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Abstract: Supervoxels have a widespread application of instance segmentation on account of the merit
of providing a highly approximate representation with fewer data. However, low accuracy, mainly
caused by point cloud adhesion in the localization of industrial robots, is a crucial issue. An improved
bottom-up clustering method based on supervoxels was proposed for better accuracy. Firstly, point
cloud data were preprocessed to eliminate the noise points and background. Then, improved
supervoxel over-segmentation with moving least squares (MLS) surface fitting was employed to
segment the point clouds of workpieces into supervoxel clusters. Every supervoxel cluster can be
refined by MLS surface fitting, which reduces the occurrence that over-segmentation divides the
point clouds of two objects into a patch. Additionally, an adaptive merging algorithm based on
fusion features and convexity judgment was proposed to accomplish the clustering of the individual
workpiece. An experimental platform was set up to verify the proposed method. The experimental
results showed that the recognition accuracy and the recognition rate in three different kinds of
workpieces were all over 0.980 and 0.935, respectively. Combined with the sample consensus initial
alignment (SAC-IA) coarse registration and iterative closest point (ICP) fine registration, the coarse-
to-fine strategy was adopted to obtain the location of the segmented workpieces in the experiments.
The experimental results demonstrate that the proposed clustering algorithm can accomplish the
localization of industrial robots with higher accuracy and lower registration time.

Keywords: supervoxel; moving least squares (MLS); instance segmentation

1. Introduction

Without the application of industrial robots, it is impossible to accomplish automation
and modernization of a manufacturing process in any industrial branch. Due to their strong
adaptability and flexibility, industrial robots are commonly assigned for dull, dangerous,
and unpleasant jobs to replace human beings, including automatic spray painting [1],
welding [2], grinding [3], logistics sorting [4], assembling [5] and so on.

Computer vision, as the eyes of industrial robots, has become a significant component
of the robotic system in previous decades. Due to the advantage of obtaining richer physical
information about objects, extensive research on 3D vision has been carried out in recent
decades. However, 3D segmentation is still one of the most challenging tasks in computer
vision. The results of 3D segmentation will directly affect object recognition [6], pose
estimation [7] and positioning [5] in the application of industrial robots. The goal of the
segmentation process is to group points that belong to the same objects into clusters or sets,
where each cluster has similar properties by some criteria. Three-dimensional segmentation
methods include the traditional pointwise methods and the segmentation methods based
on deep learning, which emerged during those years. The segmentation method based on
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deep learning is one of the solutions; however, the training data must be manually labeled,
which is more challenging than labeling 2D images [8–10]. It is impractical to adopt the
deep learning approach in engineering applications for difficult training data preparation.
The pointwise methods are more widely used in engineering projects as no training data
are required and they have high adaptability [11]. However, the pointwise methods are
inefficient for point clouds with large data volumes. Furthermore, in the application of
industrial robots, noises and the adhesion of objects’ point clouds are generated for many
reasons, including similar and colorless workpieces stacked in a mass, the light reflection,
and the shooting angle of 3D cameras. Without eliminating the useless noises and adhesion,
it is easy to generate mis-segmentation and under-segmentation.

The supervoxel-based method inspired by superpixels can effectively reduce point
clouds’ data volume. The superpixel method is widely used in 2D image processing to effec-
tively reduce the computation consumption of the subsequent process [12]. In recent years,
the efficient supervoxel method has been introduced to 3D semantic segmentation [13–15].
Supervoxels were applied in a convolution operation (SVConv) by Huang, Ma et al. to
effectively accomplish online 3D semantic segmentation [16]. In Sha, Chen et al.’s work,
road contours were extracted efficiently and based completely on a supervoxel method
without any trajectory data [17]. The Euclidean clustering algorithm was optimized by
supervoxels to improve the anti-noise ability of the clustering process by Chen et al. [18].
Li, Liu et al. proposed a multi-resolution supervoxels method to improve accuracy in
regions of inconsistent density [19]. Lin, Wang et al. adopted an adaptive resolution for
each supervoxel to preserve object boundaries effectively [20]. Although the existing su-
pervoxel segmentation methods have the abilities of data reduction and anti-noise, the
adhesion problem is still unsolvable, which results in the low accuracy of segmenting
objects, especially in complex industrial applications.

To improve the accuracy and efficiency of 3D instance segmentation under the condi-
tion of stacked workpieces with weak texture, a bottom-up clustering method based on
supervoxels was proposed. In the supervoxel-based over-segmentation algorithm, moving
least squares (MLS) surface fitting was utilized to refine the supervoxel clusters, which
can eliminate noises and adhesion. In the merging algorithm, the precise geometric and
spatial features are extracted from refined supervoxel clusters, which are generated from
over-segmentation. Then, according to the convexity-concavity judgment and the distance
metric consisting of feature information, the supervoxel patches are merged to complete
3D instance segmentation.

In summary, the main contributions of this paper are as follows:

1. An improved supervoxel over-segmentation algorithm with MLS surface fitting was
proposed to effectively eliminate the adhesion caused by shooting angles and reflec-
tions. Additionally, the over-segmentation method performs data simplification.

2. A multi-feature metric combined with convexity-concavity judgment was proposed.
An adaptive approach was added to this metric to normalize different features. Ac-
cording to the metric, over-segmentation patches can be merged via the proposed
merging algorithm.

The organization of this paper is as follows: in Section 2, the proposed methodology is
introduced including preprocessing, over-segmentation based on supervoxels and MLS,
multi-features region merging. In Section 3, the experimental results with quantitative and
visible outputs are demonstrated to analyze the viability and advantages of the proposed
method. Finally, the conclusion is summarized in Section 4.

2. Methods

The proposed bottom-up method includes data preprocessing, an over-segmentation
algorithm, and a region merging algorithm, as shown in Figure 1b. The point clouds
are obtained by a binocular structured light camera in Figure 1a. After object instance
segmentation in Figure 1b, the objects’ point clouds with shape and location information are
extracted. As shown in Figure 1c, combined with the sample consensus initial alignment
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and iterative closest point (SAC-ICP) registration, bin-picking experiments are conducted
to test the improvements and feasibility of the proposed method.
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point cloud data, the objects instance segmentation, and bin-picking experiments, respectively.

2.1. Data Acquisition and Preprocessing

The workflow of this section is shown in Figure 2, including data acquisition, down
sampling, plane removal, and outlier points removal.
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Figure 2. The process of data acquisition and preprocessing.

A binocular structured light 3D camera was applied to attain high-quality 3D point
cloud data with a resolution of up to 0.02 mm. The large amount of point cloud data results
in high computational complexity. Thus, the voxel grid algorithm was implemented to
perform down sampling, while maintaining the input data’s shape characteristics and geo-
metric properties. Given the voxel grid size, the point clouds can be divided into multiple
voxel grids by octree, as shown in Figure 3. The entire point clouds are approximately
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expressed by the centroids of those voxel grids to achieve down sampling. The coordinates
(XYZ) of centroids can be calculated as follows:

x = 1
n ∑
(x,y,z∈V)

x

y = 1
n ∑
(x,y,z∈V)

y

z = 1
n ∑
(x,y,z∈V)

z

(1)

where n is the total number of points in the voxel V.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 18 
 

 

multiple voxel grids by octree, as shown in Figure 3. The entire point clouds are approxi-

mately expressed by the centroids of those voxel grids to achieve down sampling. The 

coordinates (XYZ) of centroids can be calculated as follows:  

⎩
⎪
⎪
⎨

⎪
⎪
⎧�̅ =

1

�
� �

(�,�,�∈�)

�� =
1

�
� �

(�,�,�∈�)

�̅ =
1

�
� �

(�,�,�∈�)

 (1) 

where � is the total number of points in the voxel �. 

voxelR  

Figure 3. Representation of voxels generated by octree. The different cubes represent voxels, the 

dots represent the original points. The leaf size (������) was set at 1 mm in the experiments. 

The points include not only objects but also planes and other noisy points that will 

go against the subsequent instance segmentation. The random sample consensus (RAN-

SAC) algorithm was utilized to remove the plane. The RANSAC algorithm randomly sam-

pled three points as the minimum point set to generate a hypothetical plane in every iter-

ation. Then, the distance between the remaining points and the plane generated by these 

three points was calculated by the following formula (2): 

D = �
�� + �� + �� + �

√�� + �� + ��
� (2) 

where �, �, �, � are the parameters of the calculated plane equation. For a given distance 

threshold (� = 2 mm), the number of points whose distance was below the threshold 

were counted as inliers. After iteration, the RANSAC algorithm returned to the plane with 

the highest percentage of inliers. 

The statistical outlier removal algorithm was adopted to eliminate the noisy points 

[21]. After traversing each point’s k-nearest (� = 6) neighbors, this approach deleted the 

points whose average distance to their neighbors was more than multiple standard devi-

ations of the mean distance to the query point. The points in accordance with formula (3) 

remained. 

� = �� ∈ �|(�� − �� ⋅ ���_���) ≤ �̅ ≤ (�� + �� ⋅ ���_���)� (3) 

where �̅ represents the average distance between � and its k-nearest neighbors, ���_��� 

represents the standard deviation multiple threshold (usually ���_��� = 1), �� and �� 

are the mean and standard deviation of the Gaussian distribution, which was generated 

by the average distance between � and the remaining point, respectively. 

The results of preprocessing are shown in Figure 4. These steps reduce the number 

of points in the original data and remove noises. They help to decrease the downstream 

processing calculation consumption and increase the accuracy of the proposed method. How-

ever, there still are noises and adhesion that cannot be eliminated, as shown in Figure 4d, 

which we aim to remove in the following section.  

Figure 3. Representation of voxels generated by octree. The different cubes represent voxels, the dots
represent the original points. The leaf size (Rvoxel) was set at 1 mm in the experiments.

The points include not only objects but also planes and other noisy points that will go
against the subsequent instance segmentation. The random sample consensus (RANSAC)
algorithm was utilized to remove the plane. The RANSAC algorithm randomly sampled
three points as the minimum point set to generate a hypothetical plane in every iteration.
Then, the distance between the remaining points and the plane generated by these three
points was calculated by the following Formula (2):

D =

∣∣∣∣ ax + by + cz + d√
a2 + b2 + c2

∣∣∣∣ (2)

where a, b, c, d are the parameters of the calculated plane equation. For a given distance
threshold (δ = 2 mm), the number of points whose distance was below the threshold were
counted as inliers. After iteration, the RANSAC algorithm returned to the plane with the
highest percentage of inliers.

The statistical outlier removal algorithm was adopted to eliminate the noisy points [21].
After traversing each point’s k-nearest (k = 6) neighbors, this approach deleted the points
whose average distance to their neighbors was more than multiple standard deviations of
the mean distance to the query point. The points in accordance with Formula (3) remained.

p =
{

p ∈ P
∣∣∣(µp − σp · std_mul

)
≤ d ≤

(
µp + σp · std_mul

)}
(3)

where d represents the average distance between p and its k-nearest neighbors, std_mul
represents the standard deviation multiple threshold (usually std_mul = 1), µp and σp are
the mean and standard deviation of the Gaussian distribution, which was generated by the
average distance between p and the remaining point, respectively.

The results of preprocessing are shown in Figure 4. These steps reduce the number of
points in the original data and remove noises. They help to decrease the downstream pro-
cessing calculation consumption and increase the accuracy of the proposed method. How-
ever, there still are noises and adhesion that cannot be eliminated, as shown in Figure 4d,
which we aim to remove in the following section.
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2.2. Over-Segmentation Based on Supervoxels and MLS Surface Fitting

Unsupervised over-segmentation is one of the most widely used point cloud process-
ing methods, which has been extensively used in computer vision. Similar to superpixels,
the point cloud is divided into voxel regions with analogous properties by supervoxel
segmentation. One of the most widely used supervoxel methods is voxel cloud connec-
tivity segmentation (VCCS) [22]. However, mis-segmentation commonly occurs using
VCCS for unclear boundaries. Research has been performed to refine supervoxels. Guarda
et al. proposed a C2NO algorithm to generate constant size, compact, nonoverlapping
supervoxel clusters [23]. In Xiao et al.’s work, a merge-swap optimization framework was
introduced to generate regular, compact supervoxels with adaptive sizes using an energy
function [24]. The points that belong to two separate objects are grouped into one cluster in
the segmentation of stacked industrial workpieces, which is caused by noises and adhesion.
An improved over-segmentation approach was proposed to address this issue based on
supervoxels and MLS surface fitting. The noisy points and adhesion, which cannot be
removed by preprocessing, can be effectively eliminated. Consequently, the proposed
method realizes the goals of minimizing the mis-segmentation occurrence and enhancing
the accuracy of workpiece instance segmentation. The process of this method is shown in
Figure 5. The details of the proposed method will be elaborated on in this section.
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2.2.1. The Selection of Seed Voxels

For the given resolution of a voxel, the over-segmentation algorithm begins with the
voxelization that is generated from the point cloud by octree. The process of supervoxel
over-segmentation is similar to polycrystalline nuclear crystallization of the supersaturated
saline solution, where all the crystal nuclei grow simultaneously. Therefore, seed voxels
need to be selected to initialize the supervoxels after the voxelization. The spatial relation-
ship among those voxels was created by building an adjacency graph on 26-adjacent of
the voxel. Assuming that each seed is evenly distributed in the three-dimensional space,
the voxels most approximated to the centers of the given seed resolution are selected as the
candidates of seed voxels.

Some candidates of seed voxels isolated from their neighbors need to be deleted.
The seed voxels where there is not a sufficient number over min_n of voxels surrounding
them in the search area should be removed. The filter criterion is as follows:

Rsearch =
1
2

Rseed (4)

min_n =
πRsearch

2

20Rvoxel
2 (5)

sd = {sd ∈ SD|n > min_n} (6)

where Rsearch represents the search radius of the seed voxels, Rseed represents the revolution
of seed voxels, which decides the distance between adjacent supervoxels and Rvoxel repre-
sents the size of voxels generated by voxelization. Rseed should be much larger than Rvoxel ;
otherwise, the seeds will not be selected correctly, which may cause mis-segmentation. sd
represents the seed voxels; only the candidates that fit Formula (6) will remain as the initial
supervoxels. In Equations (4)–(6), only the parameters including Rseed and Rvoxel need to be
assigned based on the size of objects. Other parameters are able to be calculated according
to these two parameters. Figure 6 shows the geometric representation of those parameters.
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2.2.2. Voxel Feature Distance

In our implementation of supervoxel generation, the voxel feature distance is utilized
to determine the similarity of seed voxels and their adjacent voxels. First, the spatial
distance is normalized to limit the search scope of every clustering iteration. The algorithm
will stop searching when it approaches the cluster center of the adjacent supervoxel by using
a maximum range of

√
3Rseed to normalize the spatial distance. Then, the normal difference

is calculated, which characterizes the degree of surface bending. Thus, the boundary
properties of 3D voxel data can be represented by spatial distance and normal.
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Ds =
√(

xi − xj
)2

+
(
yi − yj

)2
+
(
zi − zj

)2 (7)

Dn = 1−
∣∣∣∣→Ni·

→
Nj

∣∣∣∣ (8)

D =

√
λDs2

3Rseed
2 + µDn2 (9)

where x, y, z are spatial coordinates,
→
N is the normal of a voxel, Ds and Dn are the spatial

distance and normal difference, respectively. D is the fusion distance of two features, where
λ and µ are the parameters that allocate the influential proportion of two feature distances.

By iteratively traversing the adjacent voxels of all the initial supervoxels, the voxels
will melt into their neighboring supervoxels, according to spatial distance and normal
distance. The lower voxels are searched and processed layer by layer until all the adjacent
voxels of supervoxels are traversed. Additionally, after updating the cluster centers of
the supervoxels, supervoxels regrow until the cluster centers are stable or this algorithm
reaches the maximum iterations.

2.2.3. MLS Surface Fitting

Due to the noises and adhesion of point clouds, surface fitting is adopted to refine the
supervoxels. The least squares method has a widespread application in curve and surface
fitting. It has been improved by many researchers, including total least squares (TLS),
recursive least squares (RLS), weighted least squares (WLS), generalized least squares
(GLS), partial least squares (PLS) and segmented least squares (SLS). However, in the cases
of the large amount and irregular, scattered distribution of point cloud data, the above-
mentioned methods are not suitable on account of their global approximation strategies.
The moving least squares (MLS) [25] method is utilized, which is a local approximation to
represent the surface of supervoxel clusters. Compared with the traditional least square
method, every point in the fitting region will be projected to the locally weighted fitting
surface in the MLS method. On a local subdomain of the fitting region, the fitting function
is defined by the following equation:

f (x, y) =
6

∑
i=1

αi(x)pi(x, y) = pT(x, y)α(x) (10)

p(x, y) =
[
1, x, y, x2, xy, y2

]T
(11)

J =
n

∑
I=1

w(x− xI)[ f (x, y)− zi]
2 (12)

where n represents the number of points in the local reference domain of a given radius
at the target point. w(x− xI) is a weighted function, which guarantees the increasing
contribution to optimization function J with decreasing distance from the sampling point
to the target point.

To consider MLS’s sensitivity to outliers, radius outlier removal is adopted to eliminate
the isolated points while avoiding excessive fitting deviation before performing MLS fitting.
After adding the MLS fitting filter, the adhesion of separate objects’ point clouds caused
by the structured-light projection angle and stacking can be removed without affecting
the shape characterization of the objects. The two examples of the denoising results are
shown in Figure 7. There are significant changes that occurred in the boxes, where the
adhesion of two separate objects’ point clouds can be removed, while the point clouds still
convey shapes.
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Figure 7. The results of the MLS surface fitting filter. (a,b) are the point clouds before and after
adding the MLS surface fitting filter in the same scene, respectively. (c,d) are the point clouds in the
other scene.

2.3. Region Merging Based on Multi-Feature with Convexity Judgment

The patches produced by over-segmentation should be merged into object clusters.
The supervoxel patches contain precise geometric and other information about the ob-
jects. If we give additional constraints based on the geometric characters and structure
relationships between patches, the instance segmentation will be accomplished without a
training dataset.

The distance metric was proposed to decide whether the patches are clustered or not,
which plays a significant role in the merging algorithm. The distance metric is a fusion of
the following two features: a geometric feature distance δG that represents the geometric
distance between any two adjoining supervoxel patches; a spatial distance δD that captures
the Euclidean distance of any two adjacent patches’ centroids.

As shown in Figure 8a, for any two patches ps and pt, their centroids are represented
by xt and xs, their normal vectors by

→
ns and

→
nt and the unit vector laying on the line

connecting the two centroids by
→
Cst (

→
Cst = xt−xs

‖xt−xs‖ ). To represent the locational and
geometrical relationship of the two patches, the feature distance δD and δG can be described
as follows:

δD(ps, pt) =‖ xt − xs ‖ (13)

δG(ps, pt) =
‖ →ns ×

→
nt ‖ + |

→
ns ·

→
Cst | + |

→
nt ·

→
Cst |

3
(14)
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The locally convex connected patches (LCCP) [26,27] method is a segmentation method
based on the concave and convex relations between two patches, which was also exploited
in other works [28,29]. In our work, the geometrical feature distance δG is incorporated
with a convexity criterion inspired by the LCCP method. The new δG is defined by the
following equation:

δG(ps, pt) =

{
0.5δG, i f (αs − αt < 0∪∠

(→
ns,
→
nt

)
< 1◦) ∩ θ ≥ intersect_threshold

δG, otherwise
(15)

intersect_threshold = 60◦
{

1 + e−0.25◦ [∠(
→
ns ,
→
nt)−60◦ ]

}−1
(16)

As illustrated in Figure 8b,c, if the angle αs, αt between the normal vectors
→
ns,
→
nt of

the two adjoining patches and the line connecting their centroids
→
d is deemed as convex,

the geometric distance δG is halved. The two patches with a valid convex property are more
probable to be merged into parts of the same object. Two patches are evaluated as convex if
and only if they comply with both the convex-concave criterion and the sanity criterion. If
αs < αt or ∠

(→
ns,
→
nt

)
< 1◦ i.e., two patches are almost parallel; it is regarded that they are

convex in the convex-concave criterion. However, the convex property must be validated
by the sanity criterion to be valid. Two surfaces are disconnected when there is only a
singular connection between them. Only if the angle between the cross product of normal



Electronics 2022, 11, 1612 10 of 17

vectors
→
s and the line connecting centroids

→
d is large enough, i.e., θ ≥ intersect_threshold,

the two patches with connectivity can then be confirmed as convex.
Owing to the geometric data and spatial distance data being intrinsically different

types of data, the two features need to be transformed into a unified domain for normaliza-
tion. Therefore, the proposed distance value between two supervoxel patches ps and pt can
be described as follows:

δ(ps, pt) = TG(δG(ps, pt)) + TD(δD(ps, pt)) (17)

where TG and TD are two transformations defined to normalize two feature distances
into unified ranges between 0 and 1. Any of the two feature items in Formula (17) can
be changed; consequently, an adaptive value λ as weight is proposed to feed the specific
needs of different applications. Presumptively, δG and δD have unknown distributions with
unknown means µG and µD. We can then define the adaptive λ and the transformations
TG, TD by the following equation:

λ =
µG

µD + µG
(18)

TG(g) = (1− λ)g (19)

TD(d) = λd (20)

The process of the region merging algorithm is shown in Figure 9.
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2.4. Evaluation

To evaluate the segmentation results, some experimental performance indicators are
described as follows.

The ground-truth partition G = {G1, G2, G3, . . . , Gn} is defined as a set of artificial
labeled points set Gi, and the segmentation result S = {S1, S2, S3, . . . , Sm} is defined as a
set of regions generated by the algorithm in the same point cloud. Additionally, NG = n
represents the number of ground-truth regions. The precision is defined to evaluate the
segmentation result of our algorithm compared with the ground-truth, as described by the
Formula (22), which is as follows:

TPi = Gi ∩ Si (21)

Prei =
TPi

TPi + FPi
=

TPi
Si

(22)

where TPi represents the number of points for an object in region i and accurately segmented
as the object in the segmentation result. TPi is calculated by figuring the overlap point
cloud between Gi and Si. FPi represents the number of points actually for an object but not
segmented as the object in region i.

Due to the noises and other reasons, the artificial annotated objects may not be quite
correct. So, the workpiece with a precession of larger than 95% will be regarded as suc-
cessfully segmented. The number of successfully segmented workpieces is defined as NT .
The recognition rate is defined by Formula (23):

Reg =
NT
NG

(23)

The results of instance segmentation will significantly and directly affect positioning
accuracy, related to registration. Consequently, to test the validity and efficiency of the pro-
posed algorithm in industrial robot applications, registration experiments were performed.
Many point cloud registration algorithms have been proposed including singular value
decomposition (SVD) [30], random sample consensus (RANSAC) [31], normal distributions
transform (NDT) [32], sample consensus initial alignment (SAC-IA) [33], iterative closest
point (ICP) [34] and its improved algorithm [35,36]. SAC-IA coarse registration and ICP
fine registration algorithm were adopted for their precision and high efficiency. Firstly, the
SAC-IA algorithm was utilized to perform coarse registration, using the fast point feature
histogram description (FPFH) [33] as the point cloud feature description. The transfor-
mation matrix obtained by SAC-IA was used as the initial matrix in the ICP algorithm.
Then, the target point cloud was aligned to the template point cloud by minimizing the
distance iteratively to attain the fine matrix. The fitness score, i.e., the mean square error
(MSE) between the target workpiece and the template workpiece, was calculated using
Formula (24), which is as follows:

MSE =
1
m

m

∑
i=1

( p̂i − qi)
2 (24)

where p̂ = { p̂i|i = 1, 2, 3 . . .} and Q = {qi|i = 1, 2, 3 . . .} represent the points in the target
point clouds after translation and the points in the template point clouds, respectively. m is
the number of point pairs. The objects with a fitness score below 1.2 mm2 are defined as
high matching objects. Therefore, the high registration rate means the proportion of high
matching workpieces.

3. Experimental Results and Discussion

The experimental setup is shown in Figure 10. The experiments were conducted in the
following two parts: instance segmentation compared with ground-truth; segmentation
performance tests combined with SAC-ICP registration in industrial application. The ex-
periment platform was Intel Core i7-8750, with 8G memory, Windows 10 64-bit operating
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system, VS2015VC++win64 console application, and open source point library PCL 1.9.1.
Three kinds of workpieces were taken for the experiments to test the feasibility in different
scenes, as shown in Figure 11.
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quality point clouds of stacked workpieces. The ABB IRB 2600-20 robot with pneumatic grippers at 

the end is shown in the figure. I/O programming can control the clamping state of the pneumatic 

gripper to grasp workpieces. The robot is controlled by the controller. 

Figure 10. The experimental setup. A binocular structured light 3D camera is used to obtain high-
quality point clouds of stacked workpieces. The ABB IRB 2600-20 robot with pneumatic grippers at
the end is shown in the figure. I/O programming can control the clamping state of the pneumatic
gripper to grasp workpieces. The robot is controlled by the controller.
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Figure 11. Three kinds of workpieces for experiments. Subfigures (a–c) are Tee pipe 1, Tee pipe 2,
and Two-way elbow, respectively.

3.1. Instance Segmentation Experiments

Ten experiments were conducted to demonstrate the data simplification ability of our
over-segmentation method, whereas VCCS in the same revolution cannot simplify point
cloud data. Table 1 illustrates that the simplifying radio in ten experiments all reach over
65%. The reason why our method can simplify data is that the over-segmentation based on
MLS can reduce the useless and noisy points.

Table 1. The simplifying example results of our method (Rvoxel = 1 mm , Rseed = 20 mm ).

Experiments Processed Data Size
VCCS Proposed Method

After 1 Simplifying Radio After 1 Simplifying Radio

1 30,629 30,629 0 21,936 71.618%
2 28,528 28,528 0 20,300 71.158%
3 34,051 34,051 0 26,228 77.026%
4 31,330 31,330 0 21,110 67.380%
5 25,327 25,327 0 18,074 71.363%
6 25,758 25,758 0 18,028 69.990%
7 31,360 31,360 0 21,714 69.241%
8 36,012 36,012 0 25,342 70.371%
9 41,715 41,715 0 33,315 79.863%

10 33,146 33,146 0 23,797 71.794%
1 The data size after over-segmentation.
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Ten experiments were conducted in three groups of different workpieces to study the
performance of the proposed method compared with other methods. The parameters we
adopted are listed in Table 2. Different thresholds were set for different kinds of workpieces
with the best accuracy. However, the same voxel size was utilized in different methods,
including search radius.

Table 2. The parameters of methods.

Parameters Euclidean VCCS + LCCP Proposed Method

Voxel size (search radius) 2 mm 2 mm 2 mm

Seed size \ 8 mm 8 mm

Threshold 1

(highest accuracy)
\ 10◦/5◦/20◦ 0.25/0.25/0.35

1 Tee pipe 1/Tee pipe 2/Two-way elbow.

The segmentation results of different methods are shown in Figure 12. The proposed
method can segment stacked workpieces accurately, while under-segmentation occurs in
other methods. The results of the segmentation accuracy and recognition rate are listed
in Table 3. The exchanged tests were performed to analyze different contributions of
our bottom-up method, including VCCS combined with our merging method and our
over-segmentation method combined with LCCP. The results demonstrate that the average
precision of the proposed method reached up to 0.988, 0.984, 0.988 in Tee pipe 1, Tee
pipe 2 and Two-way elbow, respectively. The recognition rates were 0.936, 0.975, 0.958,
respectively. The results illustrate that the proposed method is more accurate than other
methods. The proposed over-segmentation method plays a significant role in enhancing
the segmentation accurate rate.
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Table 3. The comparison of performance.

Workpieces Methods Pre-Average Reg-Average

Tee pipe 1

Euclidean 0.835 0.705
VCCS + LCCP 0.943 0.831

VCCS + our merging 0.915 0.780
Our over-segmentation + LCCP 0.934 0.868

Proposed method 0.988 0.936

Tee pipe 2

Euclidean 0.796 0.643
VCCS + LCCP 0.899 0.828

VCCS + our merging 0.906 0.836
Our over-segmentation + LCCP 0.917 0.855

Proposed method 0.984 0.975

Two-way elbow

Euclidean 0.908 0.813
VCCS + LCCP 0.928 0.845

VCCS + our merging 0.926 0.840
Our over-segmentation + LCCP 0.974 0.942

Proposed method 0.988 0.958

To check the position accuracy after segmentation, an analysis of the mean errors
between the segmented workpieces’ centroids and the artificial annotated point cloud in
the XYZ-axis was performed. The comparisons of the mean errors using different methods
in the same point cloud data are shown in Figure 13. In each group of Figure 13a–c, the mean
errors of all the workpieces in the XYZ-axis are calculated for every experiment. The mean
errors of the workpieces’ centroids are volatile in other methods (blue and black lines).
The mean error in the Euclidean method even reaches higher than 19 mm in the X-axis
of Tee pipe 2. The mean errors of the segmented workpieces’ centroids are mostly below
2 mm in the proposed method, which is lower and more stable than the other methods.
Consequently, the proposed method can maintain the shape characteristics and locational
information of workpieces; simultaneously, the point cloud data can also be simplified.
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Figure 13. The mean error comparison. (a) Tee pipe 1. (b) Tee pipe 2 (c) Two-way elbow. Each group
of (a–c) includes three figures of the mean errors on the XYZ-axis.

3.2. SAC-ICP Registration Experiments

The registration results are shown in Figure 14. The registration results compared
with other methods in the same registration parameters are listed in Table 4. The fitness
scores of different workpieces are diverse because of the object shape and registration
algorithm. Compared with other methods, the target point clouds and the template
point clouds were matched more accurately in the proposed method for accurate instance
segmentation. Owing to the effective simplification of data, the proposed method can save
more registration consuming time with low error and high registration rates.
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Figure 14. The registration results. (a) Tee pipe 1. (b) Tee pipe 2 (c) Two-way elbow. The red points in
the figures are the template point clouds of different workpieces. The white points are the segmented
point clouds of workpieces.

Table 4. The registration results.

Workpieces Methods MSE High Registration Rate Running Time/ms

Tee pipe 1

Euclidean 36.546 0.423 10,564.733
VCCS + LCCP 4.632 0.670 2535.233

VCCS + our merging 8.055 0.568 2171.403
Our over-segmentation + LCCP 4.402 0.699 1996.968

Proposed method 2.003 0.749 1892.472

Tee pipe 2

Euclidean 101.968 0.299 13,506.750
VCCS + LCCP 24.064 0.649 3399.876

VCCS + our merging 19.626 0.639 2944.655
Our over-segmentation + LCCP 12.095 0.743 2719.517

Proposed method 1.595 0.862 2368.400
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Table 4. Cont.

Workpieces Methods MSE High Registration Rate Running Time/ms

Two-way elbow

Euclidean 5.590 0.572 12,193.280
VCCS + LCCP 5.471 0.578 1965.480

VCCS + our merging 5.712 0.546 2371.985
Our over-segmentation + LCCP 2.641 0.620 1746.778

Proposed method 2.559 0.708 1595.524

4. Conclusions

In this paper, an improved instance segmentation method based on supervoxels for
the localization of industrial robots has been proposed, which can process point cloud
data more accurately, robustly, and effectively. An over-segmentation algorithm with MLS
surface fitting was presented, which generates supervoxel patches, while eliminating noisy
points and point clouds’ adhesion by refinement. Additionally, the adaptive region merg-
ing algorithm based on multi-features and convex-concave judgment was performed to
accomplish instance segmentation. The experimental results demonstrate the feasibility
and stability of the proposed method for application in industrial robots. Compared with
other traditional methods, the proposed method achieves the instance segmentation of
workpieces with higher precision and recognition rate under the complex condition of
multiple similar stacked objects. Furthermore, the registration time can be reduced due
to the data simplification of the proposed method. In future work, the energy function
will be considered based on the proposed method to avoid boundary overlap. Addition-
ally, the supervoxel-based over-segmentation clustering will be further developed for the
application in semantic segmentation.
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