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Abstract: Deep reinforcement learning (DRL) enables autonomous vehicles to perform complex
decision making using neural networks. However, previous DRL networks only output decisions,
so there is no way to determine whether the decision is proper. Reinforcement learning agents
may continue to produce wrong decisions in unexpected environments not encountered during
the learning process. In particular, one wrong decision can lead to an accident in autonomous
driving. Therefore, it is necessary to indicate whether the action is a reasonable decision. As one such
method, uncertainty can inform whether the agent’s decision is appropriate for practical application
where safety must be guaranteed. Therefore, this paper provides uncertainty in the decision by
proposing DeepSet-Q with Gaussian mixture (DwGM-Q), which converges the existing DeepSet-Q
and mixture density network (MDN). Calculating uncertainty with the Gaussian mixture model
(GMM) produced from MDN made it possible to calculate faster than the existing ensemble method.
Moreover, it verified how the agent responds to the unlearned situation through the Simulation
of Urban MObility (SUMO) simulator and compared the uncertainty of the decision between the
learned and nontrained situation.

Keywords: reinforcement learning; mixture density model; decision making

1. Introduction

Autonomous driving on highways is divided mainly into longitudinal and lateral
decisions [1]. The longitudinal decision sets the vehicle’s longitudinal target speed, while
the lateral decision determines whether to change the lane. Furthermore, the appropriate
target speed is necessary to contribute to the driver’s safety by maintaining a certain
distance from the vehicle in front. The lane-changing decision is a crucial action that allows
autonomous vehicles to reach their destination quickly and is, also, an action for overtaking,
obstacle avoidance, cut-in/cut-out, etc. Therefore, the autonomous vehicle can be efficiently
operated by safely driving and arriving at the destination in the shortest time when the
longitudinal and lateral decisions are harmonized.

Decision-making problems in autonomous driving applied rule-based methods such
as Intelligent Driver Model (IDM) [2] and Minimizing Overall Braking Induced by Lane
Changes (MOBIL) [3]. In addition, these methods have been successfully used in the
Defense Advanced Research Projects Agency (DARPA) Urban Challenge (DUC) [4–6].
However, rule-based methods have disadvantages in that they are designed for a specific
environment and are difficult to extend to actual autonomous driving, where various
situations can occur.

Conversely, deep reinforcement learning (DRL) has the potential for better scalability
and generalization than non-learning methods for autonomous driving decision-making
problems. For this reason, DRLs are widely studied in the fields of alarm systems [7],
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education [8], medicine [9], and sensors [10]. Huegle et al. [11,12] proposed DeepSet-Q
and DeepScene-Q, which considered multiple vehicles in a region of interest (ROI) and
achieved state-of-the-art quality in 2019 and 2020. However, most existing DRLs are black-
box models, so the output process is unknown, and confidence in a decision is unevaluated.
In particular, the agent’s decision may cause an accident in an unexpected environment
that the agent has never experienced during the learning process. McAllister et al. [13]
mentioned that quantifying confidence is necessary to improve stability.

A common way to evaluate confidence in decisions is to quantify uncertainty, divided
into epistemic and aleatoric uncertainty [14]. Epistemic uncertainty refers to the uncertainty
of the model and can be reduced as it learns from additional data, while aleatoric uncertainty
indicates randomness that arises from the nature of data and cannot be reduced through
further learning. Both uncertainties are necessary to make risk-aware decisions, specifically
epistemic uncertainty that can distinguish between learned and unlearned situations.

The problem of reaching the destination safely and quickly can be replaced by the
difficulty of maintaining the target speed without accident. This paper used the Simulation
of Urban MObility (SUMO) simulator to verify whether an autonomous vehicle could
safely and continuously maintain its target speed in a highway environment. In addition, it
was checked whether the agent could detect an inappropriate decision from the estimated
uncertainty for an unexpected environment that was not encountered during the learning
process. This study’s contributions are as follows:

(1) This paper proposed DeepSet-Q with Gaussian mixture (DwGM-Q), which considered
the unexpected environments that the DeepSet-Q agent cannot.

(2) A method different from the existing process was presented, and the estimation speed
was increased compared to the uncertainty inference method using the current ensemble.

(3) The uncertainty estimation result was shown through the SUMO simulator.

2. Related Work

The classic DRL algorithm has recently shown successful results in lane-change de-
cisions [15–17]. However, the classical DRL outputs the expected action value as a scalar,
so reliability is not guaranteed. Bayesian approaches were first used to represent reliabil-
ity in the field of deep learning [18]. It represents the produced value as the probability
distribution rather than a scalar. The uncertainty quantification can be derived from vari-
ance in probability distributions, and dropout was used to estimate uncertainty [19]. This
method is costly because it requires several samplings to obtain one uncertainty. How-
ever, the expensive uncertainty estimation through the ensemble method can be alleviated
through parallelization [20]. After producing a Gaussian mixture model (GMM) using
a mixture density network (MDN), a study was published quantifying the uncertainty
through GMM [21].

The Bayesian approach has also been extended and used in DRL. Bayesian reinforce-
ment learning (BRL) represents the expected action value as a probability distribution
rather than a scalar. An estimated uncertainty through MC (Monte-Carlo) dropout [22] and
quantified uncertainty from multiple networks through the ensemble technique have been
reported in some studies [23,24]. Nevertheless, all of these methods require calculating the
network of the same structure multiple times to quantify the uncertainty once.

This paper provides confidence by estimating uncertainty in the existing DeepSet-Q
and calculating uncertainty as one network through a mixture density model (MDM).
Quantifying uncertainty using MDN eliminated the need for sampling in the existing
Bayesian method and excluded the need to calculate the same network multiple times as in
the ensemble method. Consequently, it is possible to reduce the computing power required
for calculation, which can be used in an embedded environment at a lower price. Research
on computing offload has recently been conducted in various fields, which is an essential
procedure for practical application [25,26].
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3. Method
3.1. Reinforcement Learning

Reinforcement learning (RL) is a subfield of machine learning in which agents interact
with some environment to learn policies that maximize expected future returns. This policy
determines what action to take on an arbitrary state quantity. The environment transitions
to the next state when the work is done, and the agent is rewarded. Reinforcement learning
problems can be modeled as Markov decision-making processes (MDPs). Expressed as a
tuple, it is equivalent to (S, A, P, R,γ), where S is the state space, A is the action space, P is
the state transition probability, R is the immediate reward, and γ is the discount factor.

In Bayesian reinforcement learning, the reward can be obtained through a probabilistic
basis approach. Therefore, the return Zπ = ∑∞

k=t γtRt is also a random variable for
the fixed policy π. Q-learning aims to learn the optimal action-value function Q∗(st, at),
defined in Equation (1) [27].

Qπ(st, at) = E(Zπ(s, a) = max
π

E[(∑∞
t=0 γtR(st, at)|st = s, at = a, π) (1)

This value function is called the expectation of the value distribution. Through a neural
network, the optimal behavioral value function is approximated as Q(s, a; θ) ≈ Q∗(s, a) [28].

TπZ(x, a) = R(x, a) + γPπZ
(
X′, A′

)
(2)

In Equation (2), X′ ∼ P(·|x, a ), A′ ∼ π(·|X′ ), the target value is estimated through
three random variables. The value distribution in RL is expressed, as follows, through
the distributional Bellman operator Tπ for a fixed policy π and shown to be a contraction
mapping for the maximal form of the Wasserstein metric [29].

3.2. Mixture Density Network (MDN)

MDN was first proposed in the research conducted by Bishop [30], focusing on mixture
density networks and outputs πj, µj, σj constituting the GMM. The mixture model refers
to a distribution linearly combined with basic distributions, and j.jGMM pertains to several
Gaussian distributions that are linearly combined.

p(x) =
K

∑
k=1

πj(x)N(x | µj, σj) (3)

In the above equation, πj is the weight of the j-th Gaussian distribution, µj is the
average of the Gaussian distribution, and σj is the standard deviation of the Gaussian
distribution. Moreover, πj∈[0, 1] and ∑K

j=1 πj = 1 are satisfied for K Gaussian distributions.

3.3. Uncertainty Estimation

The equations for estimating aleatoric uncertainty caused by inherent noise contained
from GMM data, and epistemic uncertainty caused by the untrained model were proven
in the study conducted by Choi et al. [21]. When K is defined as the number of Gaussian
distributions, the total uncertainty for the input vector x follows the following equation:

σt =
K

∑
j=1

πjσj(s) +
K

∑
j=1

πj(x)‖µj(x)−
K

∑
k=1

πk(x)µk(x)‖2 (4)

In Equation (4), σt denotes the sum of the uncertainties, πj denotes the weight of the
i-th Gaussian model, and µi(x) denotes the average of the i-th Gaussian model.

σe =
K

∑
k=1

πk(x)‖µk(x)−
K

∑
j=1

πj(x)µj(x)‖ (5)
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σa =
K

∑
k=1

πk(x)σk(x) (6)

In Equations (5) and (6), σe corresponds to epistemic uncertainty, and σa corresponds
to aleatoric uncertainty. σe for each decision can be calculated using Equation (5) from the
variables obtained using MDN. It can be confirmed that Equations (5) and (6) are decoupled
from Equation (4). Uncertainty is a value that is inversely proportional to the reliability
and, as the value increases, it can be considered that the corresponding decision causes
a malfunction. Equation (6) refers to uncertainty caused by probabilistic variations in a
random event.

4. DeepSet with Gaussian Mixture Q Network (DwGM-Q)
4.1. Network Architecture

Figure 1 compares the existing DeepSet network structure with the DwGM-Q network.
Feature points for surrounding vehicles are extracted from the ∅ network. Then, through
pooling, permutation invariant features are selected. After that, the feature vector extracted
from the ρ network and the state of the ego vehicle are concatenated. The Q network
then shows the expected action value for each decision. It can be seen that the existing
DeepSet-Q produced a value that corresponds to a scalar. In the case of an ensemble, the
final Q value was obtained by summing all the output vectors of DeepSet-Q and then
taking the average value. The average (µ), standard deviation (σ), and weight (π) of several
Gaussian distributions were the proposed network results. In DwGM-Q with K Gaussian
distribution, the Q value is defined as follows

Q(st, at) =
K

∑
j=1

πj(st, at)µj(st, at) (7)

The Q value occupied the probability distribution form. If the Q value comes out as a
probability distribution, the uncertainty can be obtained.

4.2. Weight Update

Jensen–Shannon divergence (JSD) was used to find the difference in probability dis-
tribution between the target Gaussian mixture model and the current Gaussian mixture
model [31]. To learn GMM in reinforcement learning, the distance of two Gaussian distri-
butions Z1 and Z2 is explained in Equation (8).

JTD2(Z1, Z2) = ∑
i, j

πiπjN
(

πi; πj, σ2
i + σ2

j

)
+ ∑

i, j
wiwjN

(
mi; mj, s2

i + s2
j

)
−2 ∑

i, j
πiwjN

(
µi; mj, σ2

i + s2
j

) (8)

JSD has excellent properties free from the disjoint support issue, which arises when
using the KL-divergence loss, and exhibits unbiased sample gradients, contrary to the
Wasserstein distance.

A training procedure of a DwGM-Q is shown in Algorithm 1.
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Figure 1. (A) DeepSet-Q and (B) DwGM-Q (DeepSet with Gaussian mixture Q network) architecture.

Algorithm 1: Training DwGM-Q

Initialize Q = ( ∅, ρ, Q)and Qt =
(
∅,t ρt, Qt)

Set replay buffer <
for episode = 1, M do
initialize random state si

for step = 1, T do
if e ∼ u(0, 1) < ε

σe ← σ(π, µ) (Equation (5))
select at as the probability

proportional to the value o f σe
else

Q(st, at) = ∑K
j=1πj(st, at)µj(st, at)

select at = argmaxaQ(st, at)
execute at and observe reward rt and st+1
Store transition (st, at, rt, st+1) in <

Sample random minibatch of transitions (st, at, rt, st+1) from <
Q(st+1, at+1) = ∑jπj(st+1, at+1), µj(st+1, at+1)

a∗ ← argmax
a

Q(st+1, at+1)

Tπ Z(st, at) ← ∑jπj(s′t, at)N(γµ(st+1 , a∗) + r, γ2σj(st+1, a∗)2)

Compute JTD loss (Equation (8))
Update weights
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4.3. Decision Procedure

In Figure 2, csa f e
v is a threshold for uncertainty and determines whether to perform

asa f e. cv is the uncertainty estimated by DwGM-Q and calculated as follows:

cv =
α

M

M

∑
i=1

σ
(i)
t (9)

where M is the number of actions, and α is the normalization factor. As the learning of
DwGM-Q progresses, the GMM value approaches a single distribution. Figure 2 describes
the procedure for making a decision. In input data preprocessing, the state is created with
vehicle information. The details of the state are covered in Section 4. The DwGM-Q network
provides the expected action value of each action in the form of GMM. From the π, µ, σ
of the GMM mixture model, uncertainty can be estimated through Equations (5) and (9).
The Q value is also estimated by Equation (7). If the obtained cv is smaller than csa f e

v , the
agent’s decision is performed, assuming that the decision is reasonable. On the other hand,
if it is greater than the threshold, the agent’s decision is considered unreasonable, and asa f e
is performed.
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5. Environment Setup

Input, reward, decision type, and experimental environment were the identical neural
networks stated in the conducted research by Hoel et al. [19].

5.1. State Input

As shown in Table 1, (x0, y0) means the location information of the ego vehicle and
(xi, yi) denotes the location information of the i-th surrounding vehicle. The vx,i, vy,i is
defined as the absolute speed of the i-th surrounding vehicle in the x and y directions.
In addition, xsensor refers to the longitudinal ROI that the sensor of the autonomous ve-
hicle can detect. When the vector representing the information of the own vehicle at
time t is xstatic

t and the vector representing the information of the i-th own vehicle is
xi

t, xstatic
t = {ϕ1, ϕ2, ϕ3}, therefore, xi

t = {ϕ4i, ϕ4i+1, ϕ4i+2, ϕ4i+3}. The input vector is
st =

{
xstatic

t , x1
t , x2

t , . . . , xn
t } if there are n number of surrounding vehicles in the ROI.

5.2. Action

The reinforcement learning agent was designed to have lane keeping, right and left
lane change in the lateral direction, and acceleration of {−1, 0, 1} m/s2 in the longitudinal
direction. Moreover, there was an emergency stop decision with −4 m/s2 for lane keeping.
This decision was expressed as asa f e, the most conservative decision. When the uncertainty
exceeds the threshold, asa f e is executed. Therefore, the agent had ten decisions: three each
in the horizontal and vertical directions, and one additional emergency stop decision.
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Table 1. Neural network input.

Parameter Value Comments

ϕ1
2y0
ymax
− 1 Ego lane

ϕ2
2vx,0
xmax
− 1 Ego vehicle speed

ϕ3 sgn
(
vy, 0

)
Lane-change info

ϕ4i
xi−x0
xsensor

Relative long. Position of i-th vehicle
ϕ4i+1

yi−y0
ymax

Relative latitude. Position of i-th vehicle

ϕ4i+2
yi−y0
ymax

Relative speed of i-th vehicle

ϕ4i+3 sgn
(

vy, i

)
Lane-change state of i-th vehicle

5.3. Reward

The agent obtained a reward in the amount of 1− vtarget−v
vtarget

for every step. This agent
induced the vehicle to overtake the slow vehicle while maintaining the target speed.
Penalties of −1 and −10 were given to prevent reckless lane change if the time to collision
(TTC) is less than 2.5 s with the vehicle in front. In addition, a penalty of −10 was given
even when an emergency brake decision was performed.

6. Experiment

A SUMO simulator was applied for this experiment. This simulator can obtain the
state quantity by inputting longitudinal acceleration and lane-change decisions. The
surrounding vehicle’s speed was set between 15 and 35 m/s (3.6 km/h = 1 m/s), and the
targeted speed of the ego vehicle was set to 25 m/s. After making 100 decisions during
one episode, the agent and surrounding vehicles were randomly initialized again. The ego
vehicle corresponds to the green truck, as illustrated in Figure 3. Furthermore, the vehicle
is displayed in yellow and red as it approaches 15 m/s and 35 m/s. Uncertainties were
observed for three scenarios.
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Figure 3. Three types of scenarios: (A) normal scenario, (B) stop scenario, and (C) speeding scenario.
Green vehicle is ego vehicle, white vehicle is stationary vehicle, and purple vehicle is speeding vehicle.
The other nearby vehicles are closer to red as the speed increases.

All environments were limited to three-lane highways. In scenario A (normal sce-
nario), yellow and red represented vehicles at 15 to 35 m/s. Meanwhile, a white vehicle
existed in scenario B (stop scenario), whereas a purple vehicle with a 55 m/s speed ap-
peared in scenario C (speeding scenario). These white and purple vehicles presented in
scenarios 2 and 3 correspond to surrounding vehicles missed during the learning process.
This experiment presented whether the agent collides and observes the uncertainty values
in unexpected situations. Parameters for training the agent are shown in Appendix A
(see Tables A1 and A2). Adam optimizer was also used to optimize the reinforcement
learning network.
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The agent’s output and uncertainty estimation results for the normal scenario are
shown in Figure 4. In Figure 4B, for the situation of Figure 4C, the GMM output result
for each action can be checked. The values 0–9 of Figure 4B represent ten decisions: 0, 1,
2, 3 represent 0, 1, −1, −4 m/s2 as longitudinal direction and lane-keeping decisions as
lateral direction, respectively; 4, 5, 6 represent 0, 1, −1 m/s2, left-lane-change decision, and
7, 8, 9 represent 0, 1, −1 m/s2, right-lane-change decision. The uncertainty values were
all lower than the threshold csa f e

v during an episode in the normal scenario. In Figure 4B,
the probability of the expected action value of the lane-change decision has many peaks.
This indicates that the epistemic uncertainty increases from Equation (5). However, as the
learning progressed, the value gradually decreased. In Figure 4B, the probability of the
expected action value of the lane-change decision has many peaks. This indicates that the
epistemic uncertainty increases from Equation (5). However, as the learning progressed,
the value gradually decreased.
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In Figure 5A, the DwGM-Q agent observes the uncertainty value in the stopping
scenario. The cv exceeds the csa f e

v after the stop vehicle is detected. Figure 5B shows the
output of the expected action value after the stop vehicle is detected. The GMM of most
decisions has many peaks, which causes the uncertainty cv to be increased in Figure 5A.
Despite the unexpected environment that was not experienced in the learning process,
the uncertainty value exceeded the threshold csa f e

v , causing asa f e to be performed, and the
episode was completed without a collision.
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Figure 6C shows the situation in which the speeding vehicle passes through the ego
vehicle. When the speeding vehicle passes through the agent, the cv exceeds csa f e

v , and asa f e
is performed. Figure 6B shows the GMM values at that time. In Figure 6B, most GMMs are
not single distributed, but have high deviation. This causes the cv to be increased.
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Table 2 shows the performance of DeepSet-Q, RPF-Ensemble [23], and DwGM for the
three types of scenarios. The value for the performance was quantified through 100 episodes.

Table 2. Experiment Results.

Normal Scenario
Unexpected Scenario

Stop Scenario Speeding Scenario

Mean Velocity
(m/s)

Collision
Rate (%)

Steps Per s
(SPS)

Collision
Rate (%)

Steps per s
(SPS)

Collision
Rate (%)

Steps Per s
(SPS)

DeepSet-Q 21.9 2 213.5 100 213.6 100 213.6
DeepSet-Q

(15–55 m/s) 21.8 3 213.6 100 213.5 0 213.5

RPF-
Ensemble 23.4 2 165.5 0 165.3 0 165.6

DwGM-Q 22.1 2 184.4 0 184.5 0 184.5

There is no significant difference between the average speed and the collision rate for
all methods in a standard scenario. The DeepSet-Q for SPS was the highest of all agents,
and the proposed method was the second highest. However, the existing DeepSet-Q agent
caused a crash in unexpected scenarios. On the other hand, the RPF-ensemble method or
the proposed method, does not cause crashes even in unexpected scenarios. Therefore, this
result shows that the proposed method can also cope with unexpected scenarios, and the
computational speed is also faster than the existing method. The DwGM-Q network is
faster than the ensemble method because it can obtain the uncertainty directly through a
single calculation without calculating the network several times.

In addition, we have trained DeepSet-Q networks in an environment where sur-
rounding vehicles have speeds of 15–55 m/s. This means that the DeepSet-Q agent has
learned the speeding scenario. The DeepSet-Q agent performed well without colliding in
the speeding scenario but collided in the stop scenario. This shows that if the DeepSet-Q
agent learns an unexpected scenario, it also performs well. However, there are numerous
unexpected situations, such as sensor malfunctions, various behaviors of aggressive ve-
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hicles, and complex situations that occur in real life. It is challenging to learn them all.
Therefore, it is meaningful to deal with unexpected scenarios using uncertainty.

7. Conclusions

The existing DeepSet-Q algorithm failed to detect uncertainty and avoided collisions
for unexpected scenarios. Existing ensemble methods avoid collisions in unexpected
scenarios. However, they have the disadvantage of taking a lot of computation time due
to multi-network tasks. This paper quantified the uncertainty by adding MDN to the
end of the existing DeepSet-Q network to solve these problems. The experiment showed
that uncertainty was well detected, and the calculation speed was faster than the existing
ensemble method. The most conservative decision was selected as the break action, but it
can also be replaced by something like a rule-based decision controller with higher usability.

The proposed method is proper when safety and real time are guaranteed in embedded
environments such as autonomous driving. Although this paper deals with decision
making in autonomous driving, it can be used in various fields, such as vehicle control and
aircraft control.

Furthermore, The DwGM-Q agent could distinguish between aleatoric and epistemic
uncertainty contrary to the ensemble technique. However, for DwGM-Q networks, the
learning time took approximately four times longer than for DeepSet-Q. Reducing learning
time with various learning techniques is also a task to be solved [32–34]. Since the uncer-
tainty threshold is set through a heuristic, it is also necessary to establish a standard for
automatically quantifying the threshold depending on the situation.
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Appendix A

Hyperparameters for reinforcement learning are shown in Tables 1 and 2. The param-
eters are set from [11] and empirical experiments.

Table A1. DeepSet-Q hyperparameters.

Learning rate 1 × 104

ρ node 80
∅ node 20

εmin 0.1
Batch size 64
Buffer size 100,000
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Table A2. DwGM-Q hyperparameters.

Learning rate 1 × 104

# of Gaussian 5
ρ node 80
∅ node 20

εmin 0.1
Batch size 64
Buffer size 100,000
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