target Attack Using

Heuristic Ant Colony Algorithm. Acta Aeronaut. Astronaut. Sin. 2006, 27, 1166.

http://doi.org/10.1177/1354856507084420
http://doi.org/10.1287/opre.6.3.346
http://doi.org/10.1287/opre.18.2.334
http://doi.org/10.1287/opre.21.2.590
http://doi.org/10.1287/ijoc.1.4.232
http://doi.org/10.1016/j.ejor.2005.12.043
http://doi.org/10.3969/j.issn.1004-4132.2011.04.012
http://doi.org/10.1109/TCYB.2014.2345791
http://doi.org/10.1007/s10489-015-0711-9
http://doi.org/10.1155/2017/9897153
http://doi.org/10.1155/2018/8623051
http://doi.org/10.1109/ACCESS.2019.2919794
http://doi.org/10.1109/ACCESS.2019.2898874
http://doi.org/10.1109/ACCESS.2020.3043667


Electronics 2022, 11, 1779 22 of 22

24. Shao, S.J. Research on Weapon Target Assignment Based on Intelligent Algorithm. Master’s Thesis, Harbin Engineering University,
Harbin, China, 2019.

25. Wu, J.G. Target Allocation Algorithm for Naval Fleet Air Defense Based on Simulated Annealing. Ship Electron. Eng. 2015, 35,
36–39.

26. Ping, W. Simulated Annealing Algorithm for Weapon-Target Assignment Problem. Comput. Eng. Appl. 2006, 42, 87–90.
27. Sun, H.; Xie, X.; Sun, T.; Pang, W. Improved Cuckoo Search Algorithm for Solving Antiaircraft Weapon-target Optimal Assignment

Model. Acta Armamentarii 2019, 40, 189.
28. Tian, D.; Shi, Z. MPSO: Modified particle swarm optimization and its applications. Swarm Evol. Comput. 2018, 41, 49–68.

[CrossRef]
29. Tian, D.P.; Zhao, T.X. Particle swarm optimization based on tent map and logistic map. J. Shaanxi Univ. Sci. Technol. 2010, 28,

17–23.
30. Gao, W.F.; Liu, S.Y.; Ling-ling, H. Particle swarm optimization with chaotic opposition-based population initialization and

stochastic search technique. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4316–4327. [CrossRef]
31. Li, J.W.; Cheng, Y.M.; Chen, K.Z. Chaotic particle swarm optimization algorithm based on adaptive inertia weight. In Proceedings

of the 26th Chinese Control and Decision Conference (2014 CCDC), Changsha, China, 31 May–2 June 2014; pp. 1310–1315.
[CrossRef]

32. Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans.
Evol. Comput. 2002, 6, 58–73. [CrossRef]

33. Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-organizing hierarchical particle swarm optimizer with time-varying
acceleration coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [CrossRef]

34. Tang, Z.Y.; Zhang, D.X. A modified particle swarm optimization with an adaptive acceleration coefficients. In Proceedings of the
2009 Asia-Pacific Conference on Information Processing, Shenzhen, China, 18–19 July 2009; IEEE: Piscataway Township, NJ, USA,
2009; Volume 2, pp. 330–332.

35. Khanafer, A.; Clautiaux, F.; Talbi, E.-G. Tree-decomposition based heuristics for the two-dimensional bin packing problem with
conflicts. Comput. Oper. Res. 2012, 39, 54–63. [CrossRef]

36. Li, Y.; Jia, M.D.; Yang, W.Y.; Zhao, Y.; Zheng, K. Optimal Task Assignment Algorithm Based on Tree-Decouple in Spatial
Crowdsourcing. J. Softw. 2018, 29, 824–838.

37. Kazemi, L.; Shahabi, C. GeoCrowd: Enabling query answering with spatial crowdsourcing. In Proceedings of the 20th Interna-
tional Conference on Advances in Geographic Information Systems, Redondo Beach, CA, USA, 6–9 November 2012.

38. Deng, D.x.; Shahabi, C.; Zhu, L.H. Task matching and scheduling for multiple workers in spatial crowdsourcing. In Proceedings
of the 23rd SIGSPATIAL International Conference, Seattle, WA, USA, 3–6 November 2015.

39. Lian, Q.; Wang, H.; Yuan, J.; Gao, N.; Hu, W.; University, H.E. UAV cluster collision avoidance based on particle swarm
optimization algorithm. Syst. Eng. Electron. 2019, 41, 2034–2040.

40. Zhan, Z.H.; Zhang, J.; Li, Y.; Chung, H.S.H. Adaptive Particle Swarm Optimization. IEEE Trans. Syst. Man Cybern. Part B 2009, 39,
1362–1381. [CrossRef] [PubMed]

41. Xiang, L.I.; Chen, J. A modified PSO Algorithm based on Cloud Theory for optimizing the Fuzzy PID controller. J. Phys. Conf. Ser.
2022, 2183, e012014.

42. Jie, Z.; Bishwajit, R.; Deepak, K.; Ahmed, S.M.; Danial, J.A.; Jian, Z.; Edy, T.M. Proposing several hybrid PSO-extreme learning
machine techniques to predict TBM performance. Eng. Comput. 2021, 2021, 1–17.

http://doi.org/10.1016/j.swevo.2018.01.011
http://doi.org/10.1016/j.cnsns.2012.03.015
http://doi.org/10.1109/CCDC.2014.6852369
http://doi.org/10.1109/4235.985692
http://doi.org/10.1109/TEVC.2004.826071
http://doi.org/10.1016/j.cor.2010.07.009
http://doi.org/10.1109/TSMCB.2009.2015956
http://www.ncbi.nlm.nih.gov/pubmed/19362911

	Introduction 
	Problem Definition 
	Algorithm 
	Calculate the Effective Interception Task Set 
	Finding Potential Interception Missions 
	Finding Extremely Effective Interception Task Set 

	Split the Set of Combat Units 
	Search 
	Particle Swarm Optimization 
	Variable Weight Nonlinear Factor PSO 
	Solution Steps Based on VWNF-PSO 


	Experimental Analysis 
	Small-Scale Experimental 
	Large-Scale Experimental 
	Data Analysis 

	Results 
	References

