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Abstract: Industrial control systems (ICSs) for critical infrastructure are extensively utilized to
provide the fundamental functions of society and are frequently employed in critical infrastructure.
Therefore, security of these systems from cyberattacks is essential. Over the years, several proposals
have been made for various types of cyberattack detection systems, with each concept using a
distinct set of processes and methodologies. However, there is a substantial void in the literature
regarding approaches for detecting cyberattacks in ICSs. Identifying cyberattacks in ICSs is the
primary aim of this proposed research. Anomaly detection in ICSs based on an artificial intelligence
algorithm is presented. The methodology is intended to serve as a guideline for future research
in this area. On the one hand, machine learning includes logistic regression, k-nearest neighbors
(KNN), linear discriminant analysis (LDA), and decision tree (DT) algorithms, deep learning long
short-term memory (LSTM), and the convolution neural network and long short-term memory
(CNN-LSTM) network to detect ICS malicious attacks. The proposed algorithms were examined
using real ICS datasets from the industrial partners Necon Automation and International Islamic
University Malaysia (IIUM). There were three types of attacks: man-in-the-middle (mitm) attack,
web-server access attack, and telnet attack, as well as normal. The proposed system was developed
in two stages: binary classification and multiclass classification. The binary classification detected the
malware as normal or attacks and the multiclass classification was used for detecting all individual
attacks. The KNN and DT algorithms achieved superior accuracy (100%) in binary classification and
multiclass classification. Moreover, a sensitivity analysis method was presented to predict the error
between the target and prediction values. The sensitivity analysis results showed that the KNN and
DT algorithms achieved R2 = 100% in both stages. The obtained results were compared with existing
systems; the proposed algorithms outperformed existing systems.

Keywords: industrial control systems; intrusion detection system; machine learning; deep
learning; cyberattack

1. Introduction

In critical infrastructures that supply crucial services such as water, electricity, or
communications, industrial control systems (ICSs) are at the heart of the operation. ICSs
provide the foundational services for monitoring and controlling industrial operations. The
monitoring section uses sensors to collect data, keep track of the processes, and ensure
that they run properly [1]. On the one hand, the monitoring section oversees operations
and ensures that they run correctly. On the other hand, the controlling portion manages
the processes and makes decisions that cause actions to be carried out by actuators. If this
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workflow is disrupted as a result of technological difficulties or cyberattacks, many citizens
may be adversely affected, for example, as a result of interruptions in electrical power or
communications [2].

Information technology stacks (ITS) and remote connections are commonly used to
link ICS components. An increase in the likelihood of deliberate assaults on physical
plants might result from reliance on communication networks to transmit measurements.
Authentication, data encryption, and message integrity procedures are just a few methods
for keeping network traffic safe. Despite this, these solutions cannot defend all layers of an
ICS network from all types of invasions of privacy [3].

Operational technology (OT) processes, which are critical components of infrastructure,
are routinely targeted by criminal organizations. In the past, OT and information technology
(IT) networks were kept separate or “air-gapped” from one another [4]. However, due to
increased efficiency gained via digitalization, new business requirements are emerging,
increasing the time and money spent on digitalization. However, due to digitalization’s
increased efficiency, new business requirements are emerging, increasing the number of
organizations using the technology [5]. Over the Internet of Things (IoT), sensor and
actuator data, and multimedia data such as images and videos, are transmitted. It is vital
to put security measures in place to protect against malicious behavior and cyber risks.
On the one hand, cybersecurity approaches, which are critical to the long-term health
of supply chains, are required to ensure the safety of workers and commodities and to
protect information passing via their networks, among other things. On the other hand,
a cyberattack on an ICS might result in a malfunction, which could cause physical harm
to other physical components or even humans [6]. A cyberattack may result in the theft
of confidential information about a company’s business activities; it may also have the
unintended consequence of decreasing the degree of competitiveness of the industry in the
long term. The percentage of malware threats to ICSs over the last four years is presented
in Figure 1.
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An intrusion detection system (IDS) is one method of dealing with this problem. The
detection methodologies used by signature-based and anomaly-based IDSs are distinct [7].
The signature-based technique instructs the system to seek specific anomalies. In contrast,
the anomaly-based strategy instructs the system to look for any deviation from a previously
defined standard of behavior. Most of the time, an IDS examines the network traffic of
an ICS to detect irregularities in the incoming data packets. It is possible to safeguard
a network from unwanted infiltration attempts by implementing a network intrusion
detection system (NIDS), also known as packet filtering. The NIDS model utilized in
various studies [8–12] was developed using machine learning approaches to detect network
traffic intrusions. Because of its capacity to identify and quantify attacks in the network
flow, even if its performance against encrypted data packets, fake IP packets, and regular
false-positive alerts are not guaranteed, it is becoming increasingly popular.

Anomaly detection in industrial control systems (MADICSs) is a comprehensive
technique for identifying abnormalities in ICSS and is presented as a solution. To detect
cyber risks in ICSS, MADICSs seeks to provide a consistent and unified approach for
comparing data, which any researcher can utilize to compare data from different sources.
Although these processes are based on a standard machine learning/deep learning method-
ology [13,14], they have been tailored for industrial settings. They can deal with the unique
challenges of these types of scenarios. The statistically significant relationship between
the characteristics of an ICS and the repetitiveness of its actions is one of the peculiarities
that distinguishes it from other scenarios, such as 5G networks [15] or clinical information
systems [16]. The primary contributions of the proposed research are as follows:

• The development of an intelligence system based on machine learning and deep
learning approaches to detect serious attacks on ICSs.

• The use of a sensitive analysis to find the critical patterns in an entire dataset.
• The primary motivation for the research was to compare the results of the proposed

system with existing systems for this dataset. We concluded that the proposed system
achieved a high level of accuracy.

• The primary goal is the development of a mechanism for detecting anomalies to
protect ICSs from any cybersecurity threat to food security.

The remainder of this paper is arranged as follows: In Section 2, we provide the
background for the study; in Section 3, we explain the methods of data collection; in
Section 4, we describe the analytical findings of the proposed system for detecting ICS
attacks; in Section 5 we discuss the results as well as a comparison with existing ICS
systems; in Section 6, we present the conclusions of the proposed research.

2. Background Studies

Previous research has focused on detecting cyberattacks on ICSs, which has resulted
in several publications. An IDS based on rules and deterministic finite automata (DFA) are
two examples of this system. The majority of current research has focused on developing
new approaches that have taken advantage of cutting-edge technologies, such as big data
and machine learning/deep learning. A growing number of machine learning (ML) and
deep learning (DL) approaches are being used to detect cyberattacks in the industrial sector.
The most significant publications on ML and DL anomaly detection in industrial contexts
are evaluated here [16].

Many academic ICSs use publicly available datasets to investigate ML algorithms,
which is becoming increasingly common. The following are some of the drawbacks of
the public database system in use today. The architecture proposed is limited to materials
based on the Modbus/TCP protocol suite [17]. There was very little data acquired during
online testing activities by [18], and only multi-ML algorithms were developed due to those
activities. A similar issue existed in [19], where the database used was outdated and did not
represent current threats. In contrast, the dataset in [20] was small (around 1000 occurrences)
and was restricted to a single cyberattack. According to another report, the database was
out of date and the assaults were linked to the field of IT [21]. The Singapore University of
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Technology developed a water treatment testbed that included supervisory control and data
acquisition (SCADA) network traffic and assault scenarios for use in water treatment [22].
To train and test ML systems, real-time datasets, including common cyberattacks and 35
different types of cyberattacks, have recently been generated for training and testing ML
systems. The only strategies that have been used to compare the performances of different
algorithms are supervised ML techniques. The results have shown that algorithms have
a considerable probability of false detection, which is supported by the literature. The
performance of ML algorithms on a public dataset may result in a decent output depending
on the dataset [23]. However, the payload/data frame is controlled using dataset labels, and
the assaults are manually randomized and parameterized to imitate the operational/attack
situation [24].

Many DL and ML approaches have been reported in the literature, in addition to
convolution neural network and long short-term memory (CNN-LSTM) networks. Ac-
cording to [25], unsupervised ML may be used to identify irregularities in cyber-physical
systems (CPS). Among 23 methods, they tested deep neural networks (DNNs) and support
vector machine (SVM) techniques, which were both designed specifically to work with
time-series data. They used the test dataset’s mean and standard deviation to scale the
dataset to a new size. Autoencoders (AE) and 1D convolutional neural networks (CNN)
were proposed in [26] as a DL approach for identifying ICS anomalies. Additionally, the
authors recommended filtering features to choose those most suited for anomaly detection
from among the DL models they presented. They developed a feature extraction method
that used the discrete Fourier transform (DFT) to compute features in the frequency domain.
When utilizing DFT to extract features, important information from the remaining signal
was lost instead of using only the highest energy bands. In addition, they used a threshold
for anomaly detection based on the test dataset’s mean and standard deviation. Unsuper-
vised anomaly detection was presented by the authors of [27] that focused on large-scale
and real-time data processing. The three pillars of this strategy were update triggers, tree
growth, and mass weighting methods. Thanks to this combination, random trees could
be generated and updated in real time. They described the use of clustering analysis to
reveal the dataset’s underlying patterns for another unsupervised anomaly detection. Next,
the researchers used cluster intra-distances and inter-distances to extract features from the
clusters [28]. Finally, an inference method was used to determine whether an irregularity
was sparked. The authors in [29] devised an unsupervised learning technique based on
stacked denoising autoencoders. Because the original network stream was used in their
solution, it did not require any special skills.

Furthermore, several surveys on IDSs have been conducted on IoT networks and
their lightweight devices. Nevertheless, the majority of these surveys did not address
the deployment of ML or DL approaches as detection mechanisms in IoT networks and
their networks in any depth. In several recent studies, it was observed that the emphasis
was on studying IoT security difficulties in general and categorizing them into multiple
layers related to applications, network security, encryption, authentication, and access
controls [30–35]. There is still more work to be done in ML and deep learning-based
techniques for intrusion detection systems in IoT networks, which is the primary emphasis
of this study.

3. Materials and Methods

In this section, we present the components of an intelligent system based on ML anda
DL approach. The mechanism for detecting cyberattacks on ICSs is displayed in Figure 2.
The system can achieve high performance in detecting various types of ICS attacks.
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3.1. The Dataset

The standard dataset was collected from network traffic in ICS systems. The standard
dataset was operated in collaboration with industrial partners Necon Automation and
IIUM. IIUM has developed an ICS cyber system for evaluating and testing the proposed
system. The research produced a system for gathering data from the Necon Automation
system. The Institute of Information Technology and Management (IIUM) has created
an in-house revolutionary portable ICS cyber test kit for the purposes of research and
teaching [13]. The package includes a PLC system, an HMI system, modules for process
simulation, an Ethernet switch, a physical sensor, and an attacker system. Real industrial
network flow data were provided by the ICS portable kit package, which may be used for
research and training, as well as the developing of machine learning and deep learning
methods. Figure 3 shows the system architecture.
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The dataset contains six features: the timestamp of each packet, source IP, destination
IP, OT protocols, and a summary packet of information for DPI. Table 1 shows the MITM
attack, Telnet attack, and Web-server access attack based on OT ICS protocols.

Table 1. Description of the dataset attacks.

Attacks Description OT Protocol

MITM attack
A man-in-the-middle attack is one type of
eavesdropping attack which interrupts an
ongoing communication or data transfer.

MITM

Web-server access attack
Web-server attacks have many forms of attack
such as DoS, DDoS, and DNS server hijacking

used to misconfigure web servers.
Web-server access

Telnet attack This type of attack allows the hacker to remotely
access the router or switch off the network. Telnet

Normal S7 is a protocol run on programmable
logic controllers. S7, TCP

Table 2 shows the volumes of each attack on the dataset. Note that the MIMT has
height instance values as compared with other classes.
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Table 2. Input datasets for each attack label.

#Labels Volume

MIMT 14,594

Telnet attack 89

Web Access PLC attack 21,435

Normal packets 62,533

3.2. Preprocessing Method

An IDS cannot function well without first preparing the data for analysis. Therefore,
data preprocessing is vital. The preprocessing step comprises four units: one-shot encoding,
feature selection and data standardization, imbalance handling, and normalization.

3.2.1. One-Hot Encoding Method

Using a single one-hot encoding operation is one of the most commonly utilized
approaches for the numeralization of categorical characteristic ICSs. It turns each character
type characteristic into a binary vector and assigns a value of 1 to the associated category
while assigning a value of 0 to the others. For example, the attribute protocol type and
source and destination.

3.2.2. Normalization Method

A possible overlap in the training process caused by handling big datasets was avoided
by employing maximum-minimum normalization methods after the categorical variables
had been transformed. We utilized a scaling range from 0 to 1 in the normalization
procedure to scale the dataset in the same range.

zn =
x− xmin
xmax−xmin

(Newmaxx − Newminx ) + Newminx (1)

where, xmin is the minimum of the data, xmax is the maximum of the data; Newminx is the
minimum number (0); Newmaxx is the maximum number (1).

3.3. Machine Learning Approaches

The ML algorithms, namely KNN and decision tree (DT), were employed to detect the
ICS attacks. A detailed description of this algorithm is presented in the following subsection.

3.3.1. K-Nearest Neighbor (KNN) Algorithm

KNN is an ML algorithm based on the supervised learning technique and is one of
the most fundamental ML algorithms. The KNN algorithm compares new instances/data
to existing examples and sorts them into the most comparable categories, depending on
how similar they are to the previous cases. To classify new data points, the KNN algorithm
compares them to previously stored data points and determines their similarity. It is
possible to utilize the KNN approach to swiftly categorize new data into one of the relevant
categories when it is first introduced. However, the KNN approach is more typically
used for classification problems than for regression problems [37,38]. When utilizing the
KNN approach, no assumptions about the underlying data are made, resulting in it being
classified as a nonparametric approach. A lazy learner algorithm is sometimes termed
as such because it does not immediately learn from the training set but instead stores
the dataset and performs an action on it until it comes time to classify the data using the
algorithm. In this study, we used the Euclidean distance function (Ei) to find the distance
between the classes of ICS network data. The mathematical expression of this Euclidean
distance function is as follows:

Ei =

√
(c1 − c2) + (d1 − d2)

2 (2)
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where c1, c2, d1, and d2 are the input data variables.

3.3.2. Decision Tree Algorithm

Classification and regression issues are frequently addressed using the ML technique’s
DT. A root node is at the top of a DT model and branches based on the data’s core charac-
teristic ICSs are at the bottom. The output of a feature is represented by a branch, while
a child node represents the output of a category. Relying on sample training, one may
learn the classification model using a classification DT, an example of supervised learning.
Ultimately, the classification work is completed by the incoming data, which are evaluated
by each node. ID3, C4.5, and CART are three forms of decision trees that may be categorized
based on the parameters used to determine branch properties. ID3 implements a greedy
algorithm and uses information entropy as a branch criterion [39]:

Entropy = (S) = ∑C
i = 1 pi log2 pi (3)

entropy (S |B) = ∑j
j = 1

|si|
|Si|

entropy (Si) (4)

Gain (S |B) = entropy(S)− entropy(S |B) (5)

where S is the training dataset, C is the class of dataset which is attacks and normal, Pi is
the probability of the sample that indicates class C, Si is the samples of subsets of the class
in features B.

3.3.3. Logistic Regression Algorithm

When categorizing dependent categorical data, binary classification is commonly
used [40]. There are several applications for this kind of guided learning. Based on the
values of the dependent variables, the algorithms forecast the outcome. Logistic regression
uses an S-shaped logistic curve to separate data points for the separation process. To predict
classification probabilities, logistic regression is used to construct a decision border, which
is known as drawing the logistic curve. Some people refer to the logistic function as a
sigmoid function:

S(x) =
1

1 + e− x
(6)

An integer is sent through the sigmoid function, which returns a 0–1 as the outcome
of the operation. The sigmoid function returns the likelihood of categorization in each case.
When S(x) is less than 0.5, the data is classified as class A, and when S(x) is more than 0.5,
the data is classified as class B.

3.3.4. Linear Discriminant Analysis

When dealing with high-dimensional applications, the linear ML method known as
linear discriminant analysis (LDA) comes in handy. It is used to model and convert data
from a high-space dimension to a low-space dimension by categorizing the data into regular
and harmful packets and transforming the data between the two groups [41].

3.4. Deep Learning Approach

A DNN is a well-known DL approach among scientists. The DNN topology consists of
three layers: the input, the hidden, and the output layers, all of which are connected. There
are no connections between any neurons in the layers above or below a layer, however,
every neuron in a layer, above or below the layer, is connected to every other neuron. The
efficiency of the network learning effect is increased by adding an activation function to the
output of each layer of the network. Consequently, a DNN may be viewed as an enormous
perceptron consisting of many perceptrons working together [42–45].

A CNN is an artificial neural network commonly used in a DL approach to identify
and classify images and objects. The CNN structure comprises three layers: convolutional,
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pooling, and fully linked layers. In this structure, feature extraction and dimensionality
reduction are accomplished using convolutional and pooling layers, respectively. Each
layer is attached to the preceding layer after being folded and connected. The fundamental
structure of the CNN model utilized to detect fraudulent Android apps is shown in Figure 4.
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Long short-term memory (LSTM) is a recurrent neural network, although it performs
far better in terms of memory than ordinary recurrent neural networks. LSTM performs
significantly better when the learner has a firm comprehension of the patterns to be learned.
LSTM and other neural networks differ because LSTM may have several hidden layers. As
it progresses through each layer, valuable information is kept, and all irrelevant information
is eliminated in each cell. An LSTM block building is shown in Figure 5. To control how
much value is sent through the cell, each of the cell’s input, forget, ft, and output gates can
be employed independently. The four LSTM block gates are as follows: cell state gate Ct,
which remembers information over time; forget gate ft; input gate it; and output gate ot.
The cell state gate Ct is responsible for remembering information over time. The activation
functions for each gate are integrated into the gate layer. In addition to the three inputs, the
LSTM block has three outputs: the cell state Ct, the previously concealed cell state ht, and
the current input Xt. The LSTM block contains three inputs and three outputs. It is possible
to create the current output after the disguised state has been discovered. The following is
a mathematical formulation for the LSTM unit, which is defined as follows:

ft = σ
(

W f . Xt + W f . ht−1 + b f

)
(7)

it = σ(Wi. Xt + Wi . ht−1 + bi) (8)

St = tan h(Wc. Xt + Wc . ht−1 + bc) (9)

Ct = (it ∗ St + ft ∗ St−1) (10)

ot = σ(Wo + Xt + Wo . ht−1 + Vo.Ct + bo) (11)

ht = ot + tan h(Ct) (12)

The proposed CNN-LSTM model comprises two LSTM layers and four fully connected
(FC) layers. It also has input and soft-max output layers, among other features. In addition,
there are four convolutional layers and one pooling layer. The network architecture of the
CNN-LSTM model in the proposed system is shown in Figure 6.
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The suggested model directly incorporates the 1D ICS network data into the compu-
tation for the first time. The supplied data are in the following format, consisting of four
features: (1) a convolutional layer extracts abstract characteristic from the raw ICS data
using 512 1D convolutional kernels, each having a 5-by-1 shape, one stride in the conv
layer1, and one stride in the conv layer2 (the first convolutional layer); (2) an activation
layer with rectified linear units (ReLUs) follows the convolutional layer; this layer may
introduce nonlinearity into the proposed model. The following is a mathematical formula-
tion for the 1D convolutional operation, and the ReLU activation in the case of the ReLU is
shown below:

yι
j = σ(∑Nι−1

i = 1 conv
(

wι
i,j, xι−1

i

)
) + bι

j (13)
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where Nι−1 is the number of the feature map; yι
j is the feature map of ICS data; wι

i,j is the
convolutional kernel; bι

j is the bias of feature map.
The σ() denotes the ReLU activation function, which we used to avoid the overfitting

issue in the obtained data:

σ(x) =

{
0, x ≤ 0
x, 0 > 0

(14)

The convolution kernel was used to pass the training data into the max pool to extract
significant features to improve the classification actuary. A function expression of the max
pool is defined below:

Qj = Max
(

P0
j , P1

j , P2
j P3

j . . . .Pt
j

)
, (15)

where Qj denotes the output from the max pool, and Pt
j is the feature map before max. The

significant parameter indicator values of the proposed CNN-LSTM model are presented in
Table 3.

Table 3. Parameter values of the proposed CNN-LSTM model.

#Parameters Indicators #Values

Convolution kernel size 5
The size of max pooling 5

Drop out 0.50
The size of the FC layer 128

Activation function ReLU
Optimizer Adam

Epochs 20
Batch size 120

4. Experimental Analysis

In this section, we apply ML and DL algorithms to detect ICS cyberattacks. The
effectiveness of each algorithm was tested using a well-known ICS IDS dataset. The
questions for the proposed research are as follows:

How can ML and DL algorithms detect anomalies in an ICSs environment?
What are the appropriate algorithms for detecting ICSs attacks?
How can the developed, robustness, and efficiency models protect the ICSs system?

4.1. Splitting the Data

A validation method is essential for evaluating a system. In this study, we divided
the data into training and testing the proposed system. Table 4 shows the split ICS dataset
from artificial intelligence algorithms detecting intrusion.

Table 4. Volume of datasets.

Datasets Total Volume Training Testing

ICSs 98,651 69,055 29,596

4.2. Experimental Environments

The proposed system was developed in a specific hardware and software environment
because we knew the network data were very complex. The platform used to detect
intrusion in Android applications is presented in Table 5.
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Table 5. Environmental requirements of the proposed model.

Hardware Software Version

RAM size 8 GB Python 3.6
Intel(R) Core(TM) i7 Panda 1.4.2

CPU 1.80 GHz TensorFlow library 2.8.0
Keras library 2.8.0

Matplotlib 3.1
NumPy library 1.11.0

4.3. Performance Measurements

In order to evaluate the high performance of the ICS security system, evaluation met-
rics were proposed such as mean square error (MSE), the Pearson’s correlation coefficient
(R), the root-mean-square error (RMSE), accuracy, precision, recall and F1 score,

MSE =
1
n ∑n

i = 1

(
yi,exp − yi, pred

)2
(16)

RMSE =

√√√√
∑n

i = 1

(
yi,exp − yi,pred

)2

n
(17)

R2 bn1−
∑n

i = 1 (yi, exp − yi, pred)
2

∑n
i = 1 (yi, exp − yavg, exp)

2 (18)

Accuracy =
TP + TN

TP + FP + FN + TN
× 100% (19)

Recall =
TP

TP + FN
× 100% (20)

Precision =
TP

TP + FP
× 100% (21)

Fscore =
2 ∗ preision∗Sensitivity
preision + Sensitivity

× 100% (22)

R% =
n
(

∑n
i = 1 yi,exp × yi, pred

)
−
(

∑n
i = 1 yi,exp

)(
∑n

i = 1 yi, pred

)
√[

n
(

∑n
i = 1 yi,exp

)2
−
(

∑n
i = 1 yi,exp

)2
][

n
(

∑n
i = 1 yi,pred

)2
−
(

∑n
i = 1 yi,pred

)2
] × 100 (23)

where, the confusion metrics of ICS system such as true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) are used as parameters for examining the model,
where yi,exp is ICSs input data and yi,pred is output of the developing ICS system.

4.4. Results

In this section, we present the results of the ML and DL approaches. The proposed
system was tested in two stages: binary classification (normal and attacks) and multiclass
classification in four classes (MITM attack, Telnet attack, Web-server access attack, and
normal). The system was tested using real ICS network datasets, including different types
of attacks.

4.4.1. Binary Classification Results

The proposed ML and DL algorithms were applied to test their effectiveness in binary
classification. We classified the datasets as normal or attacks. ML algorithms, such as KNN,
DT, and logistic function, were considered for classifying ICS attacks. Table 6 shows the
results of these algorithms for detecting ICS attacks. Based on the empirical results, most of
the algorithms achieved superior accuracy, but the KNN and DT algorithms both achieved
an accuracy of 100%.
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Table 6. Results of approaches in binary classification for detecting ICS attacks.

Algorithms Classes Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Logistic
regression

Normal
99

98 100 99

Attacks 100 99 99

KNN
Normal

100
100 100 100

Attacks 100 100 100

Linear
discriminant

Normal
99

98 99 99

Attacks 100 99 99

Decision tree
Normal

100
100 100 100

Attacks 100 100 100

The confusion matrix of the ML logistic regression, KNN, linear discriminant, and DT
approaches are shown in Figure 7. The matrix reports the results of this algorithm using
different metrics, such as false negatives, true positives, and true negatives. The binary
classification is either normal or attacks (0, 1). The logistic regression results were 62.94%,
classified as TP, where the TN was 36.18%, and the false-positive was 0.85%. The KNN
and DT approaches showed the correct classification of 36.18 classified as TN and 63.80
classified as TP. The linear discriminant was 0.64% FP, 36% normal, and 63.15% attacks.
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Table 7 shows the results of the DL CNN-LSTM model for detecting and classifying
ICS attacks using the binary dataset. The DL approach achieved an accuracy of 98.89%.

Table 7. Results of the DL CNN-LSTM model for detecting ICS attacks using binary classification.

Algorithms Classes Accuracy (%) Precision (%) Recall (%) F1 Score (%)

CNN-LSTM
Normal

98.89
99.83 98.42 99.12

Attacks 100 99 99

The performance of the CNN-LSTM model for predicting ICS attacks using binary
classification is shown in Figure 8. The accuracy of the CNN-LSTM model in the training
process was 99%, whereas the performance of the CNN-LSTM model for detecting ICS
attacks as the validation step was 98.89%. The training model varied in each epoch. The
validation loss of the CNN-LSTM model was 750–250.
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Figure 9 shows the confusion metrics of the CNN-LSTM model using binary classifica-
tion. The CNN-LSTM model showed promising results; the percentage of the true negative
was 36.11%, and the false-positive was 62.79%. The misclassification percentage of the
CNN-LSTM model was 1.01%.

4.4.2. Results of Multiclass Classification

In this experiment, ML and DL approaches were examined using the multiclass
classification dataset: MITM attack, web-server access attack, Telnet attack, and normal.
Table 8 shows the results of the logistic regression algorithm to detect ICS attacks. The
results of the logistic regression method were not satisfactory. The accuracy value in all
classes was 30%. We recommend that this algorithm be used for detecting multiclass attacks
on ICSs.
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Table 8. Results of logistic regression using the multiclass classification dataset.

Attacks Precision (%) Recall (%) F1 Score (%)

Normal 67 46 54

MITM attack 0.0 0.0 0.00

Web-server access attack 82 0.01 0.02

Telnet attack 0.00 0.00 0.00

Accuracy 30%

Weighted average 60 30 35
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The detection results of the KNN algorithm for the multiclass classification on the ICS
platform are presented in Table 9. Based on the confusion metric ICSs, the results were
superior, with an accuracy of 100% for the KNN.

Table 9. Results of the KNN approach using the multiclass classification dataset.

Attacks Precision (%) Recall (%) F1 Score (%)

Normal 100 100 100

MITM attack 100 100 100

Web-server access attack 100 100 100

Telnet attack 100 100 100

Accuracy 100%

Weighted average 100 100 100

The results of the LDA model for detecting ICS attacks using multiclass classification
datasets are shown in Table 10. The accuracy of the LDA model was 94.37%. The weighted
averages of the precision, recall, and F1 scores were 95%, 94%, and 94%, respectively.
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Table 10. Results of the LDA model using the multiclass classification dataset.

Attacks Precision (%) Recall (%) F1 Score (%)

Normal 98 93 95

MITM attack 79 100 88

Web-server access attack 99 94 96

Telnet attack 0.00 0.00 0.00

Accuracy 94.37

Weighted average 95 94 94

Table 11 shows the results of the DT algorithm, which achieved superior performance.
The accuracy percentage of the DT in all classes was 100%. The weighted average perfor-
mance of the DT was 100% for all classes.

Table 11. Results of the decision tree using the multiclass classification dataset.

Attacks Precision (%) Recall (%) F1 Score (%)

Normal 100 100 100

MITM attack 100 100 100

Web-server access attack 100 100 100

Telnet attack 100 100 100

Accuracy 100%

Weighted average 100 100 100

Figure 10 shows the confusion metric indicators such as actual negative false-positive
rate, valid positive rate, and false negative. The logistic regression model results showed
26.36% correctly classified as normal, whereas the model scored 0.26% and was correctly
classified as a Telnet attack. The false-positive rate was very high in the MITM attack at
14.74%, with 21.04% for the Web-server attack. The results of the KNN approach showed
63.84% detected as normal; the true positives were 14.74%, 21.31%, and 0.09% correctly
classified as MITM attack, Web-server access attack, and Telnet attack, respectively. The
misclassification (FP) was 0.00, demonstrating that the KNN algorithm was appropriate for
detecting ICS attacks. The confusion metric results for the LDA model were 59.59% correctly
classified as normal packets. In contrast, the true positive metrics showed 14.75% classified
as MITM attack, 20.03% classified as Web-server attack, and 0.00 classified as Telnet attack.
The false positives of the LDA model were slight at 0.01% uncorrected classified MITM
attack, 1.28% uncorrected classified as Web-server attack, and 0.091% uncorrected classified
as Telnet attack. The decision tree algorithm showed the same performance as the KNN
algorithm, with 63.84% detected as normal. The true positives were 14.74%, 21.31%, and
0.09%, correctly classified as MITM attack, Web-server access attack, and Telnet attack,
respectively.

A hybrid DL CNN-LSTM model is proposed to detect ICS cyberattacks. The perfor-
mance of the DL CNN-LSTM classifier according to evaluation metrics such as accuracy,
precision, recall, F-score, and classification performance was evaluated using the four
classes, i.e., MITM attack, Web-server access attack, Telnet attack, and normal. The results
of the CNN-LSTM model were compared with ML approaches. Table 12 shows the perfor-
mance of the CNN-LSTM model using the multiclass classification dataset. The CNN-LSTM
model achieved the highest accuracy, i.e., 98%. The weighted average performance of the
CNN-LSTM model for all four classes was 98%.
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Table 12. Results of the CNN-LSTM model using the multiclass classification dataset.

Attacks Precision (%) Recall (%) F1 Score (%)

Normal 99 98 99

MITM attack 100 97 98

Web-server access attack 88 50 64

Telnet attack 92 99 96

Accuracy 98%

Weighted average 98 98 98

Loss 0.076
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Figure 11 shows the confusion metrics of the CNN-LSTM model for detecting anoma-
lies in the ICS system. The graphical representation of the CNN-LSTM model shows that
14.06% (TN) was correctly classified as normal; 62% was correctly classified as MITM
attacks, 0.04% was correctly classified as Telnet attacks, and 21.39% was correctly classified
as Web-server access attacks. The false-positive rate was high at 0.05% on the Telnet attack.
The false-negative rate was high at 0.13% with the normal.
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The accuracy performance and loss of the CNN-LSTM model for detecting multiple
classes are shown in Figure 12. The plot shows that the accuracy of training and volition
increased from 88% to 98%, whereas the accuracy loss decreased from 0.30 to 0.10 in the
testing phase with 20 epochs.

4.5. Sensitivity Analysis

A sensitivity analysis is an approach for measuring the influence of uncertainties of
input data variables. Analyzing the input data is very useful for extracting patterns from a
dataset. A sensitivity analysis determines the effects of fluctuations in network features
with different attacks on the outputs or performance of a mathematical model or system.
In other words, a sensitivity analysis may be used to assign changes in system outputs
to distinct sources of uncertainty in system inputs, as opposed to a traditional approach.
In this study, we determined that there was a strong association between input attributes
and class membership using Pearson’s correlation coefficient. Certain traits had strong
connections (normal and MITM attacks, Web-server access attacks, and Telnet attacks).
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We selected features with high relationships with classes. Figure 13 shows the results
of the Pearson’s correlation coefficient method to determine the significant elements. The
destination and source addresses are critical features, with superior corrections among
classes of 92%, whereas the length features do not have good connections among the classes.
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Moreover, the mean absolute error statistical analysis (MAE), MSE, RMSE, and R2

were applied to measure the percentage error between the target and prediction values.
Table 13 summarizes the statistical analysis of ML and DL with binary classification. The
KNN and DT algorithms had the highest correlations between the target and prediction
values, i.e., R2 = 100% and prediction output of 0.00.



Electronics 2022, 11, 1717 20 of 25

Table 13. Sensitivity analysis of ML using binary classification.

Models MAE MSE RMSE R2 (%)

LG 0.0088 0.0088 0.093 96.21

KNN 0.0 0.0 0.0 100

LDA 0.0084 0.0084 0.0919 99.53

Decision tree 0.0 0.0 0.0 100

CNN-LSTM 0.0111 0.0106 0.1030 95.43

Table 14 compares the prediction results among the target values, ML and DL, using
multiclass classification. The KNN and DT algorithms scored the highest (R2 = 100%),
with the prediction error between the target values and prediction output being 0.00. The
prediction error of the logistic regression method was very high. Overall, the KNN and DT
algorithms were effective in predicting ICS attacks.

Table 14. Sensitivity analysis of ML and DL using multiclass classification.

Models MAE MSE RMSE R2 (%)

LG 0.705 0.7096 0.8424 72

KNN 0.0 0.0 0.0 100

LDA 0.073 0.110 0.331 83.73

Decision tree 0.0 0.0 0.0 100

CNN-LSTM 0.043 0.089 0.299 90.53

5. Results and Discussion

ICSs are part of contemporary critical infrastructures, such as water treatment facilities,
oil refineries, power grids, and nuclear and thermal power plants. An ICS is a system
developed by merging computational and communication components to govern a physical
process. An ICS includes devices and subsystems, such as sensors, actuators, programmable
logic controllers (PLC), human-machine interfaces (HMI), and SCADA systems.

A steady rise in the frequency of successful attacks on ICSs has led to an urgent
need to develop security systems that can accurately and quickly identify irregularities. A
new breed of anomaly detectors based on data-centric methods is gaining traction in this
effort. Such techniques may automatically understand the dynamic ICSs of the process
and the control strategies used in an ICS using ML and DL algorithms. Anomaly detectors
can be created more quickly and easily using these techniques than using design-centric
approaches based on plant physics and design.

ML, including logistic regression, KNN, linear discriminant, and DT algorithms, and
the CNN-LSTM model, are designed to detect ICS attacks and protect the infrastructure
of ICSs. The proposed system was examined using the Sung real dataset from industrial
partner Necon Automation. This study conducted two binary classification and multiclass
classification experiments to detect and classify ICS attacks. Overall, the KNN and DT
algorithms achieved the highest performance with binary classification and multiclass
classification of 100% concerning the accuracy metric. Figure 14 shows a regression plot
of the KNN and DT algorithms, including the correlation between input and prediction
values. These algorithms scored 100% with respect to R.
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The proposed system was compared with that of Sinil Mubarak et al. [36], who
developed the dataset. The authors used logistic regression, KNN, naive Bayes, random
forest, and ANN algorithms. However, cross-validation was used to evaluate the algorithm.
The results of these algorithms were: logistical regression 95.18%, KNN 95.24%, naive Bayes
94.75%, random forest 95.52%, and ANN = 95.14, according to the accuracy metric. In this
study, the KNN and DT algorithms achieved accuracies of 100%; the hybrid DL CNN-LSTM
model achieved 98% accuracy. Table 15 shows the empirical results of the proposed ML
and DL model against existing security systems developing the dataset. Figure 15 shows
a graphical depiction of the results obtained by our system and those obtained by other
current methods based on accuracy metrics. In general, the approach we recommend has
the highest level of accuracy available.
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Table 15. Comparison of the proposed system with the system that developed the dataset.

Reference Year Datasets Model Accuracy (%)

Ref. [36] 2022
Industrial

partner (Necon
Automation)

Logistic
regression 95.18

KNN 95.24
Naive Bayes

Random forest 94.75

95.52
ANN 95.14

Proposed model 2022
Industrial

partner (Necon
Automation)

KNN 100
Decision tree 100
CNN-LSTM 98

A comparison between the proposed system and the existing system using a different
dataset is presented in Table 16. Overall, the proposed system achieved superior accuracy
as compared with the existing system for protecting the ICS’s environment. Figure 16
displays the performance of the proposed system as compared with the existing systems
with respect to accuracy metrics.

Table 16. Comparison of the proposed system to existing systems using different ICS datasets.

Reference Year Datasets Model Precision (%)

Ref. [46] 2018

ICSs

CNN 96
Ref. [47] 2018 MPL 96
Ref. [48] 2019 LSTM 93
Ref. [49] 2017 DNN 98
Ref. [50] 2019 GAN 70

Proposed model 2022
KNN 100
Decision tree 100
CNN-LSTM 99

Electronics 2022, 11, x FOR PEER REVIEW 24 of 27 
 

 

Table 16. Comparison of the proposed system to existing systems using different ICS datasets. 

Reference Year Datasets Model Precision (%) 

Ref. [46] 2018 

ICSs 

CNN 96 
Ref. [47] 2018 MPL 96 
Ref. [48] 2019 LSTM 93 
Ref. [49] 2017 DNN 98 
Ref. [50] 2019 GAN 70 

Proposed model 2022 
KNN 100 
Decision tree 100 
CNN-LSTM 99 

 
Figure 16. Comparative results of the proposed system with systems using different ICS datasets. 

6. Conclusions 
Increasing effective assaults on industrial control systems (ICSs) have prompted the 

creation of protection measures for accurate and quick process anomaly detection. In con-
trast to other types of cyberattacks, ICS-oriented intrusions have the potential to disrupt 
critical infrastructure operations, cause significant economic losses, pollute the environ-
ment, and even cost human lives. In this study, a security system was developed to protect 
and prevent cyberattacks from threatening ICSs. The artificial intelligence algorithms 
namely regression, KNN, LDA, DT, and the CNN-LSTM model are designed to detect 
malicious ICS attacks. The following conclusions stem from the encouraging findings of 
this study: 
• The machine learning and DL algorithms were tested using a standard dataset col-

lected from industrial partners Necon Automation and IIUM. The algorithms con-
tained MITM attacks, Web-server access attacks, Telnet attacks, and normal packets. 

• Testing was conducted in two stages, namely binary classification and multiclass 
classification, to achieve the high-performance mode for detecting ICS attacks. 

0

10

20

30

40

50

60

70

80

90

100

Ref. [44] Ref. [45] Ref.[46] Ref.[47] Ref.[48] Proposed model

%

Ref. [44] Ref. [45] Ref.[46] Ref.[47] Ref.[48] Proposed model

Figure 16. Comparative results of the proposed system with systems using different ICS datasets.



Electronics 2022, 11, 1717 23 of 25

6. Conclusions

Increasing effective assaults on industrial control systems (ICSs) have prompted the
creation of protection measures for accurate and quick process anomaly detection. In
contrast to other types of cyberattacks, ICS-oriented intrusions have the potential to disrupt
critical infrastructure operations, cause significant economic losses, pollute the environment,
and even cost human lives. In this study, a security system was developed to protect and
prevent cyberattacks from threatening ICSs. The artificial intelligence algorithms namely
regression, KNN, LDA, DT, and the CNN-LSTM model are designed to detect malicious
ICS attacks. The following conclusions stem from the encouraging findings of this study:

• The machine learning and DL algorithms were tested using a standard dataset col-
lected from industrial partners Necon Automation and IIUM. The algorithms con-
tained MITM attacks, Web-server access attacks, Telnet attacks, and normal packets.

• Testing was conducted in two stages, namely binary classification and multiclass
classification, to achieve the high-performance mode for detecting ICS attacks.

• The ML algorithms KNN, LDA, and DT were examined to find the appropriate
algorithm for protecting ICS systems. The KNN and DT algorithms achieved the
highest levels of accuracy.

• The hybrid DL CNN-LSTM model proved to be the most effective and efficient algo-
rithm for successfully detecting malware in ICS systems.

• The inaccuracies between the anticipated output and the target values were discovered
during the validation phase using a sensitivity analysis that examined the metrics
MSE, RMSE, and R2. The KNN and DT algorithms provide fewer prediction errors in
binary classification and multiclass classification.

• The ML and DL approaches performed well in the validation phase, with the KNN and
DT algorithms outperforming the competition by a wide margin. This study’s findings
were compared with those of other recent studies, confirming the validity and efficacy
of our findings. We developed ML and DL algorithms and conducted experiments
with them to get the best malware detection possible in ICSs. Even though both of the
suggested classifiers obtained high accuracy, the KNN and decision accuracy were
100%, demonstrating that they can beat other state-of-the-art classifier models.

• In the future, we aim to design our system with a real ICS system for protecting
food security.
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