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Abstract: Harmonic noises widely exist in industrial fields and always affect the computational
accuracy of neural network models. The existing original adaptive zeroing neural network (OAZNN)
model can effectively suppress harmonic noises. Nevertheless, the OAZNN model’s convergence
rate only stays at the exponential convergence, that is, its convergence speed is usually greatly
affected by the initial state. Consequently, to tackle the above issue, this work combines the dynamic
characteristics of harmonic signals with prescribed-time convergence activation function, and pro-
poses a prescribed-time convergent adaptive ZNN (PTCAZNN) for solving time-varying matrix
inverse problem (TVMIP) under harmonic noises. Owing to the nonlinear activation function used
having the ability to reject noises itself and the adaptive term also being able to compensate the
influence of noises, the PTCAZNN model can realize double noise suppression. More importantly,
the theoretical analysis of PTCAZNN model with prescribed-time convergence and robustness per-
formance is provided. Finally, by varying a series of conditions such as the frequency of single
harmonic noise, the frequency of multi-harmonic noise, and the initial value and the dimension of
the matrix, the comparative simulation results further confirm the effectiveness and superiority of
the PTCAZNN model.

Keywords: harmonic noise; prescribed-time convergence; robustness; adaptive; matrix inversion;
zeroing neural network

1. Introduction

Matrix inversion [1], matrix pseudo-inversion [2], quadratic programming [3], and
other mathematical problems play a critical role in many science and engineering appli-
cations, such as robotics [4,5], radar waveform design [6], and pattern recognition [7].
Therefore, it is important to seek an efficient way to implement and solve such mathe-
matical problems. At present, a number of research works have been devoted to solving
matrix inverses and other similar math problems. In brief, such mathematical problems
can be solved by numerical methods [8] and neural network methods [9,10]. One of the
classical numerical methods is Newton’s iteration [11]. However, the operation flow of the
numerical method is linear operation, so it can not effectively solve the above mathematical
problems when dealing with a large-scale matrix operation.

To address this issue, neural network models are frequently reported and studied in
science and engineering areas [12,13]. The gradient neural network (GNN) [14,15] based
on a non-negative energy function, as a recurrent neural network (RNN), has shown good
properties in many static engineering and mathematical problems [16]. Nevertheless,
when the GNN is utilized for dealing with the dynamic problems, it often shows poor
performance [9]. Specifically, when the rate of change of the theoretical solution of the
analogous mathematical problem increases, the neural state of the GNN model cannot
converge to the exact theoretical solution.
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In order to effectively solve the above issues, a new neural network belonging to RNN
was put forward, called the zeroing neural network (ZNN) [17,18]. Zeroing neural network
aims at dynamic problems [19–22], including but not limited to dynamic matrix inversion.
The ZNN model is mainly composed of error function and design formula. By solving
the first-order differential equation, the error function can converge to zero. It is worth
mentioning that ZNN has the advantages of high-speed parallel computing, and it can not
only be used in some mathematical fields [23–25] but also has been successfully applied
to many areas of robotics [4,26–29]. In addition, the nonlinear activation function (AF),
such as the power-Sigmoid AF, power-Sum AF, and Sinh AF, can be adopted into the ZNN
model to effectively improve the convergence property [30,31]. For example, a succinct
nonlinear activation function can make the ZNN accomplish finite-time convergence for
settling the matrix pseudo-inverse problem [32]. By utilizing a novel AF, Li et al. proposed
a ZNN to find the square root of dynamic matrix within the predefined time [33]. Although
tremendous success has been achieved for solving time-varying problems with ZNN, most
existing ZNNs ignore the noise impact. At the same time, time is exceptionally precious in
real-time computing. However, in fact, advance denoising and filtering will consume lots
of time, so it can not effectively realize the online real-time computation [34]. Therefore, a
ZNN model was provided to reject various noises by introducing the integration term of
error function [34].

Harmonic noise is a kind of particular noise that widely exists in mathematical ap-
plication and industrial fields [35], such as power transmission lines [36], adaptive line
enhancer [37], and rolling element bearing [38]. Moreover, according to the Fourier trans-
form [39], any type of noise can be represented by a series of harmonic noise under certain
conditions. Therefore, it is meaningful to seek an effective method to suppress or compen-
sate the harmonic noise. Up to now, there are also some reports of rejecting the harmonic
noise. For instance, Jacob et al. investigated a special modulator to resist the harmonic
noise in multilevel converters [40]. A modified primal-dual neural network was presented
for the motion control of redundant manipulators under harmonic noises [41]. Guo et
al. provided an original adaptive ZNN (OAZNN) model [42], which aims to design an
adaptive mechanism for harmonic noises. Nevertheless, the above ZNN with rejecting
harmonic noise disturbance can not achieve prescribed-time convergence, that is, their
convergence speed is usually greatly impacted by the initial state. Hence, according to
the dynamic characteristics of harmonic signals, and combining a novel prescribed-time
activation function (PTAF), a prescribed-time convergent adaptive ZNN (PTCAZNN) to
settle the time-varying matrix inverse problem (TVMIP) is proposed. Due to the PTAF used
having the ability to reject noises itself and the adaptive term also being able to compen-
sate the influence of harmonic noises availably, the PTCAZNN model can realize double
noise suppression and prescribed-time convergence. Finally, through detailed theoretical
derivation and simulation examples, it is proved that, compared with the OAZNN, the
PTCAZNN can achieve faster convergence speed and better robustness.

In this paper, a distinct ZNN design scheme is proposed, which can accomplish the
following tasks in unified dynamics: achieve prescribed-time convergence in a noiseless
environment, learn and compensate harmonic noise adaptively. The contributions of this
paper will be described below:

• The innovation of this work lies in the design of the PTCAZNN model to solve the
TVMIP. It is worth noting that a novel AF with acceleration effect and noise suppres-
sion is introduced to the adaptive ZNN with rejecting harmonic noise disturbance to
achieve double noise suppression and prescribed-time convergence.

• Rigorous theoretical analyses are implemented in order to demonstrate the stability
and prescribed-time convergence of the PTCAZNN model, as well as its robustness
under single-harmonic or multiple-harmonic noises.

• A series of simulations including free noise, single-harmonic noise, and multi-harmonic
noise are given to verify that the PTCAZNN has superior convergence and robustness
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than the OAZNN. In addition, initial value sensitivity results show that the PTCAZNN
model is less affected by the initial state.

The rest of this paper is organized as follows: In Section 2, the matrix inversion and
the models design process are described in detail. Section 3 mainly analyzes the stability,
convergence, and robustness of PTCAZNN model from the perspective of theoretical proof.
In Section 4, the state fitting processes and residual error convergence results after changing
the frequency of the harmonic noise, the model parameters, and the initial state of the
model are given. Section 5 completely summarizes the overall work of this paper and the
prospect of future work.

2. Problem Formulation and Models Design

In this section, we provide the expression of the time-varying matrix inversion. Sec-
ond, the design scheme of the OAZNN model and the PTCAZNN model with double
suppression of harmonic noise are introduced.

2.1. Problem Formulation

The formulation of the TVMIP is given [42]:

A(t)X(t) = I, (1)

in which A(t) ∈ Rm×m represents a smooth time-varying coefficient matrix, X(t) ∈ Rm×m

is an unknown matrix to be solved, and I ∈ Rm×m denotes a unit matrix.

2.2. Original Adaptive ZNN

According to the common ZNN design [9], the error function is defined as

E(t) = A(t)X(t)− I ∈ Rm×m. (2)

The Ė(t) can be obtained [9]:

Ė(t) = Ȧ(t)X(t) + A(t)Ẋ(t). (3)

In view of the existence of noise, a noise-disturbed design formulation is investi-
gated [42]:

Ė(t) = −λE(t) + N(t). (4)

in which N(t) represents additive noises, and λ ∈ R > 0. Although some scholars proved
that the conventional ZNN derived by (4) has global exponential convergence in a free
noise environment, it cannot effectively handle time-varying mathematical issues under
harmonic noises [23,24]. Thus, Guo et al. presented an original adaptive ZNN model
to reject harmonic noises [42]. To be more specific, an additional term L(t) is defined to
compensate for harmonic noises, which is

Ė(t) = −λE(t)− L(t) + N(t). (5)

It is worth noting that the additive noises mainly considered in this paper are harmonic
noises, and its element form is defined as

nij(t) = Γ sin(ωt + ϕ) = Γ sin(2π f t + ϕ), (6)

with i, j ∈ {1, . . . , m}. In this paper, it is assumed that the frequency f is given and known,
and the amplitude Γ and the phase ϕ are unknown. The following equation is obtained by
differentiating Equation (6) twice:

n̈ij(t) = −4π2 f 2Γ sin(2π f t + ϕ) = −4π2 f 2nij(t). (7)
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According to Equation (7), we introduce an intermediate auxiliary variable yij(t) to
better describe the dynamic of nij(t):

ṅij(t) = yij(t), ẏij(t) = −4π2 f 2nij(t). (8)

The matrix form is shown below according to Equation (8):

Ṅ(t) = Y(t), Ẏ(t) = −4π2 f 2N(t), (9)

in which Y(t) ∈ Rm×m and its element is yij(t). It is not hard to know that, if f of harmonic
signal is known, the unknown Γ and ϕ could be adaptively predicted from Equation (9). The
following OAZNN formular based on Equation (5) is designed for suppressing harmonic
noises (6): 

Ė(t) = −λE(t)− L(t) + N(t),
L̇(t) = G(t) + 4π2 f 2ξE(t),
Ġ(t) = −4π2 f 2L(t),

(10)

in which ξ is a designed parameter, and G(t) is an auxiliary variable that is introduced
to better describe the compensation noise term L(t). In this paper, ξ = 1 by default. By
combining the Equations (3) and (10), a detailed OAZNN model is obtained:

A(t)Ẋ(t) = −Ȧ(t)X(t)− λ(A(t)X(t)− I)− L(t) + N(t),
L̇(t) = G(t) + 4π2 f 2ξE(t),
Ġ(t) = −4π2 f 2L(t).

(11)

2.3. Prescribed-Time Convergent Adaptive ZNN Model

The OAZNN model considers the compensation and learning of harmonic noises, so
as to achieve the effect of suppressing harmonic noises. However, its convergence ability is
still at the level of exponential convergence, and the convergence effect is largely affected
by the initial state. Therefore, on the basis of the OAZNN model (11), by employing a
well-designed activation function (AF) with reject noises and an adaptive term η(t)L(t)
that can also compensate the influence of harmonic noises availably, we propose a novel
prescribed-time convergent adaptive ZNN (PTCAZNN) model to realize double noise
suppression and prescribed-time convergence.

Remark 1. Compared with the OAZNN model, the proposed novel PTCAZNN model has innova-
tions in the following three aspects:

• The convergent rate is faster; specifically, the PTCAZNN model can converge in the pre-
scribed time.

• Noise-suppression performance is better; specifically, the PTCAZNN model can realize double
noise suppression.

• The initial value sensitivity is lower; specifically, the PTCAZNN model is less affected by the
initial state.

The model design of PTCAZNN is shown below:

Ė(t) = −λΘ(E(t))− η(t)L(t) + N(t), (12)

among them, Θ(·) is a mapping array composed of the activation function θ(·), and

θ(e) = (k1|e|r + k2|e|
1
r + k3)sign(e) + k4e, (13)
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where 0 < r < 1, k1 > 0, k2 > 0, k3 ≥ 0, k4 ≥ 0. In addition, η(t) is the switching item.
When there is free noise, the default η(t) = 0, and the default η(t) = 1 when noise exists,
that is

η(t) =

{
0, ‖N(t)‖F = 0,
1, ‖N(t)‖F 6= 0.

Remark 2. We make some detailed remarks about the adaptive term and the activation function
PTAF (13).

• The function of −η(t)L(t) in (12) is adaptive learning and compensation for the effects of
harmonic noise that leads to the harmonic adaptive and predefined-time convergent capability
of the PTCAZNN model.

• The function of k3sign(e) and k4e in PTAF (13) is to tolerate noises; in addition, the adaptive
term can learn and compensate noises, so that the PTCAZNN model can realize double
suppression of harmonic noises.

• The function of k1|e|r and k2|e|
1
r in PTAF (13) is to reach the prescribed-time convergence. In

addition, the PTAF (13) can accelerate the convergence of the PTCAZNN model.

Combining Equations (9) and (12), one can obtain:
Ė(t) = −λΘ(E(t))− η(t)L(t) + N(t),
L̇(t) = G(t) + 4π2 f 2ξE(t),
Ġ(t) = −4π2 f 2L(t).

(14)

Lastly, the detailed PTCAZNN model can be derived in combination with Equations (3)
and (14): 

A(t)Ẋ(t) = −Ȧ(t)X(t)− λΘ(A(t)X(t)− I)− η(t)L(t) + N(t),
L̇(t) = G(t) + 4π2 f 2ξE(t),
Ġ(t) = −4π2 f 2L(t).

(15)

For quantitative illustration, we summarize and compare the OAZNN model (11)
and PTCAZNN model (15) in Table 1. Both of them can effectively solve the TVMIP, but
OAZNN (11) can only realize exponential convergence, and the PTCAZNN model (15)
can achieve predefined time convergence, that is, convergence can be completed within
a specified time. At the same time, PTCAZNN (15) adds a predefined time activation
function, which has a better performance of noise suppression.

Table 1. Comparison of OAZNN (11) and PTCAZNN (15) for time-variant matrix inversion.

Model OAZNN Model PTCAZNN Model

Design Formula Ė(t) = −λ(E(t))− L(t) Ė(t) = −λΘ(E(t))− η(t)L(t)
Convergence exponential convergence predefined-time convergence
Robustness strong stronger

Initial sensitivity high low

3. Theoretical Analysis

This section mainly analyzes and proves the global asymptotic stability, prescribed-
time convergence, and robustness of the PTCAZNN model (15).

3.1. Global Asymptotic Stability

Theorem 1. Given an invertible matrix A(t) and starting from any initial value X(0), the PT-
CAZNN model (15) is globally convergent under the free-noise environment, that is

lim
t→∞
‖E(t)‖F = 0.
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Proof of Theorem 1. When there is no noise, η(t) = 0 and the PTCAZNN model (15) can
be simplified to an element representation:

ėij(t) = −λθ(eij(t)), (16)

where i, j ∈ {1, . . . , m}. We construct a Lyapunov function:

v(t) = e2
ij(t). (17)

The time-derivative of v(t) (i.e., v̇(t)) is derived via the following equation:

v̇(t) = 2ėijeij(t). (18)

Substituting Equation (16) into Equation (18) to obtain

v̇(t) = −2λθ(eij(t))eij(t)

= −2λ[(k1|eij(t)|r + k2|eij(t)|
1
r + k3)sign(eij(t)) + k4eij(t)]eij(t)

= −2λ(k1|eij(t)|r+1 + k2|eij(t)|
1
r +1 + k3|eij(t)|+ k4|eij(t)|2).

(19)

We know from Equation (13) that 0 < r < 1, k1 > 0, k2 > 0, k3 ≥ 0, k4 ≥ 0. Obviously,
v̇(t) ≤ 0, v(t) ≥ 0. In a word, v(t) is positive definite and v̇(t) is negative definite. Further-
more, Equation (17) is radially unbounded, so v(t) is globally asymptotically stable. Finally,

lim
t→∞
‖E(t)‖F = 0. (20)

In summary, it is proved that E(t) can achieve global asymptotic stability when the
adaptive term η(t) is turned off. Thus, the proof is completed now.

3.2. Prescribed-Time Convergence

In Section 3.1, it is proved that the error norm of the PTCAZNN has the property of
global asymptotic stability. In this part, it is given that the PTCAZNN model can realize
prescribed-time convergence when η(t) = 0.

Theorem 2. Given an invertible matrix A(t) and starting from any initial value X(0), the PT-
CAZNN model (15) converges to zero in the predicted time tp under the noise-free environment,

tp ≤
{ r

λk2(1−r) +
1

λk1(1−r) , if v(0) > 1,
1

λk1(1−r) , if 0 ≤ v(0) ≤ 1.

Proof of Theorem 2. Based on Theorem 1, we have

v̇(t) = −2λ(k1|eij(t)|r+1 + k2|eij(t)|
1
r +1 + k3|eij(t)|+ k4|eij(t)|2)

≤ −2λ(k1|eij(t)|r+1 + k2|eij(t)|
1
r +1).

(21)

Case 1: v(0) > 1, assume v(t1) = 1, v(t1 + t2) = 0.
(a) When 0 ≤ t ≤ t1, following Equation (21), we further have

v̇(t) ≤ −2λ(k1|eij(t)|r+1 + k2|eij(t)|
1
r +1) ≤ −2λk2|eij(t)|

1
r +1.

Substituting |eij(t)| = v
1
2 (t) into the above equation, one can obtain

v̇(t) =
dv(t)

dt
≤ −2λk2v

r+1
2r (t).
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Applying the method of variable separation, we obtain

∫ v(t1)

v(0)
v−

r+1
2r (t)dv(t) ≤ −2λk2

∫ t1

0
dt.

It can be concluded as follows:

t1 ≤
r(1− v

r−1
2 (0))

λk2(1− r)
≤ r

λk2(1− r)
. (22)

(b) When t1 < t ≤ t1 + t2, we have

v̇(t) ≤ −2λ(k1|eij(t)|r+1 + k2|eij(t)|
1
r +1) ≤ −2λk1|eij(t)|r+1 = −2λk1v

r+1
2 (t).

Similarly, employing the method of variable separation again, one can obtain

∫ v(t1+t2)

v(t1)
v−

r+1
2 (t)dv(t) ≤ −2λk1

∫ t1+t2

t1

dt.

Solving the above inequality, we obtain:

t2 ≤
1

λk1(1− r)
. (23)

To sum up, combining Inequalities (22) and (23), the final convergence time is as follows:

tp = t1 + t2 ≤
r

λk2(1− r)
+

1
λk1(1− r)

.

Case 2: 0 ≤ v(0) ≤ 1, assume v(t3) = 0. The proof process is similar to the previous
the Case 1(b), so we can obtain:

tp = t3 ≤
1

λk1(1− r)
. (24)

In conclusion, the above proofs confirm that the ‖E(t)‖F of PTCAZNN (15) can
achieve prescribed-time convergence in the free-noise environment. Thus, the proof is
completed now.

3.3. Robustness in a Single-Harmonic Noise Environment

In the single-harmonic noise environment, the switching term η(t) = 1, which means
that the adaptive term L(t) is turned on to compensate for the noise N(t).

Theorem 3. Given an invertible matrix A(t) and starting from any initial value X(0), the
PTCAZNN model (15) is globally convergent under the single-harmonic noise environment, that is,

lim
t→∞
‖E(t)‖F = 0.

Proof of Theorem 3. When noise exists, η(t) = 1, Equation (14) can be reformulated as

Ė(t) = −λΘ(E(t))− L(t) + N(t),
L̇(t) = G(t) + 4π2 f 2ξE(t),
Ġ(t) = −4π2 f 2L(t),
Ṅ(t) = Y(t),
Ẏ(t) = −4π2 f 2N(t).

(25)
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Defining Q(t) = L(t) − N(t) and W(t) = G(t) − Y(t), Equation (25) is rewritten
as follows: 

Ė(t) = −λΘ(E(t))−Q(t),
Q̇(t) = W(t) + 4π2 f 2ξE(t),
Ẇ(t) = −4π2 f 2Q(t).

(26)

with element form 
ėij(t) = −λθ(eij(t))− qij(t),
q̇ij(t) = wij(t) + 4π2 f 2ξeij(t),
ẇij(t) = −4π2 f 2qij(t).

(27)

Then, we construct a Lyapunov function:

v(t) =
e2

ij(t)

2
+

q2
ij(t)

8π2 f 2ξ
+

w2
ij(t)

32π4 f 4ξ
. (28)

Hence,

v̇(t) = ėij(t)eij(t) +
q̇ij(t)qij(t)

4π2 f 2ξ
+

ẇij(t)wij(t)
16π4 f 4ξ

= −λθ(eij(t))eij(t)− qij(t)eij(t) +
qij(t)wij(t)

4π2 f 2ξ
+ qij(t)eij(t)−

qij(t)wij(t)
4π2 f 2ξ

= −λθ(eij(t))eij(t).

(29)

Bringing PATF (13) into Equation (29), we obtain:

v̇(t) = −λ(k1|eij(t)|r+1 + k2|eij(t)|
1
r +1 + k3|eij(t)|+ k4e2

ij(t)). (30)

It can be known from Equation (30) that v̇(t) ≤ 0. Thus, v(t) is non-increasing, that is,
v(t) ≤ v(0) and eij(t), qij(t) and wij(t) are bounded. The largest invariant set is explained
by setting v̇(t) = 0:

v̇(t) = 0⇒ −λθ(eij(t))eij(t) = 0⇒ eij(t) = 0. (31)

In accordance with LaSalle’s invariance theorem, we obtain

lim
t→∞
‖E(t)‖F = 0. (32)

In addition, Expression (14) is a compact matrix form of the equations:
ėij(t) = −λΘ(eij(t))− lij(t) + nij(t),
l̇ij(t) = gij(t) + 4π2 f 2ξeij(t),
ġij(t) = −4π2 f 2lij(t),

(33)

considering lim
t→∞

eij(t) = 0, so we obtain

−lij(t) + nij(t)→ 0, as t→ ∞.

The above results show that, if the frequency f of noise N(t) is known, L(t) and G(t)
can adaptively learn and estimate Γ and ϕ, and the error ‖E(t)‖F can effectively approach
0. Thus, the proof is completed.

3.4. Robustness in a Multiple-Harmonic Noise Environment

In this part, the main consideration is to extend PTCAZNN to the multiple-harmonic
noise in [42]. Multiple-harmonic noise refers to the noise of multiple harmonic frequencies.
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N̂(t) ∈ Rm×m is defined as a matrix form multiple-harmonic noise. Its element form is
as follows:

n̂ij(t) =
k

∑
δ=1

nδ(t) =
k

∑
δ=1

Γδ sin(2π fδt + ϕδ), (34)

with i, j ∈ {1, . . . , m} and δ ∈ {1, . . . , k}. Likewise, fδ is known, whereas Γδ and ϕδ need to
be estimated. The following formula is acquired by differentiating Equation (34) twice for
time t:

¨̂nij(t) =
k

∑
δ=1

n̈δ(t) =
k

∑
δ=1
−4π2 f 2

δ Γδ sin(2π fδt + ϕδ) =
k

∑
δ=1
−4π2 f 2

δ nδ(t). (35)

The ˙̂nij(t) is obtained as follows [42]:
˙̂nij(t) = ∑k

δ=1 yδ(t),
ṅδ(t) = yδ(t),
ẏδ(t) = −4π2 f 2

δ nδ(t).

(36)

The expression (36) can be redescribed as
˙̂N(t) = ∑k

δ=1 Yδ(t),
Ṅδ(t) = Yδ(t),
Ẏδ(t) = −4π2 f 2

δ Nδ(t).

(37)

It is worth noting that nδ(t) and yδ(t) are element representations in (36), and
Nδ(t) ∈ Rm×m and Yδ(t) ∈ Rm×m are matrix representations in (37).

Here, we give the OAZNN model by combining the multiple-harmonic noise N̂(t),
which is convenient to make a detailed comparison between the OAZNN model and the
PTCAZNN model in Section 4.4.

A(t)Ẋ(t) = −Ȧ(t)X(t)− λ(E(t))−∑k
δ=1 Lδ(t) + N̂δ(t),

L̇δ(t) = Gδ(t) + 4π2 f 2
δ ξE(t),

Ġδ(t) = −4π2 f 2
δ Lδ(t),

with E(t) = A(t)X(t)− I,

(38)

where δ ∈ {1, 2, .., k}. Equation (38) can be regarded as Equation (11) when k = 1. In
addition, the PTCAZNN model by combining the multiple-harmonic noise N̂(t) can be
described as

A(t)Ẋ(t) = −Ȧ(t)X(t)− λΘ(E(t))− η(t)∑k
δ=1 Lδ(t) + N̂δ(t),

L̇δ(t) = Gδ(t) + 4π2 f 2
δ ξE(t),

Ġδ(t) = −4π2 f 2
δ Lδ(t),

with E(t) = A(t)X(t)− I.

(39)

Similarly, Equation (39) can be regarded as Equation (15) when k = 1.

Theorem 4. Given an invertible matrix A(t) and starting from any initial value X(0), PTCAZNN
model (15) is globally convergent under the multiple-harmonic noise environment, i.e., N̂(t) =
[nij(t)] = [Σk

δ=1Γδ sin(2π fδt + ϕδ)], i, j ∈ {1, . . . , m} and δ ∈ {1, . . . , k}, where fδ is known
frequency, and ϕδ and Γδ are unknown phase and amplitude, respectively.

Proof of Theorem 4. The proof of this theorem can be obtained from the superposition
principle proved in Theorem 3. The derived PTCAZNN model can effectively deal with
the mathematical problems under the multiple-harmonic noise.
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Remark 3. According to Theorem 2, the proposed model can converge within r
λk2(1−r) +

1
λk1(1−r)

or 1
λk1(1−r) . This means that we can prescribe the convergent time by set parameters r, λ, k1 and k2.

Furthermore, we introduce a term L(t) for the proposed model to adaptively learn and compensate
N(t). Therefore, we call the proposed model a prescribed-time convergent adaptive model.

4. Comparative Verifications

The comparison results of various situations of OAZNN (11) and PTCAZNN (15) are
presented aimed at solving the TVMIP in this section. Specifically, a series of simulations
including free noise, single-harmonic noise, and multi-harmonic noise are discussed to
verify that convergence and robustness of the PTCAZNN model (15). It should be noted
that all amplitudes of harmonic noise Γ = 103, and the only difference is the frequency f . In
addition, the simulation results of (11) and (15) with periodic and aperiodic characteristics
under multiple-harmonic noise are given. Finally, simulation results under different initial
values are also presented in this section.

The following time-varying matrix A(t) is given:

A(t) =
[

sin(2t) cos(2t)
−5 cos(2t) 5 sin(2t)

]
∈ R2×2. (40)

For verifying the solution correctness of the PTCAZNN model, the theoretical inverse
A−1(t) of matrix (40) is provided as

A−1(t) =
[

sin(2t) −1/5 cos(2t)
cos(2t) 1/5 sin(2t)

]
∈ R2×2. (41)

4.1. Noise-Free Environment

For the case with no noise, the proposed PTCAZNN model in this paper is compared
with the existing OAZNN model (11) for solving TVMIP of (40).

Figure 1a represents the state trajectory of X(t) when the λ = 2 and the initial value
X(0) ∈ [0, 1]2×2. The red dotted lines are the ideal trajectory of X(t), the cyan dotted lines
and blue lines represent X(t) using the OAZNN model (11), and the PTCAZNN model (15)
to solve TVMIP of (40), respectively. Compared with the OAZNN model (11), the state
trajectory generated by (15) is more consistent with the trajectory of theoretical solution.
The predefined convergence time of the PTCAZNN model (15) is calculated as follows
without noise according to Inequality (24). In this simulation, we set r = 1

2 , k1 = k2 = 1,
k3 = k4 = 2,

tp = t3 ≤
1

λk1(1− r)
= 1.

Figure 1b indicates that ‖E(t)‖F of (15) converges before 0.3 s, while ‖E(t)‖F of (11)
converges after about 3.5 s. In Figure 1b, the convergence time of the PTCAZNN model (15)
is within the upper bound given by (24), so the simulation results also effectively confirm
Theorem 2.

In order to quantitatively illustrate that PTCAZNN model (15) has more excellent
convergence performance under the free-noise environment, the following groups of
parameters are tested, and the comparison results of specific convergence time are shown in
Table 2. When λ = 2, 10, 20, 50, the corresponding convergence time of OAZNN model (11)
is 3.0527 s, 0.7030 s, 0.3161 s, and 0.1275 s, respectively, while the convergence time of the
PTCAZNN model (15) is 0.2466 s, 0.1030 s, 0.0265 s, and 0.0105 s. It can be seen that the
convergence time of the PTCAZNN model (15) is much faster than the OAZNN model (11).
Moreover, the theoretical convergence time of (15) can be calculated as 1 s, 0.2 s, 0.1 s,
and 0.04 s, respectively, by Formula (24). Therefore, PTCAZNN (15) can prescribe the
convergent time by set parameters for solving TVMIP of (40) in the absence of noise.
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(a) State X(t) (b) Error ‖E(t)‖F

Figure 1. Simulation results by the OAZNN model (11) and PTCAZNN model (15) with λ = 2 for
TVMIP of (40) in the absence of noise.

Table 2. Convergence time (CT) of the OAZNN model and PTCAZNN model in the absence of noise
(the convergence accuracy is ‖E(t)‖F < 10−2).

Parameter OAZNN Model
PTCAZNN Model

Practical CT Theoretical
Computing CT

λ = 2 3.0527 s 0.2466 s 1 s

λ = 10 0.7030 s 0.1030 s 0.2 s

λ = 20 0.3161 s 0.0265 s 0.1 s

λ = 50 0.1275 s 0.0105 s 0.04 s

4.2. Single-Harmonic Noise with a Near-Zero Frequency

In fact, the influence of noise can not be ignored, and some noise is likely to lead to the
failure of the whole industrial experiment [36]. Thus, the robustness of the model is a key
index to appraise the performance of the model. Thus, we take the single-harmonic noises
into account in this part. In this simulation examples, the frequency f of single-harmonic
noise is close to zero, i.e.,

N(t) = [nij(t)] = [103 sin(0.02πt + 1)] ∈ R2×2, (42)

where the frequency f = 0.02π/(2π) = 0.01 Hz. The homologous results are displayed
in Figures 2 and 3. As shown in Figures 2a and 3a, the solid blue lines represent the state
trajectory solved by the models, and the dotted red lines are the theoretical solutions. It can
be found that model (15) can match the theoretical solution faster than model (11) when
solving the TVMIP in the environment of single-harmonic noise.

By comparing Figures 2b and 3b, we realize that ‖E(t)‖F solved by OAZNN (11)
reaches 0 after about 0.7 s, while ‖E(t)‖F in model (15) converges after about 0.047 s. The
convergence speed of (15) is about ten times faster than (11). Due to the PTAF (13) used
having the ability to reject noises itself and the adaptive term −η(t)L(t) being able to
compensate the influence of harmonic noises availably, the PTCAZNN model (15) can
realize double noise suppression. It can be concluded that model (15) can suppress noise
better than model (11) proposed in previous work [42] under the low frequency single-
harmonic noise. The results are the same as expected by previous theoretical results in
Section 3.2.
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(a) State X(t) (b) Error ‖E(t)‖F

Figure 2. Simulation results by the OAZNN model (11) with λ = 10 for TVMIP of (40) under the
same single-harmonic noise when f = 0.01 Hz.

(a) State X(t) (b) Error ‖E(t)‖F

Figure 3. Simulation results by the PTCAZNN model (15) with λ = 10 for TVMIP of (40) under the
same single-harmonic noise when f = 0.01 Hz.

4.3. Single-Harmonic Noise with Nonzero Frequency

In this part, the OAZNN model (11) and PTCAZNN model (15) are tested under the
single-harmonic noise with the nonzero frequency as follows:

N(t) = [nij(t)] = [103 sin(100πt + 1)], (43)

where f = 100π/(2π) = 50 Hz. The convergence results of state trajectory X(t) and
‖E(t)‖F of OAZNN (11) and model (15) are shown in Figures 4 and 5, respectively. By
comparing Figures 4a and 5a, it is obvious that (11) can fit the trajectory A−1(t). However,
its fitting speed is not as fast as (15). Similarly, the convergence process of ‖E(t)‖F in
Figure 4b can be completed within 3 s, while the ‖E(t)‖F solved by (15) in Figure 5b can
converge within 0.2 s. Hence, one can see that the convergence speed of (15) is much faster
than that of (11) when f = 50 Hz. In conclusion, these results confirm the validity and
superiority of (15) for TVMIP under the single-harmonic noise with f = 50 Hz once more.

To verify the role of the design parameter λ in model (15), we observe the performance
of the model by varying the design parameter λ. To be specific, we employ different λ (i.e.,
λ = 20 and λ = 50) for model (15) in case of f = 50 Hz. Relevant simulation results are
shown in Figure 6, which show that ‖E(t)‖F of (15) converges to zero, indicating that the
model can successfully solve TVMIP of (40). As illustrated in Figure 6, it is evident that
the convergence rate of model (15) can be successfully improved by increasing the λ in the
same frequency f = 50 Hz.
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(a) State X(t) (b) Error ‖E(t)‖F

Figure 4. Simulation results by the OAZNN model (11) with λ = 10 for TVMIP of (40) under the
same single-harmonic noise when f = 50 Hz.

(a) State X(t) (b) Error ‖E(t)‖F

Figure 5. Simulation results by the PTCAZNN model (15) with λ = 10 for TVMIP of (40) under the
same single-harmonic noise when f = 50 Hz.

(a) λ = 20 (b) λ = 50

Figure 6. Simulation results by the PTCAZNN model (15) with λ = 20, 50 for TVMIP of (40) under
the same single-harmonic noise when f = 50 Hz.

4.4. Multiple-Harmonic Noises with Periodic and Aperiodic Characteristics

In this subsection, OAZNN (38) and PTCAZNN (39) are conducted to solve TVMIP
under multiple-harmonic noises. The following multiple-harmonic noise with periodic
period is studied firstly as
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N̂(t) = [n̂ij(t)] = [sin(4πt + 1) + 3 sin(8πt + 2) + 5 sin(12πt + 3)]. (44)

As can be seen from Figures 7 and 8, the ‖E(t)‖F synthesized by the OAZNN model (38)
and PTCAZNN model (39) can converge to zero, indicating that X(t) can converge to the
theoretical A−1(t). However, through comparative observations, it can be found that the
convergence speed of (39) is 10 times faster than that of (38) under the same multiple-
harmonic noise. For example, when the λ = 20, model (38) can achieve convergence within
0.6 s, while (39) can achieve convergence within 0.06 s.

(a) λ = 20 (b) λ = 50

Figure 7. Simulation results under the constant periodic multiple-harmonic noise, OAZNN model (38)
for TVMIP of (40) with λ = 20, 50, respectively.

(a) λ = 20 (b) λ = 50

Figure 8. Simulation results under the constant periodic multiple-harmonic noise, the PTCAZNN
model (39) for TVMIP of (40) with λ = 20, 50 respectively.

The following multiple-harmonic noise with an aperiodic period is used,

N̂(t) = [n̂ij(t)] = [sin(4) + 3 sin(10πt + 2) + 5 sin(12πt + 3)]. (45)

Figures 9 and 10 display the corresponding results. Both figures verify that the
PTCAZNN model (39) can effectively invert the time-varying matrix considering the
interference of multiple-harmonic noises.

To sum up, these comparison results in Figures 8 and 10 confirm the robustness of PT-
CAZNN model (39) for the TVMIP with multiple harmonic noises. Finally, we summarize
the previous simulation results in Table 3 after quantitative analysis. It can be clearly seen
that, in various situations (including different frequencies, different periodic characteristics,
and different initial states), the PTCAZNN model shows superior convergence performance
and robust performance compared to the OAZNN model.
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(a) λ = 20 (b) λ = 50

Figure 9. Simulation results under the aperiodic multiple-harmonic noise, OAZNN model (38) for
TVMIP of (40) with λ = 20, 50 respectively.

(a) λ = 20 (b) λ = 50

Figure 10. Simulation results under the aperiodic multiple-harmonic noise, PTCAZNN model (39)
for TVMIP of (40) with λ = 20, 50, respectively.

Table 3. Convergence time of the OAZNN model and PTCAZNN model using the same parameters
under different noise conditions (the convergence accuracy is ‖E(t)‖F < 10−2).

Noise OAZNN Model PTCAZNN Model

Near-zero frequency (42) 0.6950 s 0.0480 s

Nonzero frequency (43) 2.4470 s 0.1730 s

Periodic (44) 0.6672 s 0.0568 s

Aperiodic (45) 0.5980 s 0.0688 s

4.5. Sensitivity of Initial Values

As we know, the convergence performance of the existing ZNN is greatly influenced
by the initial value. Therefore, it is very necessary to discuss the initial value sensitivity. In
this simulation, four random initial values belonging to different intervals are tested, and
the results are shown in Figure 11. It is worth noting that we take an error accuracy of 10−2

as the bound for judging model convergence. The harmonic noise are selected as

N(t) = [nij(t)] = [103 sin(0.02πt + 1)] ∈ R2×2.

In addition, we set λ = 1, ξ = 1 for models (11) and (15).
As shown in Figure 11a, with X(0) ∈ [−0.2, 0.2]2×2, the ‖E(t)‖F of the OAZNN

model (11) converges in about 5.9 s. In contrast, the ‖E(t)‖F of PTCAZNN model (15)
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converges in 0.78 s. More importantly, as displayed in Figure 11b, with X(0) ∈ [−20, 20]2×2,
the ‖E(t)‖F of (15) can converge in about 1.12 s, while the ‖E(t)‖F of (11) cannot converge.
The similar results can be obtained from Figure 11c,d. Table 4 shows a detailed numerical
comparison about the upper bound of error of (11) and (15) when the error tends to be stable.
When the initial values are in different intervals, the error upper bounds of model (11) are
7.54× 10−3, 1.86× 10−1, 1.80× 101, 2.06× 102, respectively. Nevertheless, the error upper
bounds of model (15) are 4.64× 10−3, 3.84× 10−3, 2.78× 10−3, 1.63× 10−3, respectively.
In summary, we can conclude that model (15) is non-sensitive for initial values; however,
model (11) may fail for some initial values.

(a) (b)

(c) (d)

Figure 11. Dynamic characteristics of OAZNN (11) and PTCAZNN (15) when Γ = 1000 and f = 0.01.
With (a) X(0) ∈ [−0.2, 0.2]2×2; (b) X(0) ∈ [−20, 20]2×2; (c) X(0) ∈ [−2× 103, 2× 103]

2×2; (d) X(0) ∈
[−2× 105, 2× 105]

2×2.

Table 4. Upper bound of error ‖E(t)‖F of the OAZNN model and PTCAZNN model at different
initial values.

Initial Value OAZNN Model PTCAZNN Model

X(0) ∈ [−0.2, 0.2]2×2 7.54× 10−3 4.64× 10−3

X(0) ∈ [−20, 20]2×2 1.86× 10−1 3.84× 10−3

X(0) ∈ [−2× 103, 2× 103]
2×2 1.80× 101 2.78× 10−3

X(0) ∈ [−2× 105, 2× 105]
2×2 2.06× 102 1.63× 10−3
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4.6. High-Dimensional Example Verification

Considering another TVMIP with time-varying Toeplitz matrices:

A(t) =


a1(t) a2(t) · · · a6(t)
a2(t) a1(t) · · · a5(t)

...
...

. . .
...

a6(t) a5(t) · · · a1(t)


where a1(t) = 4 + sin(2t); am(t) = cos(2t)/(2m− 3) with m = 2, 3, . . . , 6.

Similarly, in this high-dimensional example simulation, the parameter λ = 2 and other
parameters are set in the same way as the previous single harmonic noise. Specifically, it
can be seen in Figure 12 that four different cases (no noise in Figure 12a, single harmonic
noise with f = 50 Hz in Figure 12b, periodic multi-harmonic noise in Figure 12c, aperiodic
multi-harmonic noise in Figure 12d), the convergence time of model (15) is about 0.06,
0.2, 0.12, 0.12 s. This results are similar to the previous low-dimensional case, indicating
that the matrix dimension has little influence on the model solving performance, that
is, the PTCAZNN model can maintain satisfactory convergence and robustness even in
high dimensions.

(a) Free noise (b) Single-harmonic noise with f = 50 Hz

(c) Periodic multiple-harmonic noise (d) Aperiodic multiple-harmonic noise

Figure 12. Dynamic characteristics of PTCAZNN (15) for high-dimensional matrix inversion under
various noise.

5. Conclusions

In this paper, the PTCAZNN model (15) with prescribed-time convergence and double
noise suppression has been studied and proposed to resolve the TVMIP. Compared with
the OAZNN model (11), this model not only has an adaptive term to compensate and learn
noise, but also adds the PTAF to accelerate the convergence rate. In addition, the theoreti-
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cal analysis of PTCAZNN model (15) with prescribed-time convergence and robustness
performance has been provided. Lastly, the simulation results show that model (15) has
better convergence performance, anti-interference performance, and lower initial value
sensitivity. Thereinto, it can be found that the convergence speed of the PTCAZNN model
can be 10 times faster than that of the OAZNN model in some cases.
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