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Abstract: This article presents a cloud-based method to classify 0-day attacks from a novel dataset
called UGRansome1819. The primary objective of the research is to classify potential unknown threats
using Machine Learning (ML) algorithms and cloud services. Our study contribution uses a novel
anomaly detection dataset that carries 0-day attacks to train and test ML algorithms using Amazon
Web Services such as S3 bucket and SageMaker. The proposed method used Ensemble Learning with
a Genetic Algorithm (GA) optimizer having three ML algorithms such as Naive Bayes (NB), Random
Forest (RF), and Support Vector Machine (SVM). These algorithms analyze the dataset by combining
each classifier and assessing the classification accuracy of 0-day threats. We have implemented
several metrics such as Accuracy, F1-Score, Confusion Matrix, Recall, and Precision to evaluate the
performance of the selected algorithms. We have then compared the UGRansome1819 performance
complexity with existing datasets using the same optimization settings. The RF implementation
(before and after optimization) remains constant on the UGRansome1819 that outperformed the
CAIDA and UNSWNB-15 datasets. The optimization technique only improved in Accuracy on the
UNSWNB-15 and CAIDA datasets but sufficient performance was achieved in terms of F1-Score with
UGRansome1819 using a multi-class classification scheme. The experimental results demonstrate
a UGRansome1819 classification ratio of 1% before and after optimization. When compared to the
UNSWNB-15 and CAIDA datasets, UGRansome1819 attains the highest accuracy value of 99.6% (prior
optimization). The Genetic Algorithm was used as a feature selector and dropped five attributes of the
UGRansome1819 causing a decrease in the computational time and over-fitting. The straightforward
way to improve the model performance to increase its accuracy after optimization is to add more
data samples to the training data. Doing so will add more details to the data and fine-tune the
model will result in a more accurate and optimized performance. The experiments demonstrate the
instability of single classifiers such as SVM and NB and suggest the proposed optimized validation
technique which can aggregate weak classifiers (e.g., SVM and NB) into an ensemble of the genetic
optimizer to enhance the classification performance. The UGRansome1819 model’s specificity and
sensitivity were estimated to be 100% with three predictors of threatening classes (Signature, Synthetic
Signature, and Anomaly). Lastly, the test classification accuracy of the SVM model improved by 6%
after optimization.

Keywords: UGRansome1819; zero-day attacks; cloud computing; machine learning

Electronics 2022, 11, 1749. https://doi.org/10.3390/electronics11111749 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11111749
https://doi.org/10.3390/electronics11111749
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0938-113X
https://orcid.org/0000-0002-3598-0921
https://orcid.org/0000-0001-8989-5004
https://orcid.org/0000-0002-7013-8924
https://doi.org/10.3390/electronics11111749
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11111749?type=check_update&version=2


Electronics 2022, 11, 1749 2 of 26

1. Introduction

Cloud computing and network services are rapidly growing in popularity nowadays.
Services and key operations of different businesses are migrating towards the cloud en-
vironment. Mobile computing, the Internet of Things (IoT), and emerging peer-to-peer
networks represent trending technologies that are transforming how we communicate.
Furthermore, the volume and diversity of unwanted traffic are also increasing [1]. Different
approaches are used by intruders, professional developers, and computer hackers to attack
cloud networking. The burden of identifying, managing, and safeguarding invasive traffic
is becoming more challenging and expensive as these networks attempt to comply with
organization-specific standards, quality regulations, and compliance obligations [2,3]. The
majority of the front-line tools in a secure network architecture consist of Uniform Resource
Locator (URL) filtering, firewalls, Intrusion Detection System (IDS), and access control.
With advanced network threats and novel intrusion strategies, it is difficult to protect rele-
vant data completely from attackers, Denial of Service (DoS) attacks, and data leakage [1–3].
In line with this, current research in the IDS field is aimed at improving AIDS using ML
techniques. Intrusion detection can be divided into the anomaly and signature-based
approaches. A signature-based approach is often used as a technique to detect misuse
based on pre-defined parameters [4,5]. The report provides detailed information about
predefined attacks and intrusions [6]. On the other hand, the anomaly detection method
begins by getting to learn from a normal model and searching for anomalous patterns
permitting the detection of unknown attacks [4,5]. The underpinning philosophy of the
anomaly method is to identify abnormal pattern behavior that is detected in the normal
model [2,5]. Cyclostationary threats being within the network traffic without the network
administrator’s awareness are generally known as a 0-day intrusion [7]. Various ML tactics
along with GA and Information Theory, are utilized to optimize and improve the detection
of network anomalies [2–4,8]. The AIDS assesses and analyzes network and host traffic:
In a Host-based Intrusion Detection System (HIDS) network features including system
or device logs are monitored [5], while the Network Intrusion Detection System (NIDS)
controls different types of traffic including Internet Protocol (IP) addresses, firewalls, logs,
and network ports [8,9]. The security setups will focus on the whole network to detect
various forms of abnormalities. Generally, enterprises use their cloud networks, scan
their architecture, and analyze intrusions to decide whether or not the traffic is normal or
malicious. This protection protocol is most useful in terms of securing cloud networks from
possible threats [10]. We have opted for a cloud-based ML optimization technique using a
novel AIDS dataset [7], which incorporates 14 attributes to achieve an efficient classification
accuracy from the range of 90% to 99%. The objective of this research is to categorize and
come across 0-day threats integrated into the UGRansome1819 dataset by using various
ML algorithms and two cloud services. The UGRansome1819 dataset has three predictive
classes of threatening behavior which include Anomaly (A), Synthetic Signature (SS), and
Signature (S) threats [7]. This dataset used the RF, NB, SVM, Ensemble Learning model,
and GA with a mixture of all the sub-cited ML algorithms to get the surest evaluation
results of the AIDS dataset. The interested reader should refer to Nkongolo et al. [7] for the
production methodology of the UGRansome1819 dataset. However, the feature selection
used in the construction of UGRansome1819 utilized Principal Component Analysis on the
UGR’16 and ransomware datasets to detect the most relevant features. Next, these features
were manually merged and combined using a fuzzy merging technique to build the final
dataset. The fuzzy merging is similar to an intuitionistic data fusion technique where data
retrieved from various sources are mixed to come up with one less redundant dataset.
Only the features that shared the same characteristics were combined and categorized into
normal and abnormal classes [7], but some updated and highly cited datasets features such
as CAIDA and Cambridge Lab were neglected. Choosing supervised algorithms for the
sake of anomaly detection needs strong justification. Because supervised algorithms have
better performance in terms of accuracy and a low rate of False Positive in detecting known
attacks rather than zero-day ones. Anomaly detection can be deployed with supervised
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ML models and automate the process of determining whether the data that is currently
being observed differs from typical data observed historically. This goes beyond the simple
threshold of data. Anomaly detection models can look across multiple sensor streams to
identify multi-dimensional patterns over time that are not typically seen. The supervised
learning model can recognize patterns in the dataset that indicate a high likelihood of 0-day
threatening behavior such as cyclostationarity. Anomaly detection models can also alert the
analyst to patterns that require closer investigation. This may force the engineer to perform
a sanity check on the network to detect the threats. In the most efficient implementation
with supervised learning, labeled anomalies are fed into the supervised learning model to
enhance and expand the predictive models. A threat with similar data patterns as labeled
anomalies might help in the detection of 0-day threats. Anomaly detection models coupled
with supervised learning learn efficiently from any dataset where each feature will have
its own normal or abnormal data patterns and it is still the gold standard of predictive
and classification experiments. So, anomaly detection is an important complement to
supervised learning. However, the challenges of labeling and collecting the necessary data
limit the construction of a robust solution based on supervised learning alone.

1.1. Research Question

The foremost research question may be stated as follows:

• Is there any classification performance difference in terms of optimization using the
UGRansome1819 dataset?

1.2. Aim and Objectives

The primary objective of the research is to detect potential 0-day (unknown) threats
using ML algorithms and cloud services. To obtain the favored outcomes, the research
study has the following targets:

1. Use SVM, NB, and RF classifiers to determine if the classifier’s assumptions are exact.
We have examined and trained those classifiers using SageMaker.

2. Compare the classifiers in terms of spotting 0-days threats and apply the GA on the
UGRansome1819 dataset to extract salient features.

3. Use the GA optimizer with each classifier to evaluate the improved performance.
4. Use Ensemble Learning to combine the results of classifiers and determine if this

method enhances the classification performance.
5. Lastly, compare the outcomes and the UGRansome1819 performance and complex-

ity with existing datasets with the same algorithms and optimization settings by
computing them on the CAIDA and UNSWNB-15 datasets.

Researchers in the IDS panorama are using legacy datasets that encompass obsolete
network threats that have changed and developed. As a result, cutting-edge NIDS cannot
discover novel network attacks. Additionally, 0-day threats datasets are not published to
investigate their behavior [7]. Hence, our study contribution is the use of a novel anomaly
detection dataset [7] that carries 0-day threats to train and test ML algorithms. We have
used two cloud services such as S3 bucket and SageMaker to achieve this goal. This article is
structured as follows: The research problem, aim, as well as research question was discussed
in Section 1. Section 2 will concentrate on the literature review. In Sections 3 and 4, the
research methodology and the proposed cloud optimization method are presented: we have
also introduced a schematic representation of the cloud optimization method and discussed
the computing environment that was utilized. Further, the results of the implementation
before and after optimization are illustrated in Section 5 and the discussion in Section 6.
Finally, the future works and conclusions are offered in Section 7.

2. Related Works

Daily, attackers update themselves as well as the technology they utilize to produce
new threats [11,12]. Under this assumption, IDS are being created at a growing rate to
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reinforce network systems to effectively combat evolved threats. Several studies have been
undertaken for this purpose, and novel studies are being carried out each day to optimize
the quality of the IDS. Intrusion is typically categorized as a form of incorrect motion that
involves damage to a network [11]. Thus, when the network security, confidentiality, and
accessibility of services are confronted; the event would be categorized as an intrusion.
Actions that make network services unusable to utilize for humans are also declared as
intrusion [11]. Signature-based IDS (SIDS) and AIDS are the two types of NIDS. The
SIDS makes use of pattern recognition strategies to understand common threats. Similar
strategies for SIDS can also discover the earlier threatening behavior. In some stages, an
alert message is activated on each intrusion when a signature of an intrusion resembles a
previous incursion that already existed within the signature database [13]. The literature
review consists of some research related to intrusion and anomaly detection and the usage
of datasets in the NIDS landscape. In Divekar et al. [14], a study was carried out on the
usage of benchmarking datasets for AIDS using the KDD CUP 99 dataset and its contrast
performance is discussed. While tested with K-Means, NB, RF, Decision Tree (DT), SVM,
and Neural Networks (NN) or using the SMOTE oversampling approach and random
below sampling, it was proved that unbalanced centered training in KDD-99 and NSL-KDD
avoid the effectiveness of classifiers on minority intrusion (User to Root and Root to Local
attacks), probably posing security troubles. The UNSW-NB15 dataset was investigated
to overcome patterns dispersion limitations of the KDD-99, when equating the overall
results of minority classes in the corpus after and before SMOTE oversampling, the research
reveals that for binary classification, a sufficient performance was achieved in terms of F1-
Score with the UNSW-NB15 dataset that is similar to the NSL-KDD and KDD-99 datasets,
and Divekar et al. [14] presented the UNSW-NB15 as a palliative for legacy datasets.
A thorough analysis of IDS was made by Ring et al. [15], the robustness of NIDS had
been tested to evaluate the usability of datasets. The dataset from the Defense Advanced
Research Projects Agency (DARPA) has been used for studies purposes over the past years.
This is a four-gigabyte collection transformed into binary and containing simulated data
packets with seven million network patterns [16]. However, the dataset is out of date.
The KDD99 dataset is constituted of forty-nine million hyperlink characteristics having
forty-one parameters, and it is been acquired from the DARPA98 dataset. Such features
have been categorized as either network data vulnerabilities or in any other case. The
DARPA dataset has analytical problems, making it unable to correctly discover malware
with excessive precision. The Network Security area became advocated to assemble the
NSL-KDD dataset as an upgraded model of the DARPA and KDD99 datasets because
of various drawbacks. When compared to the KDD98, KDD99, NSL-KDD, and DARPA
datasets, the NSL-KDD dataset attains fewer redundancy [10]. Over the last few years,
researchers have proposed different AIDS solutions including fog and parallel computing
amongst many others. AIDS has been utilized in a wide range of fields, not just in Network
Security, but also in Network Traffic Management [17–19]. Extensive research showcasing
novel anomalous intrusion is presented by Yu et al. [20].

2.1. Anomaly Intrusion Detection System (AIDS)

The key to AIDS has been the ability to discover 0-day threats. Whenever the examined
traffic varies from ordinary, the AIDS will send out an alert message. AIDS offers several
advantages. To start with, if the computer system has been attacked, this will raise an
alarm if such a threat seems to be identifiable [21]. Furthermore, there are many principal
advantages of using AIDS that help protect the network from potential cyber-attacks. It
can supply an intrusion signature [22] that facilitates the recognition of network attacks.
Lawal et al. [22] used a unique hybrid anomaly method based on fog computing for IoT
networks. The anomaly and signature-based detection approach was used. The paper fur-
nished a comparative analysis of anomaly detection solutions within the IoT. Shapoorifard
and Shamsinejad [23] reported anomalies or undesirable entry in the IoT object that process
data. In Software-Defined Networking (SDN), numerous approaches had been used to
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perceive network attacks. The two critical standards to discover intrusions are a deviation
from ordinary network traffic in addition to a low or high traffic flow [7]. Normally, IDS
continuously analyzes network traffic or time-series data and becomes computationally
expensive. With the advent of 5G, the accuracy of network attacks detection has become a
serious concern. SDN centralized networks and allows the examination of their traffic. As,
such, the time complexity for processing data in SDN has to be considered due to the delay
that could affect the execution time.

2.2. UGRansome1819 Dataset

This dataset is created by getting critical features of the UGR’16 and ransomware
datasets [7,24]. It is an anomaly detection dataset that consists of both normal and anoma-
lous network activities. The regular characteristic collection makes up 41% of the dataset,
while irregularity makes up 44% and the prediction is 15%. The dataset has been made
publicly available in [7]. Regular class threats such as User Datagram Protocol (UDP)
Scan and Bonet provide approximately 9% as well as anomalous category threats [7]. IP
addresses represent only 18% of the dataset with 19% of connection signals. A percent-
age distinction exists between network protocol (14%) and seed or expended addresses
(16%) [7]. According to Nkongolo et al. [7], a substantial proportion of the dataset can be
categorized by the following factors:

• The Transmission Control Protocol (TCP) carries the most characteristics in terms of
network protocols (92,157).

• The AF flag has the most features (72,814).
• Locky has the most features in terms of ransomware family (33,870).
• Addressing of class 1DA11mPS has the most properties (82,048).
• In comparison to classes B, A, and D, class C of IP addresses has much more character-

istics (95,508).
• The Secure Shell (SSH) threat has the most attributes (34,972) compared to UDP Scan,

Blacklisted, Spamming, DoS, Scan, and Bonet threats.
• The Signature (S) threat category has by far the most properties compared to the

Synthetic Signature (SS), and Anomaly (A) threats predictions.

All feature attributes of the UGRansome1819 can be summed up into the following
prediction categories [7]:

1. The A category represents unknown threats without signature keys. This prediction
includes the most 0-day threats.

2. The SS category includes unknown and known threats with and without signature
keys. This prediction exhibits both, regularity and irregularity.

3. The S category depicts well-known threats with updated signature keys. This predic-
tion portrays regularity or normality.

2.3. Support Vector Machine Algorithm

The SVM utilizes a multi-dimensional space configuration to stratify one category from
the other [25]. It is a technique that uses a kernel as a function that can be polynomial, radial
basis, linear, or other. The SVM properties determine a hyperplane given in Equation (1).
This function maps the original input space in a new space with a precise classification
rate and accurately distinguishes two categories with a maximum margin. That said, the
performance of SVM is determined by the type of function its kernel utilizes:

g(x) = WTx + b. (1)

Computationally speaking, xi is a set of data points belonging to a binary category.
The separability of observations from the hyperplane is equivalent to Equation (2):

g(x)
||w|| . (2)
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SVM attempts to discover the weights w and bias b, for inputs g(x) = 1 given the
nearest xi from the binary category. This can be represented by the following margin given
in Equation (3):

1
||w|| +

1
||w|| =

2
||w|| . (3)

This algorithm has been utilized by Dong [26] to resolve the multi-class classification
problem for Network Traffic Management. However, the RF, NB, GA, and Ensemble
Learning algorithms were not used to reduce the computational time and enhance the
classification accuracy to resolve the imbalance issue when compared to the SVM.

2.4. Naive Bayes Algorithm

The NB uses Bayes’ theorem and posits “naive” independence between features given
a specific dataset. X is a set with n features to be stratified. This can be mathematically
written by using a vector X = (x1, . . . , xn). This algorithm implements the following
probability (P) computation to specify the category Ck given x:

P(Ck|X) =
P(X|Ck)P(Ck)

P(X)
, (4)

The following equation is used to assign the class for X:

y = P(Ck)
n

∑
i=1

P(Xi|Ck) (5)

where the predicted label is denoted by y and the probability by P. The NB algorithm was
used with Laplace smoothing to help tackle the problem of zero probability. While testing
the NB algorithm, the ML model could face a new observation x̂ for which it was not
trained on. Then, P would be null for x̂ representing a specific data point. The Laplace
smoothing is then used to solve this problem by ensuring that P will never be zero for x̂. It
uses a smoothing parameter α that is not equal to zero:

P(Ck|x̂) =
∑K

k=1 x̂k ∗ yk + α

N + α ∗ K
, (6)

K represents the number of features in the dataset and N is the number of observations
on which the NB was trained. NB algorithm has been used by Guezzaz et al. [27] to
evaluate the probability of specific categories and enhance the classification model for the
Network Intrusion Detection Problem (NIDP). Nevertheless, in the worst-case scenario,
the training phase of the NB takes a similar amount of time as the testing phase [28] and
Guezzaz et al. [27] did not come up with an ensemble or optimization technique to improve
the classification model.

2.5. Random Forest

The RF is a classification tree and pattern recognition algorithm [29]. With RF, the
trees are grown adaptively to remove bias. The intuition in RF is to enhance the variance
by reducing the correlation between various trees, without increasing the variance. This
is computed in the tree-growing phase via random selection of the inputs (Algorithm 1).
RF was used by Disha and Waheed [30] for the NIDP. The algorithm creates a tree with
different training sets from a given dataset. The RF is used by Disha and Waheed [30] and
performed well on the UNSW-NB 15 dataset using Gini impurity as the splitting parameter
of trees that adjusted weights of the binary classification. The RF was then utilized to assess
features of the most significant relevance and did not have any problem with overfitting
or numeric variables [31]. However, the GA was not used to tackle the feature extraction
problem of imbalanced datasets.
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Algorithm 1 Random Forest Algorithm

Require: Features sampled fs
Ensure: b = 1 to B

Draw a bootstrap sample Z of size N from fs
Draw a Random Forest tree Tn to bootstrapped data
Recursively repeat the process for each node in Tn
Stop when the minimum size nmin is reached
while fs 6= 0 do

if N 6= 0 then
Select m variables at random from the p variables
Pick the best split point among the m . or pick the best variables
Split the node into two daughter nodes
Output the ensemble of trees TB

b
else if N > 0 then

Make a prediction at a new point x
Regression: f B

r f (x) = 1
B ∑B

b=1 Tb(x)
Classification: Let Cb(x) be the class prediction of the Random Forest tree
CB

r f (x) = Majority vote [CB
r f ]

B
1

2.6. Ensemble Model Technique

The merit of ML classifiers is to extract meaningful patterns from a given dataset.
The Ensemble Learning model of classification combines different classifiers and averages
the accuracy to provide a high classification rate having a low false classification ratio.
Ensembling refers to a particular method of training a model of weak classifiers. The model
classifiers are in the form:

FT(x) =
T

∑
t=1

ft(x), (7)

each ft is a weak classifier that takes an observation x as input and returns a value indicating
the class of the observation. The Tth sample classifier is positive if the sample is in a
positive cluster and negative otherwise. Each weak classifier produces an output h(xi) or a
hypothesis, for each sample in the training set. At each tth iteration, a weak classifier is
selected and assigned a coefficient αt such that the sum of the empirical or training error Et
of the resulting ensemble classifiers is optimized:

Et = ∑
i

E[Ft−1(xi) + αih(xi)], (8)

Ft−1(x) is the ensemble classifiers that have been built up to the previous stage of
training, E(F) is the error function and

ft(x) = αth(x), (9)

is the weak learner that is being considered for addition to the final classifier. Abu Al-
Haija and Al-Badawi [32] used an ensemble method on the NSL-KDD dataset in order
to implement a NIDS with quick model building time, minimal false positive rate, and
high classification accuracy [33]. However, the ensemble model was not used with GA to
produce a lower error and better accuracy rates.

2.7. Genetic Algorithm

The genetic optimization approach is a biologically inspired optimization paradigm
that utilizes evolutionary optimization techniques such as transmission, crossovers, and
variation [34]. The critical steps of the GA can be listed as follows [34]:

• Use the initial dataset (population) to search for a possible solution s. The algorithm
starts with a population that can be thought of as a set of individuals. Each individual
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represents a solution to the optimization problem. The solution is characterized by a
set of variables (parameters) called “genes” that are merged into a string to produce a
solution (chromosome). We have used ternary values (0, 1, and 2) to represent a set of
genes. This can be viewed as encoding genes into a chromosome.

• Calculate the fitness function. It determines how to fit a solution by comparing it to
other solutions and providing a fitness score for each solution. The probability that a
solution will be selected is based on the fitness score. The probability of selecting a
solution is denoted by P[s]. We posit that α and σ are constant:

P[s] = α + σs. (10)

• Selection. This phase selects the fittest solutions and lets them pass their genes to
the next iteration. This is like how it is the fittest individuals that pass their genes to
the next generation in Darwinism. The parents of individuals are selected using the
fitness scores. To be selected for reproduction, individuals should have high fitness. It
utilizes a probability distribution for selection where the given string should have a
selection probability proportional to its fitness. The mathematical formulation of the
selection process probability (Prob.) is:

s =
Prob ∗ [ f ittest string selection]

Prob ∗ [average string selection]
. (11)

• Compute the crossover process. A crossover point is selected for each pair of parents
to be mated. This is a random process within genes where offspring are created by
merging the parents’ genes among themselves to reach a crossover point and new
offspring are included in the population. Crossover replaces some parent’s genes by
corresponding them with the genes of other parents. If we have two strings x and y,
each having three variables:

(x1, x2, x3), (y1, y2, y3).

This represents possible solutions to the classification problem. Two cross-points are
randomly selected and a new possible solution is produced by merging the string of
the original parents. For example, the offspring solution would be

(x1, y2, y3), (y1, x2, x3).

• Implement the mutation process. Genes of offspring formed are subjected to a muta-
tion using a minimalistic random probability: String’s bits are flipped to maintain the
population diversity. The flip mutation selects random bits and flips them differently.
The bold indicates the permutation or the bytes that have been changed or flipped
during the process:

100101011←→ 110101001,

10 0 101011←→ 11 1 001011,

10 0 101011←→ 110001011.

When the population convergence is achieved, the GA terminates and provides a set
of solutions to the optimization problem.

As a result, the GA establishes a classification model using the aforementioned ap-
proaches to select appropriate variables for the detection and recognition of anomaly [35].
Additionally, the GA simplifies the process of feature selection by using tuning parameters
because high False Positive rates might bias the accuracy. Maseer et al. [25] analyzed past
AIDS studies that utilise NIDS datasets. The results of ML-AIDS algorithms in identifying net-
work threats are also provided. The algorithms present demerits in detecting novel and 0-day
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threats [31] for the multi-classification issue. To overcome this problem, Yihunie et al. [36]
provided a benchmarking approach that includes multiple classifiers using real datasets to
enable accurate evaluation of AIDS. The experiments reveal that a single ML algorithm cannot
detect all types of network attacks (known and unknown). Nevertheless, due to strong False
Negative and False Positive alerts, the NB-AIDS, KNN-AIDS, and DT-AIDS simulations
performed well but the EM-AIDS and SOM-AIDS algorithms perform badly.

2.8. Summary of Related Works

A comparative analysis of related works is given in Table 1 to summarise the literature
review. Most of the research papers discussed in the current literature [37–41] did not
solved the imbalance, optimization and multi-class issues.

Table 1. A Comparative Analysis of related Works.

Author Dataset Approach Limitations

[37] CAIDA SMO Anomaly detection

[38] CICIDS2017 Deep Neural Network IoT protection

[39] NF-BoT-IoT-v2 Random Forest Imbalance data

[40] UNSWNB-15 GWO Multi-classification

[41] WSN-DS KNN Optimization

The literature review describes major research for the NIDP and the most used re-
search methodologies such as Deep Neural Network, Random Forest, and clustering. The
limitations of the discussed research papers include the use of legacy datasets, as much
work has been conducted to detect and classify legacy network threats incorporated in these
datasets. As such, novel network attacks such as 0-day threats should be the focus of future
research work as suggested by Hindy et al. [10]. A similar recommendation is provided by
Nkongolo et al. [7] in terms of more AIDS research that will concentrate on 0-day threats
recognition and optimization. In this research, a comparison with other state-of-the-art
models is achieved. We have tabulated the results obtained using the UGRansome1819
by comparing its performance and complexity with existing models. We have used the
same algorithms (SVM, NB, and RF) with the optimization settings (Ensemble Learning
and Genetic Algorithm) and computed them on the CAIDA and UNSWNB-15 datasets.

3. Materials and Methods

Many researchers apply various ML algorithms on NIDS datasets to evaluate trained
algorithms, however, most of the time they do not succeed in accurately testing and
training these algorithms to reduce false alarms [42]. There are many reasons for this failure
such as data preprocessing, tuples selection, missing values occurrence, and anomaly
detection that affect the result of a classifier [34,42]. Selecting all features may also cause
a minimization in the assessment of a classifier because of overfitting problems [34]. ML
algorithms might also be computationally expensive and take more time to execute if there
are minimal features. To solve the execution and overfitting issues, it is crucial to select
relevant and important features attributes from the dataset for accurate evaluation [42,43].
Different methodologies such as variance Inflation Factor, Particle Swarm Optimization
(PSO), Stochastic Gradient Descent, and GA are utilized to extract and select important
features from a dataset [44]. In our research, a GA is used to extract eight important features
from the UGRansome1819 dataset.

3.1. The Proposed Model

The proposed methodology aims to optimize the classification of important features in
the UGRansome1819 using GA and Ensemble Learning (Figure 1). The optimization with
GA coupled with the DT is utilized as a feature selection that extracts relevant features from
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the UGRansome1819. The NB, SVM, and RF algorithms are then applied to the dataset
but assessed through the Recall, Accuracy, Confusion Matrix, and Precision evaluation
metrics (Figure 1). These ML classifiers are also computed on the same dataset using the
Ensemble Learning technique (Figure 1). The stacking Ensemble Learning technique is
applied to the SVM, RF, and NB classifiers. The RF and SVM classifiers are utilized as
member models while the NB has been used as the base model. In turn, the GA is then
executed on the dataset to extract relevant features. After this feature extraction process,
all the three selected ML classifiers along with the Ensemble Learning model are again
evaluated and trained on the newly optimized feature set. The classification results of the
ML algorithms are compared and assessed with each other. The UGRansome1819 dataset
is subdivided into three classes used for prediction: S, A, and SS. Similarly, these classes
include 16 attacks that represent abnormality of 0-day threats: Globe, SamSam, Flyper,
DMALocker, NoobCrypt, CryptoLocker, CryptoLocker2015, CryptXXX, Cryptohitman,
JigSaw, EDA2, Globev3, TowerWeb, APT, WannaCry, and Locky. Instances of normality
correspond to nine well-known threats such as Bonet, DoS, Spam, SSH, Scan, Blacklist, Port
Scanning, Nerisbonet, and UDP Scan [7].

Figure 1. Proposed Methodology.

3.2. Data Pre-Processing

We have used the multi-class classification model to pre-process the UGRansome1819
CSV file with the Python programming language that was utilized for the implementation
of SageMaker and S3 bucket. The first service enabled the implementation of ML in the
cloud while the second assisted in storing the dataset in a cloud database. To simplify the
pre-processing, each categorical feature was converted to numeric.

3.3. Specifications of Software and Hardware

The implementation of the ML classifiers is performed on the cloud using SageMaker
with a laptop having the Linux Operating System (OS) installed. The specification of the
employed computational environment is mentioned in Table 2.

The Python programming language is utilized to code the ML classifiers. It is widely
utilized to classify, predict, and analyze quantitative and qualitative data. The predictive
models are implemented with Seaborn, NumPy, Pandas, Sklearn, and Matplotlib libraries.
The three selected classifiers are computed on the same dataset before and after GA.

3.4. Cloud Services

The Amazon Web Service (AWS) SageMaker is used as a cloud ML framework
that assists in training, designing, executing, and optimizing ML classifiers as described
by Zhang et al. [45]. The advantages of utilizing AWS SageMaker are as follows [45]:
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(i) Data protection, (ii) fast and adaptable training, and (iii) continuous and enhanced
operating process.

Table 2. The Computing Environment.

Component Specification

Dataset UGRansome1819

Processor 2.60 GHz and 2.59 GHz

System Type 64-bit

Programming Language Python

CPU Intel (R) Core (TM) i7-10 750

OS Debian 11

Optimization GA and Ensemble Learning

Cloud Services S3 bucket and SageMaker

RAM 40 GB

4. Implementation

The suggested cloud-based optimization method execution has been supplied in
Figure 2. Implementation for this research requires the Amazon Web Services (AWS) which
provides various technologies for distributed services [46]. One of these services is the S3
bucket which supports object storage via an interface. The Amazon S3 bucket uses the same
storage environment that Amazon.com utilizes to run its e-commerce infrastructure [46].
The Amazon S3 URL was used to store, archive, and backup the UGRansome1819 for
cloud analytics (Figure 2). The AWS SageMaker assisted in building, preparing, deploying,
and training the three ML algorithms [46]. We have used the UGRansome1819 dataset
to compare the performance of selected classifiers that detect 0-days threats. This article
offers a multi-class model approach that utilizes an optimization algorithm named GA and
Ensemble Learning to discover 0-day threats from the dataset with the combination of the
three algorithms. The features in the UGRansome1819 dataset have been normalized to
make it more balanced in terms of normal and anomalous data [47]. The UGRansome1819
has been limited to 207,533 observations or tuples with 14 attributes or columns subdivided
into 80% of training data with 20% of testing data.

Figure 2. The Cloud Based Optimisation Method Execution.
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4.1. The UGRansome1819 Dataset

Figure 3 represents the class labels of the prediction column in the dataset [7].

Figure 3. The Prediction Class Labels.

The ratio of the three-class labels is 56,598 counts for Anomaly, 91,360 for Signature,
and 59,575 for Synthetic Signature attacks (Figure 3). This dataset is obtained from [7]
and contains 0-day threats for AIDS. The 207,533 tuples with 14 attributes are depicted
in Figure 4. The UGRansome1819 consists of both numeric and textual data: Six features
are numeric while the remaining eight features are categorical. Various features such as
Prediction, Port, Threats, IP address, Netflow, Dollars (USD), Bitcoins (BTC), Expended
address, Seed address, Clusters, Ransomware Family, Flag, Protocol, and Timestamp are
recorded. The prediction column representing the three-class labels (A, S, and SS) is
illustrated in Figure 3. S stands for Signature, A for Anomaly, and SS stands for Synthetic
Signature in the dataset (the last columns in Figure 4). All patterns categories of the
UGRansome have been stratified as follows:

Figure 4. The Dataset Description.

1. The category of Synthetic and Signature malware (SS). It represents characteristics
of well-known as well as unknown attacks. This category exhibits both, normality
and abnormality.

2. The category of Signature malware (S). It depicts well-known malware having avail-
able keys that have been released and updated regularly. The signature category
portrays normality.
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3. The category of anomaly malware (A). It is a set of unknown malware for which
signatures or keys do not yet exist. Abnormality is illustrated by this category.

Structure of the Dataset

The timestamp is just a numerical value expressing the time spent by the threaten-
ing behavior [48], the network protocol is a categorical communication protocol such as
TCP or Internet Control Message Protocol (ICMP) [49]. The network flag is a categorical
representation of the network status (for instance, APSF) [7]. The ransomware family is
the column containing the ransomware-type (e.g., EDA2, Flyper, and WannaCry) [24], it is
a categorical column (Figure 4). Every network threat is allocated to a numerical cluster,
which is a numerical feature. The seed (1AEoiHYZ) and extended (1SYSTEMQ) addresses
were converted during the features normalization phase; it is a categorical column that is
used for malicious activities (receive and transfer BTC or USD) [24]. The financial damage
caused by network threats is quantified in USD and BTC [24]. The network flow (Net-
flow) is a numerical representation of the network traffic where the threatening behavior
occurred [7,50]. The victimized host computer is represented by a unique categorical IP
address. It was a normal address such as 198.169.18.19 that was obfuscated into classes A,
B, C, and D for privacy reasons [7]. Network threats are categorical attributes such as Bonet,
DoS, UDP Scan, SSH, and Spamming. The network port is numerical: It is the port number
used by a threatening behavior. The prediction is categorical: It denotes the stratification
scheme that the ML algorithm will utilize to predict features into A, S, and SS [7]. The
construction methodology of the UGRansome1819 is discussed by Nkongolo et al. [7]. The
data structure of the UGRansome1819 is presented in Table 3.

Table 3. The UGRansome1819 Data Structure.

Abnormal Threats Example Prediction Total

DMALocker Port Scanning Anomaly 12,371

Globe UDP Scan Anomaly 13,200

CryptoLocker Types Blacklist Signature 20,527

JigSaw Scan Anomaly 17,544

SamSam Spam Anomaly 28,597

TowerWeb Spam Anomaly 7353

Flyper Nerisbonet Synthetic Signature 14,352

WannaCry Bonet Synthetic Signature 22,931

APT DoS Synthetic Signature 15,363

Locky DoS Synthetic Signature 33,870

Razy Scan Anomaly 12,535

EDA2 Blacklist Signature 8744

Globev3 Spam Anomaly 146

4.2. Pre-Processing

Data preprocessing plays a crucial role in ML classification. If the dataset is not
well processed the classifier may not correctly work as expected [51]. It might be due to
tuples that have missing values, outliers, and inconsistency. Therefore, it is also crucial
to pre-process the dataset to make it suitable for ML computation [34,51]. There are no
missing values in the UGRansome1819 dataset and all categorical features are translated
to a numerical form using the Python label encoder function. This function assigns a
numerical value to each category starting from zero. For instance, the prediction class
labels having three distinct category (A, S, and SS) is transformed by the label encoder: 2
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is assigned to SS, 1 to S, and 0 to A. All the categorical features presented in Figure 4 are
similarly transformed into a numerical form. The new pre-processed UGRansome1819
contains only numerical features and is recorded for further AIDS research (Figure 5).

Figure 5. The Numerical Format of the Dataset.

4.3. Evaluation of the Machine Learning Method

To quantify the performance of the ML, data scientists train a predictive model on
a specific amount of data [52]. The training requires feeding the features set with class
label results to the ML classifier [4]. The model is assessed after training by using the
holdout feature without the class labels results to predict the new output. Generally, the
evaluation metrics of the ML classifier compare the actual class labels with the predicted
class label result and quantitatively evaluate the ML predictive model [4,34,53]. In this
research, five evaluation metrics are used: Confusion Matrix, Accuracy, Recall, Precision,
and F1-Score. TP is the True Positive representing an outcome where the model correctly
predicts the positive class. FP is the False Positive representing an outcome where the
model incorrectly predicts the positive class. It is also named type-1 error [43]. FN is the
False Negative representing an outcome where the model incorrectly predicts the negative
class. It is also named type-2 error. TN is the True Negative representing an outcome where
the model correctly predicts the negative class. The Precision refers to correctly predicted
positive observations [43]. The Recall value specifies the percentage of some class correctly
identified from all of the given examples [54]. The Accuracy represents the proportion
of correct predictions in all predictions made [43,54]. It is a measure of the performance
of our ML model. The F1-Score is the mean of Recall and Precision. The mathematical
formulations of evaluation metrics are presented in Table 4. The Confusion Matrix is a n*n
table that allows visualization of the performance of an algorithm where the matrix row
represents instances in an actual class and each matrix column represents instances in a
predicted class [4,55]. It calculates the evaluation metrics such as Accuracy, Precision, and
Recall (Figure 6). In Figure 6, FN and FP represent misclassified data while TP and TN
represent accurate classification [7].

Table 4. The evaluation metrics.

Accuracy Precision Recall F1-Score

A = TP+TN
TP+TN+FP+FN P = TP

TP+FP R = TP
TP+FN F = 2∗P∗R

P+R

Figure 6. The Confusion Matrix.
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5. Results
5.1. Classification

We present the results of the classification model before and after optimization. Before
the optimization, the selected ML classifiers are computed individually with the stacking
ensemble technique, and their performance is assessed. For all classifiers, the UGRan-
some1819 is divided into equal ratios of 80% and 20%. Each algorithm is trained with
80% of the dataset and tested on the remaining 20%. The evaluation metrics discussed in
Section 4 are assessed for each ML classifier.

5.2. Without Optimisation

The SVM is applied on the UGRansome1819 to predict the most dominant class
label. However, it did not obtain satisfying results. The SVM algorithm achieved 67.7% of
Accuracy. The specification of the SVM is depicted in Table 5.

Table 5. The Specification of the SVM.

Parameter Shape

Test set 20%

Random state 42

Train set 80%

Algorithm Linear SVC

The SVM model accuracy is presented in Figure 7.

Figure 7. The SVM Classifier Prior Optimization.

The algorithm is trained by feeding the features with the class label output. After
this training, the testing data are provided to the SVM model without the class labels
output. The classifier predicts the class labels output for the testing data in this manner. A
comparison of the predicted data with the actual class labels output of the testing dataset is
then evaluated. The Figure 7 portrays the SVM accuracy rate without optimization. This
figure portrays the observed instability of the SVM classifier. The classification could not
demonstrate stable predictions of a single classifier using SVM. An optimized validation
technique will aggregate the weak classifier (SVM) into an ensemble and genetic optimizer
to improve the performance. The NB algorithm outperformed the SVM and achieved an
accuracy of 71%. Table 6 illustrates the NB specification model.
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Table 6. The Specifications Model of NB.

Parameter Shape

Test set 20%

Random state 42

Train set 80%

Algorithm Gaussian NB

The same dataset is used to train and test the NB algorithm. Similarly, the evaluation
metrics values obtained are not impressive. Figure 8 presents the accuracy ratio of the NB.
This figure confirms that the Laplace smoothing help tackles the problem of zero probability
and can be used to enhance single classification. The Laplace smoothing improved the NB
performance compared to SVM by optimizing the classification probability. The optimized
validation technique that aggregates the weak classifiers into an ensemble and genetic
optimizer to improve the performance will include both SVM and NB.

Figure 8. The Naive Bayes Evaluation Metrics.

The RF uses Ensemble Learning to combine multiple algorithms and enhance the
classification model [56]. In the enhancement of Accuracy and the other evaluation metrics,
the number of trees plays a crucial role [56]. The higher the number of trees, the better
the optimal values of assessment metrics can be obtained. We have used the Confusion
Matrix to obtain the presented results. However, the stability of the model improvement
was achieved only with 100 trees. It was useful to use this number during the training
phase. If this number increased; the evaluation metrics values also improved. Details of the
RF specification are shown in Table 7.

Table 7. Specifications Model of RF.

Parameter Shape

Test set 20%

Random state 42

Train set 80%

Algorithm RF

Trees 100
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Figure 9 shows the evaluation metrics of the RF classifier. We have trained this model
to compare results obtained by Nkongolo et al. [7] who achieved a similar Accuracy rate
using RStudio. Our RF model achieved an Accuracy of 99% as also with the ensemble
model. Figure 9 represents the accuracy ratio of the RF algorithm. The random state
in the ensemble model technique is 42. This number has been utilized to configure the
core random numbers generator, that controls the division of the UGRansome1819 into
testing and training sets. The test classification accuracy of the RF model was 99.6%
(before optimization). An improvement was not obtained after optimization because the
classification accuracy remained 99.5%. The sensitivity and specificity reached 100%. The
three most important predictors of 0-day threats were the Signature, Synthetic Signature,
and Anomaly category of threatening behavior. The Table 8 illustrates the ensemble
specification model.

Figure 9. The Random Forest Classifier Model Performance.

Table 8. Ensemble Model Specifications.

Parameter Shape

Test set 20%

Base model NB

Train set 80%

Random state 42

Member model 1 SVM

Member model 2 RF

Algorithm Stacking

This model produces impressive results when the members and base models such as
SVM and NB do not have substantial results (Figures 7 and 8). The outcome of ensemble
learning produces an efficient classification with a combination of weak classifiers such
as SVM and NB. As a result, the model classification improved by achieving 100% of
Precision and F1-Score with 99% of Recall and Accuracy. In this research, the RF algorithm
performance was impressive and achieved sufficient results as in [7] and the Ensemble
Learning also attained almost similar results. Figure 10 shows the accuracy ratio of the
Ensemble Learning. Figure 10 has the overall results of the three selected ML classifiers
using Ensemble Learning. All four evaluation metrics of all algorithms are illustrated. The
figure shows a maximal Precision value of all three classifiers among the metrics.
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Figure 10. The Ensemble Learning Evaluation Metrics.

Overall, the SVM and NB classifier does not perform very well. Ensemble Learning
and RF have almost the same performance. A GA is an optimization technique used
to extract relevant information from the UGRansome1819 dataset. It is a search-based
algorithm that used the concept of genetics and natural selection [34]. In a GA, all possible
solutions represent a population subset while a single possible solution to a problem is a
chromosome. The key factor of a GA is the fitness function that collects the input features
and generates possible output or solution for a given classification problem. In this research,
the GA is coded to retrieve the top eight attributes (columns) from the UGRansome1819
(Figure 11). The critical steps of the GA can be listed as follows [34]:

• Use the initial dataset (population) to search
• Calculate the fitness function
• Assess the efficiency of a candidate solution using the fitness function
• Compute the crossover process
• Implement the mutation process

Figure 11. The GA Specification. The verbose is used to produce logging information details and the
tournament to select individual attributes from a population dataset. The tournament is executed
three times and the winner of each tournament having the best fitness is selected.

The algorithm extracted the eight attributes namely, “Flag”, “Timestamp”, “Ran-
somware Family”, “USD”, “IP address”, “Network Flow”, clusters, and “Port number”.
The three ML classifiers along with the Ensemble Learning are again computed to the
newly pre-processed UGRansome1819. The normalized dataset consists of all tuples as
the original dataset, however, the 14 attributes have been reduced to nine. Dropping five
attributes caused a decrease in the computational time and the over-fitting chances are
also minimized because the UGRansome1819 has been reduced. If a model performance
remains the same, then it is important to re-optimize the dataset as this will reduce over-
fitting as well computational time. However, when a dataset is unbiased with a standard
deviation approaching one or a mean of all columns within a common range; it is not a
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good option to apply feature extraction. In the UGRansome1819, the standard deviation
(std) ranges from two to 26,435 and the mean from two to 14,179 (Figure 12).

Figure 12. The Standard Deviation and the Mean of the UGRansome1819 Dataset.

It was important to normalize UGRansome1819 and optimize it using a GA. The GA
shown in Figure 13 has been applied in the optimization of selected ML algorithms and it
is posited that this will increase the chances of improving the classification accuracy rate.

Figure 13. Genetic Algorithm Implementation Improving Classification.

5.3. With Optimization

Figure 14 shows evaluation metrics of the SVM algorithm after optimization. The
SVM has an improved Accuracy of 72.4% which was 66% before optimization. The test
classification accuracy of the SVM model improved by 6%. The NB classifier is applied to the
pre-processed dataset. This algorithm performed well by improving the computational time
with reduced features, the model has similar results as to prior the optimization. It is then a
best practice to utilize the pre-processed dataset as it will optimize the computational time
of the classifier. The Figure 15 mimics a decrease of one percent in the accuracy ratio of the
NB classifier with optimization. The test classification accuracy of the NB model decreased
by 1% after optimization. The straightforward way to improve the NB performance to
increase its accuracy after optimization is to add more data samples to the training data.
Doing so will add more details to the data and fine-tune the model can result in a more
accurate and optimized performance. The RF outperformed all the ML classifiers used in
this research. It achieved optimal accuracy before and after optimization. Almost similar
results have been obtained without and with optimization. As such, the optimization of the
RF classifier is also suitable as it minimizes the computational time and reduces overfitting
chances. Figure 16 portrays the evaluation metrics of the RF classifier after optimization.
It depicts an Accuracy of 99% with optimization. The test classification accuracy of the
RF model did not improve (99.5% after optimization and 99.6% before optimization). The
closer the decision is to the leave, the more noise we have in the decision. The entire dataset
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is taken from the top to the bottom and divided into two parts. In the end, the training
sample will only include a few samples. Pruning was performed to avoid the model from
overfitting the data. This figure shows that pruning provides a more compact tree and a
better model in terms of accuracy (before and after optimization). Figure 17 illustrates the
evaluation metrics of the Ensemble Learning, it is an accuracy ratio of 98% of ensembling
with an optimization that has been presented.

Figure 14. The SVM Classifier Performance After Optimization.

Figure 15. Naive Bayes Algorithm Performance After Optimization.

The same members and base models (SVM and NB) are used in the optimized valida-
tion model. The predictive capability of ensembling after optimization decreased by 1% for
the Precision and F1-Score which was 100% before optimization. The Recall value remains
at 99% (before and after optimization) while the Accuracy also decreased by 1% which was
99% before optimization. This result proves that the UGRansome1819 classification ratio
before and after optimization is 1%.
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Figure 16. Random Forest Algorithm Performance After Optimization.

Figure 17. Ensemble Learning After Optimization.

6. Discussion

The substantial overall results of the implementation come with optimization of GA:
99% of Accuracy is achieved by the RF model, Ensemble Learning 98.90%, NB 70.40%, and
SVM 72.40%. Before optimization, the RF reached a 99.60% of Accuracy, Ensemble Learning
99.60%, NB 71%, and SVM 66.4%. With this, the SVM classifier enhanced by six percent
reaching 72% of Accuracy but the Ensemble Learning, and NB reduced one percent of Ac-
curacy after optimization. The Recall, Precision, and F1-Score before and after optimization
are shown in Figures 18 and 19. According to Figures 18 and 19 which summarize the
evaluation results, it can be seen that the optimization part of the UGRansome1819 model
has a slight improvement in the model performance. All metrics remain almost the same.

The CAIDA and UNSWNB-15 datasets’ performance are compared to the UGRan-
some1819 with SVM, NB, and RF using the same optimization settings. The model’s
accuracy is presented in Table 9 before optimization. The UGRansome1819 outperformed
the CAIDA and UNSWNB-15 datasets in terms of accuracy values (Figure 20). The model’s
accuracy is also illustrated with optimization in Table 10. It can be observed that the
optimization improved in Accuracy on the CAIDA and UNSWNB-15 datasets (Figure 21).
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Figure 18. The Classification Results After Optimization.

Figure 19. The Classification Results Prior Optimization.

Figure 20. Comparing the UGRansome1819’s Accuracy to existing datasets (before optimization).
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Table 9. Comparing the UGRansome1819’s Accuracy Prior Optimization.

Dataset RF NB SVM Ensemble

CAIDA 85% 61.8% 63.2% 88%

UNSWNB-15 80% 70% 62.4% 88.2%

UGRansome1819 99.6% 71% 67% 99.6%

Table 10. Comparing the UGRansome1819’s Accuracy After Optimization.

Dataset RF NB SVM Ensemble

CAIDA 95.6% 71.2% 73.7% 92.5%

UNSWNB-15 90.3% 75.1% 72.4% 84%

UGRansome1819 99% 70.4% 72.4% 99%

Figure 21. The UGRansome1819’s Accuracy compared to existing datasets (after optimization).

7. Conclusions

We have analyzed the classification of 0-days threats and anomalous intrusion using a
novel AIDS dataset with cloud services. This research indicates that the UGRansome1819
dataset uses a multi-class prediction space. Relevant features are detected using this dataset
and three ML algorithms are computed before and after optimization of the GA. The
Ensemble Learning analyzed the overall performance of 0-day threats detection. Accuracy,
F1-Score, Recall, and Precision values were used to evaluate the classification model of
the UGRansome1819. To compare results, the NB, RF, and SVM are used with GA after
optimization and Ensemble Learning before optimization to test and train the dataset
accordingly. A Genetic Optimizer with each selected ML classifier was utilized as a feature
extraction technique that used a Decision Tree classifier. Our research findings suggest
the optimization with RF and Ensemble Learning to obtain accurate classification rates
of 0-day threats. Additionally, the UGRansome1819 outperformed the UNSWNB-15 and
CAIDA datasets in terms of accuracy values. It was also observed that the optimization
technique improved in accuracy on the CAIDA and UNSWNB-15 datasets. The experiments
demonstrate the instability of single classifiers such as SVM and NB and suggest optimized
validation techniques which can aggregate weak classifiers into an ensemble of the genetic
optimizer to enhance the classification performance. The Laplace smoothing improved
the NB performance compared to SVM by optimizing the classification probability. The
UGRansome1819 model’s sensitivity and specificity were estimated to be 100% with three
predictors of 0-day threats as Signature, Synthetic Signature, and Anomaly. The results of
ensemble learning produce a strong classification by combining weak classifiers such as
SVM and NB. With this, the predictive capability of ensemble learning could be improved
by achieving 100% of Precision and F1-Score. The test classification accuracy of the SVM
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model after optimization improved by 6%. To improve the performance and increase
the accuracy, one should add more data samples to the training data and fine-tune the
model to obtain more accurate and optimized performance. Pruning was used to avoid
overfitting of data and provided a better model in terms of accuracy. Similar research
should be conducted on the UGRansome1819 dataset using Deep Learning and analyzing
the feature extraction to determine if Deep Learning also works on this dataset. One can
also attempt to enhance the SVM and NB Accuracy on the UGRansome1819 dataset and
plot the Receiver Operating Characteristic curves (ROC) for the models. It is always great
to have such graphs in the evaluation to quickly assess the classification quality of the ML
models. Lastly, unsupervised algorithms with specific feature selection methods such as
Boruta should be applied to the UGRansome1819 and compare the results with the current
research outcome.
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