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Abstract: Aggregate classification is the prerequisite for making concrete. Traditional aggregate
identification methods have the disadvantages of low accuracy and a slow speed. To solve these
problems, a miniature aggregate detection and classification model, based on the improved You
Only Look Once (YOLO) algorithm, named YOLOv5-ytiny is proposed in this study. Firstly, the C3
structure in YOLOv5 is replaced with our proposed CI structure. Then, the redundant part of the
Neck structure is pruned by us. Finally, the bounding box regression loss function GIoU is changed
to the CIoU function. The proposed YOLOv5-ytiny model was compared with other object detection
algorithms such as YOLOv4, YOLOv4-tiny, and SSD. The experimental results demonstrate that
the YOLOv5-ytiny model reaches 9.17 FPS, 60% higher than the original YOLOv5 algorithm, and
reaches 99.6% mAP (the mean average precision). Moreover, the YOLOv5-ytiny model has significant
speed advantages over CPU-only computer devices. This method can not only accurately identify
the aggregate but can also obtain the relative position of the aggregate, which can be effectively used
for aggregate detection.

Keywords: object detection; aggregate; YOLO; classification; computer vision

1. Introduction

Aggregate classification is an important factor for determining the performance and
quality of concrete. Concrete is composed of cement, sand, stones, and water. Aggregate
generally accounts for 70% to 80% of concrete [1]. Many factors affect the strength of
concrete, mainly including the cement strength and water–binder ratio, the aggregate
gradation and particle shape, the curing temperature and humidity, the curing age, etc. [2].
The aggregate processing system is one of the most important auxiliary production systems
used in the construction of large-scale water conservancy and hydropower projects [3].
Aggregate quality control is of great significance to promote the sound development of
the engineering construction industry [4], it is also extremely important for improving the
quality of a project and optimizing the cost of a project [5]. Different types of aggregate have
different effects on the performance of concrete [6]. Regarding the particle size and shape
of the aggregate, the current specifications for coarse aggregate needle-like particles are
relatively broad [7], and good-quality aggregate needs to have a standardized particle size
and shape [8]. Therefore, we must ensure the quality requirements of aggregate and select
raw materials are reasonable to ensure the quality of concrete. It is particularly important
to find a suitable aggregate classification and detection method.

In recent years, the level of aggregate classification and detection has greatly im-
proved [9], and there are now a variety of sand particle size measurement methods. These
include, for example, mesoscale modeling of concrete static and dynamic tensile fractures
for real shape aggregates [10], the development of a particle size and shape measurement
system for manufactured sand [11], the use of extreme gradient boosting-based pavement
aggregate shape classification [12], the use of the wire mesh method to sort aggregate
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gardens [13], a method for evaluating the strength of individual ballast aggregates by point
load testing and establishing a classification method [14], the determination of particle
size, and core and shell size determination of core–shell particle distribution by analytical
ultracentrifugation [15], the use of the projected area of the particle to calculate the surface
area, equivalent diameter, and sphericity [16], the use of imaging methods to obtain reli-
able particle size distribution [17], the use of a vibration dispersion system, feed blanking
system, and backlight image acquisition system to construct a particle size and shape
measurement device [18]. Isa et al. proposed an automatic intelligent aggregate classifi-
cation system combined with robot vision [19]. Sun et al. proposed a coarse aggregate
granularity classification method based on a deep residual network [20]. Moaveni et al.
developed a new segmentation technology that can capture images quickly and reliably to
analyze their size and shape [21]. Sinecen et al. established a laser-based aggregate shape
representation system [22], which classifies aggregate from the features extracted from the
created 3D images.

However, these screening methods can only measure the size of sand particles offline.
Although digital image processing methods use more mature technical means [23,24], the
research of these methods mainly focuses on the evaluation index of the shape characteris-
tics of the aggregate [25], which cannot achieve the efficient real-time detection of images.
In reality, with regards to the detection background of aggregate, the size of the detection
target, the day and night light, and the difference in detection distances, the transmission of
these detection targets to the processing side may cause different interferences. In this case,
it is necessary to first detect the target position and locate and frame the target to reduce
signal interference as much as possible, and, at the same time, detect target objects under
different characteristics. Therefore, the real-time detection of aggregate features under
complex backgrounds is of great significance.

In summary, this work brings the following main contributions:

• The design of a new type of aggregate detection and classification model, which
can accurately identify the types of aggregate under complex backgrounds, such as
different light, different distances, and different states of dry and wet aggregate.

• The improvement of YOLOv5, replacing the C3 module in the model backbone net-
work, tailoring the Neck structure, and realizing the compression of the model, so that
the model can be quickly detected on a computer that does not support GPU. The loss
function is improved making the object frame selection more accurate.

• In the original YOLOv5 model, the original three detection heads are simplified into
two, which is more suitable for the detection of a single target (only one target is
recognized in a picture), thus reducing the number of parameters and the number
of calculations.

2. Related Work

There are many mature target detection algorithms, such as YOLOv4 [26], SSD [27],
YOLOv4-tiny, and YOLOv5 [28]. Compared with these algorithms, YOLOv5 is lighter
and more portable. YOLOv5 uses a backbone feature extraction network, acquires the
depth features of the input image, uses feature fusion to further improve the effectiveness
of features, effectively frames the detection target, and improves the precision of target
detection [29]. At present, YOLO is also widely used as a popular target detection algorithm.
Yan et al. proposed a real-time apple targets for picking detection method robot based on
improved YOLOv5 [30]. Yao et al. proposed a ship detection method in optical remote
sensing images based on deep convolutional neural networks [31]. Gu et al. proposed
a YOLOv5-based method for the identification and analysis of emergency behavior of
caged laying ducks [32]. Zhu et al. proposed traffic sign recognition based on deep
learning [33]. Fan et al. proposed a strawberry ripeness recognition algorithm combining
dark channel enhancement and YOLOv5 [34]. A cost-performance evaluation of livestock
activity recognition services using aerial imagery was proposed by Lema et al. [35] Jhong
et al. proposed a night object detection system based on a lightweight and deep network of
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the internet of vehicles [36]. Wang et al. proposed a fast smoky vehicle detection method
based on improved YOLOv5 [37]. Wu et al. studied the application of YOLOv5 in the
detection of small targets in remote sensing images [38]. Song et al. proposed an improved
YOLOv5-based object detection method for grabbing robots [39].

Although YOLO v5 is much lighter than other object detection algorithms, the network
structure is complex, with many layers, a large number of nodes, and limited experimental
equipment. If it was running on one CPU, it would take longer during the actual training
and inference.

In order to solve these problems, this experiment established an aggregate classi-
fication detection model, YOLOv5-ytiny, based on YOLOv5 in a complex background,
compressing the YOLOv5 model, extracting complex detection background features in
different environments, improving the detection speed, and providing real-time judgment
of the classification of aggregate.

3. Materials and Methods
3.1. Data Collection and Processing

In this experiment, a high-definition camera is used to collect images, and the real-time
images obtained by the camera are transmitted to the client. The model classifies and
recognizes the acquired images, and then displays the results to the client. Figure 1 is a
schematic diagram of image acquisition.
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Figure 1. Image acquisition process: after the transport vehicle arrives, the aggregate image is
collected, and the model returns the result after processing.

When capturing images, the camera is fixed 2 m above the aggregate box. Consid-
ering that the distance between the car and the camera is within 1–2 m during actual
transportation, the effective detection distance we expect is also within 1–2 m. The image
collection is shot under natural light and night lighting. The shooting result is saved as a
1920 pixel × 1080 pixel RGB image. There are 4 types of aggregate, namely stones, small
stones, machine-made sand, and surface sand. The particle size of the stones is in the range
of 3–4 cm, the particle size of small stones is in the range of 2–3 cm, the particle size of
machine-made sand is in the range of 1–2 cm, the particle size of surface sand is in the
range of 0.1–0.5 cm. A total of 525 images in four types were taken, including different light
conditions, dry and wet aggregate, and different shooting distances.

Taking the stones in Figure 2a and the small stones in Figure 2b as examples, the
unit grayscale number of stones is distributed in the (130,180) pixel interval, and the
unit grayscale number of small stones is distributed in the (120,180) pixel interval. The
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grayscale distributions of these two types of aggregate have highly overlapping areas.
It may be difficult to segment an image based on gray threshold, and it can be seen in
Figure 3 that the stones and small stones are stacked. If an image is segmented using an
image-based grayscale threshold segmentation method, it may not be possible to segment
a single aggregate target because the grayscales connected to each other in the region are
the same, which may easily cause the targets to stick together. On the other hand, the
image of the aggregate with a short collection distance is clear, but the image is blurred
when the distance is farther, and it is difficult to perform image processing. Therefore, this
experiment uses the target detection algorithm YOLOv5 to extract the characteristics of
aggregate in different backgrounds to realize the type recognition of aggregate.
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In this experiment, a total of 525 images were obtained. They were of stones, small
stones, machine-made sand, and surface sand. In this experiment, the labels they delineated
are sz, xsz, jzs, ms. We use LabelImg to label images, and the smallest bounding rectangle of
the target was used as the real frame. In the final data set, 80% (420 sheets) were randomly
selected as the training set and 20% (105 sheets) as the test set.

The four types of aggregate show different shapes and colors due to different dry and
wet states and different brightness of light. The image collection environment was under
cloudy, sunny„ and night conditions. The aggregate states were dry, normal, and wet. The
collection distance was 1.5 m.

The computer used in the research institute is Intel(R) Core(TM) i5-8250U, 1.80 GHz
processor, running memory is 8 GB, storage memory is 512 GB, and the development
environment is python 3.6.
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3.2. Model Establishment and Experimental Process
Aggregate Classification Model Based on Improved YOLOv5

The technical route of the aggregate classification model is shown in Figure 4. The
artificially-labeled aggregate data are input into the YOLOv5 model for training and fine-
tuning, to realize the real-time recognition of the target. The improved YOLOv5-ytiny
model is used for the classification of aggregate under complex backgrounds based on the
YOLOv5 model. YOLOv5-ytiny replaces the C3 module of the backbone structure of the
network structure, cuts the Neck structure to achieve compression, reduces the network
prediction header, reduces the image size, and adjusts the network width. It simplifies the
structure and parameters of the model while ensuring precision.
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The YOLOv5 algorithm has four network structures, namely YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. These four network structures are different in width and depth,
but they are the same in principle. These four network structures can be flexibly selected
according to need. The greater the depth of the structure selection, the higher the precision,
but the training speed and inference speed also decrease. Aggregate is not a complex target.
We hope to increase the speed of reasoning. Therefore, the selected structure is YOLOv5s,
and improvements are made on this basis.

The YOLOv5 model mainly consists of the following five modules: (1) The Focus
module slices the input image, which can achieve the effect of down-sampling the image
without losing information. (2) The Conv module, three functions are encapsulated in this
basic convolution module, including convolution (Conv2d) layer, BN (Batch Normalization)
batch normalization layer, and SiLU (Swish) activation function, which realizes that the in-
put features are passed through the convolution layer and the activation function. Through
the normalization layer, the output layer is obtained. (3) The Bottleneck module, is mainly
used to reduce the number of parameters, thereby reducing the amount of calculation, and
after dimensionality reduction, data training and feature extraction can be performed more
effectively and intuitively. (4) The C3 module, in the new version of YOLOv5, the author
converts the Bottleneck CSP (bottleneck layer) module to the C3 module. Its structure and
function are the same as the CSP architecture, but the selection of the correction unit is
different. It contains three standard convolutional layers and multiple bottleneck modules.
(5) SPP module, spatial pyramid pooling. The main purpose of this module is to fuse more
features of different resolutions to obtain more information.
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3.3. YOLOv5-Ytiny

Although the established YOLOv5 model can realize the detection and classification
of aggregate, the structure and parameters of the model are still relatively large, and
the calculation takes a long time. On the other hand, the detection and classification of
aggregate are generally in the process of vehicle transportation, and the detection results
need to be displayed in real-time. Therefore, to improve the detection speed of the model
and reduce the amount of calculation, the model is optimized and compressed to form the
YOLOv5-ytiny model.

Replace the C3 module of YOLOv5 with the CI module. As shown in Figure 5, the
C3 module of YOLOv5 has a shortcut structure, which connects two adjacent layers of
networks, and there are n residual blocks. For aggregate targets, the data set belongs to
relatively simple target recognition. Multiple residual modules in the C3 module may be
a waste of resources. Thus, replace it with a CI module. The structure of CI is shown in
Figure 5.
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After the C3 module is replaced with the CI module, the corresponding network
structure in the original Backbone module and Neck module will also be changed. At the
same time, all the layers of the C3 module in the original model are changed to one layer
to reduce the overall depth of the network. In order to achieve model compression, after
replacing the C3 module, cut the Neck module to remove the relatively redundant part
of the network, and then delete part of the structure to reduce the depth of the network,
reduce the amount of model calculations. The modified Neck module is shown in Figure 6.
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There are three modules in the original YOLOv5 model, namely the Backbone module,
the Neck module, and the detection head. After replacing the C3 module with the CI
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module, in order to reduce the amount of calculation parameters, the detection head
was changed from three to two. The original Neck module is composed of multiple
convolutional layers (Conv), up-sampling, and tensor stitching (Concat). For a single
and simple target, only a part of the combination in the Neck layer may be good. The
original repeated multi-layer Neck structure may cause data redundancy, increase the
amount of calculation, so we tailor the Neck structure to compress the network. We use
fine-tuning-iterative training, a small number of times to cut the network structure, the
number of times of training, adjusting it by judging the convergence effect, and the final
network structure is shown in Figure 6. It can be seen that YOLOv5-ytiny eliminates part
of the repetitive hierarchy, retains the main network structure, and finally compresses it
into two detection heads.

3.4. Improvement of Loss Function

YOLOv5s uses GIoU Loss as the bounding box regression loss function to judge the
distance between the predicted box and the ground truth box. The formula is as follows.

IoU =
A ∩ B
A ∪ B

(1)

GIoU = IoU−Ac − u
Ac (2)

LGIoU = 1− GIoU (3)

In the above formula, A is the predicted box, B is the ground truth box, IoU represents
the intersection ratio of predicted box and ground truth box, Ac represents the intersection
of predicted box and ground truth box, u represents the smallest circumscribed rectangle of
predicted box and ground truth box, and LGIoU is the GIoU Loss.

The original YOLOv5 model uses GIoU Loss as a position loss function to evaluate
the distance between the predicted box and the ground truth box, but GIoU Loss cannot
solve the situation where the prediction frame is inside the target frame and the size of
the prediction frame is the same. In addition, the bounding box regression is not accurate
enough, the convergence speed is slow, and only the overlap area relationship is considered.
CIoU Loss takes into account the scale information of the aspect ratio of the bounding box,
and measures it from the three perspectives of overlapping area, center point distance, and
aspect ratio, which makes the prediction box regression more effective.

Lloc = 1− IoU(B, Bgt) +
d2

c2 + av (4)

a =
v

1− IoU + v
(5)

v =
4

π2 (arctan
wgt

hgt )− arctan
w
h
)2 (6)

In the above formula, w and h are the width and height of the prediction box, respec-
tively, and wgt and hgt are the width and height of the ground truth box.

Compared with the GIoU Loss used in YOLOv5s, CIoU Loss takes into account the
overlapping area, center point distance, and aspect ratio for measurement, so that the
network can ensure faster convergence of the prediction frame during training and obtain
higher regression positioning accuracy; this paper uses CIoU Loss as the loss function of
the aggregate classification detection model.

4. Experimental Results and Analysis
4.1. Experimental Results

The YOLOv5-ytiny model detects aggregate as shown in Figure 7. Taking small stones
as an example, they are tested at different distances, different illuminations, and different
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dry humidities of aggregate. It can be seen that Figure 7a–c are, respectively, the detection
results on cloudy days, sunny days, and at night at a distance of 1.5 m. Figure 7d–f
are the test results at distances of 1 m, 1.5 m, and 2 m, respectively. Figure 7g–i show
the identification of small stones under dry, normal, and wet conditions. The accurate
classification of aggregate under different backgrounds is realized. After verification, the
effective recognition range of the YOLOv5-ytiny model is between 1 m and 2 m.
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Figure 7. Small stones under different distances, light, and dry humidity. (a) is the small stones on a
cloudy day, (b) is the small stones on a sunny day, (c) is the small stones of the night, (d) is the small
stones at a distance of 1 meter, (e) is the small stones at a distance of 1.5 meters, (f) is the small stones
at a distance of 2 meters, (g) is the small stones in the dry state, (h) is the small stones in the normal
state, (i) is the small stones in the wet state.

Table 1 shows the confidence levels of the four types of aggregate under different
conditions. The inspection was carried out under different light conditions on sunny and
cloudy days, and at night, and at different distances, namely 1 m, 1.5 m, and 2 m. When
inspecting the aggregate, the dry and wet state of the aggregate was also different. Tests
were carried out in dry, normal, and wet conditions.

Table 1. Detection confidence in different sates.

Category
Confidence/%

State

Different Lighting Different Distance Different Wet And Dry

Cloudy Day Sunny Night 1 m 1.5 m 2 m Dry Normal Moist

Stones 92 96 94 94 96 68 96 95 95
Small stones 72 93 61 94 93 93 93 88 86

Machine-made sand 86 80 78 90 80 83 80 83 89
Surface sand 95 95 86 94 95 70 95 96 95

In total, there were 300 iterations of the YOLOv5 model and YOLOv5-ytiny respec-
tively. Figure 8 shows the change trend of the classification loss function. We can see
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that the original YOLOv5 loss function drops rapidly in the early stages of the iteration,
indicating that the model is quickly fitting. The convergence speed of YOLOv5-ytiny in the
early stage is slower than that of the original model. By 200 iterations, the loss values of the
two models are basically the same, indicating that the convergence effect of YOLOv5-ytiny
is good, and the learning efficiency of the model is high. As the iterations continue, about
140 times, the model loss value decreases slowly. When the iteration reaches 220 times, the
loss value fluctuates at 0.001 and the model reaches a stable state.
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Figure 8. Comparison of the epoch process of the two models. Note: the experiment mainly seeks to
compress the model and reduce the space occupied by the model, so it is normal to have a certain
impact on precision and function loss.

4.2. Evaluation and Analysis of Model Performance

This paper selects the commonly used evaluation indicators of the target detection
model: precision, recall, balanced F score (F1-score), mean average precision (mAP) and
FPS (frames per second) for three evaluations of the model with three indicators.

The formula is as follows
P =

TP
TP + FP

(7)

R =
TP

TP + FN
(8)

F1 − score = 2 ∗ P ∗ R
P + R

(9)

AP =
∑ P

Num(TotalObjects)
(10)

mAP =
∑ AP

N(class)
(11)

In the above formula, TP is the number of positive examples that are correctly classified.
FP is the number of positive examples that are incorrectly classified. FN is the number of
negative examples that are incorrectly classified, TN is the number of negative examples
that are correctly classified. AP is the average precision, mAP is the mean of each type of
AP. Num is the target number of each category. N is the total category.

4.3. Comparison with Original Model

The comparison of the evaluation indicators between the original YOLOv5 model
and the YOLOv5-ytiny model is shown in Figure 9. This shows the precision, recall, and
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F1-score of the YOLOv5-ytiny and the original model YOLOv5. The precision of the
YOLOv5-ytiny is 96.5%, which is 0.2% lower than the original model, the recall rate is
98.5%, 0.4% higher than the original YOLOv5 model, and the F1-score is 97.5%, which is
0.1% higher than the original model.
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Figure 9. Comparison of model evaluation indicators.

Below, the YOLOv5-ytiny model is compared with some parameters of the original
YOLOv5 model. As shown in Table 2, the total parameters of the YOLOv5-ytiny model are
19,755,583 fewer than the original YOLOv5 model. The mAP is 99.6%, which is consistent
with the original YOLOv5 model. Precision is reduced by 0.2% compared to the original
model, so there is no significant drop. YOLOv5-ytiny’s storage space is 3.04 MB, which
is 10.66 MB smaller than the original YOLOv5, and the calculation time is 0.04 s, which is
60% faster than YOLOv5. The data in Table 2 show that the precision of the YOLOv5-ytiny
model is consistent with the original YOLOv5 mAP, with a slight decrease in precision, and
the calculation speed is greatly improved compared with the original YOLOv5 model.

Table 2. Improved model parameters.

Parameter YOLO v5 YOLOv5-Ytiny

Total parameter quantity/piece 21,375,645 1,620,062
mAP/% 99.6 99.6

Precision/% 96.7 96.5
Model storage space/MB 13.7 3.04

Computing time/s 0.1 0.04

4.4. Comparison with Other Target Detection Models

In the field of target detection, SSD, YOLOv4, and YOLOv4-tiny have high detection
precision. In order to verify the effectiveness of this method, the training set of this paper
was used to train these three models and the YOLOv5 model, respectively, and the test
data were set to evaluate the performance of these four algorithms and obtain the precision,
recall, and F1-score of the four algorithms. The comparison results are shown in Figure 10.
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We can see from Figure 10 that among the five algorithms, the SSD algorithm has
the highest precision rate. The recall rate and F1-score of the algorithm in this paper are
the highest. The F1-score is defined as the harmonic average of the precision and recall
rates. It is a measure of classification problems. In some machine learning competitions
for multi-classification problems, the F1-score is often used as the final evaluation method.
YOLOv5-ytiny has superiority.

Table 3 compares the comprehensive evaluation indicators of the five algorithms.
The precision, mAP, model storage space, and FPS of these five algorithms are compared,
respectively. The comparison results are shown in Table 3.

Table 3. Comparison of comprehensive evaluation of algorithms.

Network Precision/% mAP/% Model Storage Space/MB FPS (Frame/s)

YOLO v4 88 99.62 244.24 0.4
YOLO v4-tiny 82 91.78 22.47 0.4

SSD 97.54 96.94 92.6 0.65
YOLO v5 96.7 99.6 13.7 9.17

YOLO v5-ytiny 96.5 99.6 3.04 22.73

Compared with the other four models, the detection speed of YOLOv5-ytiny is faster.
The mAP of the improved YOLOv5-ytiny model is the same as that of the original YOLOv5
model, and the model storage space is reduced by 78%. In terms of the detection speed, the
method in this paper has the fastest detection speed. The precision of the SSD and YOLOv5
models is slightly higher than that of YOLOv5-ytiny. The precision of the YOLOv5-ytiny
model is 8.5% and 14.5% higher than that of YOLOv4 and YOLOv4-tiny, respectively. In
terms of the models’ storage space and detection speed, YOLOv5-ytiny has an absolute
advantage, and while improving the detection speed, the mAP of the YOLOv5-ytiny model
is consistent with the original YOLOv5 model, and the precision of the model has not
dropped significantly.

In summary, compared with the other four models, YOLOv5-ytiny has a smaller
model storage space and a faster detection speed. The detection speed is higher than that
of YOLOv4, YOLOv4-tiny, SSD, and YOLOv5, 22.33 f/s, 22.33 f/s, 22.08 f/s, and 13.56 f/s,
respectively. The detection precision of YOLOv5-ytiny is high, the detection speed is fast,
and the improved space is small, which proves that the aggregate detection classification
model YOLOv5-ytiny, based on the improved YOLOv5, has good practicability.

4.5. Practical Application

The experiment was conducted in cooperation with Zhengzhou Sanhe Hydraulic
Machinery Co., Ltd. The experimental method was applied to the concrete batching
plant for the preparation of concrete raw materials. Consistent with the model used in this
experiment, the labels were inconsistent; we divided the results into four states, namely null
(representing the unloaded state), complete unloading state, melon stones, and stones12.
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The experimental results are shown in Figure 11a–d. The number on the image label is the
probability of recognition.
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the aggregate is 12 stones.

5. Discussion

Although tremendous progress has been made in the field of object detection recently,
it remains a difficult task to detect and identify objects accurately and quickly. Yan et al. [30]
named the YOLOv5 as the most powerful object detection algorithm in present times.
In the current study, the overall performance of YOLOv5 was better than YOLOv4 and
YOLOv3. This finding is in line with some previous researches, as we found several
studies comparing YOLOv5 to previous versions of YOLO, such as YOLOv4 or YOLOv3.
According to a study by Nepal [40], YOLOv5 is more accurate and faster than YOLOv4.
YOLOv5 was compared to YOLOv3 and YOLOv4 for picking apples by robots, and the
mAP was increased by 14.95% and 4.74%, respectively [30]. Similar results and comparisons
with other YOLO models were demonstrated by [32] while using YOLOv5 to detect the
behavior of cage-reared laying ducks. The recall (73%) and precision (62%) of YOLOv5 was
better compared to YOLOv3-tiny (57% and 45%, respectively) for ship detection in satellite
remote sensing images [31]. In experiments on grape variety detection, YOLOv5 had higher
F1 scores than YOLOv4-tiny [41]. In our experiment, YOLOv5 also showed better results
than YOLOv4 and YOLOv4-tiny. On the other hand, we encountered various studies that
showed that YOLO outperforms SSD in object detection deep learning methods. In traffic
sign recognition, Zhu et al. [33] used the same data set, and the results showed that the
mAP of YOLOv5 was 7.56% higher than that of SSD, and YOLOv5 was also better than SSD
in terms of recognition speed. In addition, YOLOv5 was found to have better recognition
accuracy than SSD [34] when detecting strawberry ripeness. In this experiment, YOLOv5
also shows better results in inference speed and mAP compared to SSD. In many studies,
YOLOv5 outperforms SSD in terms of speed and accuracy [35]. In this experiment, the
YOLOv5-ytiny model based on an improved YOLOv5 has advantages in both speed and
mAP. Furthermore, given the previous discussion, we believe that choosing to improve
YOLOv5 for aggregate identification is a wise move.
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6. Conclusions

The aggregate detection classification model YOLOv5-ytiny is based on the improve-
ment of YOLOv5. In order to adapt to the complex environmental factors in the detection
process, we trained four aggregates under different types of light, different wet and dry
conditions, and different detection distances to achieve the real-time classification of ag-
gregate. YOLOv5-ytiny used CIoU as the loss function of the frame regression to improve
the precision of the frame regression. We modified the network structure of the Backbone
C3 of YOLOv5. Under the premise of ensuring the mean average precision and precision,
reducing the number of YOLOv5 detection heads to simplify the model reduces the amount
of calculation and improves the detection speed of the model. The experiment shows that
the model storage space is reduced by 10.66 MB compared with YOLOv5, and the detection
speed is 60% higher than the original YOLOv5 model.

By comparing the experimental results of the proposed YOLOv5-ytiny model with the
object detection networks of SSD, YOLOv4, and YOLOv4-tiny, it can be proved that the
strategy proposed in this study can effectively improve the detection precision. Meanwhile,
the detection speed of 22.73 FPS enables the YOLOv5-ytiny model to be applied to the
industrial production of real-time aggregate classification.

In the experiment, on a computer device that supports a CPU, if the YOLOv5 model is
used, the model occupies a large space and the inference speed is slow. After the proposed
YOLOv5-ytiny is compressed, the model space is 3.04 MB, and the inference speed can
reach 22.73 FPS, which can meet the actual requirements.
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