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Abstract: As computing technology has been recently widely adopted, most computing devices
provide security-related services as basic requirements, which is an important research issue for
sustainability of computing devices. The rapid increase of software components makes it difficult
to detect or prevent vulnerabilities in the large-size software. One of the prominent approaches
for ensuring secure service is the isolation of service which allows the related code and data to be
executed only in a particular area. In this paper, we provide a secure service provisioning platform
for hypervisor systems. The main contribution of the proposed framework is to enhance the previous
secure service provisioning platform in order to solve the non-preemption problem of secure services.
Thus, the proposed framework improves the security isolation service in hypervisors and can be used
for fine-grained secure service in secure embedded systems.

Keywords: trusted service execution; security isolation; hypervisor; fine-grained secure service;
secure service provisioning platform

1. Introduction

Recently, personal computing devices such as smart phones, tablets, and laptops have
been widely used. Most of these devices are always connected to the Internet to provide
services such as e-mail, banking, and e-commerce. Although such seamless connection
provides convenience to individuals, this causes a severe problem since users’ personal
information can be taken over by vulnerability attack of service. This risk of vulnerable
service takes an important role in sustainability of computing systems. The services
use personal information which can be leaked through adversary attacks. Therefore,
a considerable amount of research has focused on how to safely execute services to protect
personal information [1–6].

In order to run a service safely, the most effective way is to remove any vulnerabilities
of the service to be executed. Since adversary attackers usually attack programs using
vulnerabilities in the program, creating a program without any vulnerabilities would be
the ideal way. However, as the size of software becomes larger and its complexity grows
exponentially, eliminating the vulnerabilities requires enormous effort and cost. Thus,
recent research has focused on the isolation of secure service from other applications.

One prominent approach for ensuring a secure service execution is to isolate service
execution from the normal execution environment. This security isolation method allocates
service codes or data to a secure area separated from the normal execution environment
and blocks abnormal access from non-authorized applications [1,7]. The secure area is
accessible only in a determined path and prevents unauthorized access. Using this method,
even if the normal execution environment is modified by vulnerability, the secure area
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is not affected and thus it can be protected. In addition, since the service using personal
information is performed only within the secure area, it is possible to protect the personal
information by blocking unintended modification.

Many studies have proposed security platform using this secure isolation
technique [2–6,8–10]. One example is the XMHF (eXtensible and Modular Hypervisor
Framework) proposed by Vasudevan et al. [4,5]. XMHF uses virtualization technology to
achieve isolation by allocating the secure area to the hypervisor separated from virtual
machines. The hypervisor is software that provides abstraction of hardware to operating
systems and performs resource management, such as redistribution of abstract resources,
virtual machine scheduling, and event handling, which are goals of virtualization tech-
nology. The guest OS in the virtual machine is not directly accessible to the hypervisor
because the hypervisor is implemented in a privileged layer for management. Using this
feature, XMHF assigns secure services to the hypervisor area and allows access to the
secure services only via a special command called vmcall [4,5]. In one recent work in [11],
they developed uberXMHF architecture for supporting commodity compatibility including
Linux and Windows based on XMHF so that they showed the practicality of a secure
micro-hypervisor system. In [12], they proposed a mixed-trust computing framework
that combines verification and protection for applications with trusted and untrusted
execution parts.

In the security isolation approach, however, there exists a critical problem that the nor-
mal OS hangs when the normal OS requests the secure service. For example, uberXMHF [11]
uses a mechanism called core quiescing in order to ensure the isolated execution of a secure
service in the running core by stalling other cores. The main reason for this problem is
because the normal OS cannot occupy the CPU resources. When the normal OS requests a
secure service, the CPU switches to the privilege mode for executing security services in
the hypervisor. However, the normal OS cannot be performed in privilege mode. Thus,
when the hypervisor is in operation, the normal OS cannot be scheduled and hangs until it
receives the service result.

Thus, we provide a modified secure service framework in order to solve the problem
mentioned above. The main contributions of this paper include:

• to propose a secure service provisioning platform for solving non-preemptive execu-
tion of services,

• to guarantee the execution time of the normal OS while providing the hypervisor-level
security services, and

• to implement the proposed framework.

The remainder of this paper is organized as follows: Section 2 provides the back-
ground information about security isolation. We define the problem of secure execution
framework in Section 3, and propose our secure service provisioning platform for executing
fine-grained secure services in Section 4. In Section 5, we show how our framework is
implemented. The evaluation of the proposed framework is described in Section 6. Finally,
Section 7 discusses several remaining issues such as secure execution on multi-cores and
concludes the paper.

2. Backgrounds
2.1. Virtualization

Virtualization is a technology of abstracting computer resources to hide the physical
resources and redistribute them into logical resources. Most of the resources required
for the platform to run, such as CPU occupancy, memory space, and storage space, are
abstracted. Using this technology, multiple logical platforms can be executed in a single
physical system. Logical platforms called virtual machines are executed independently
using the allocated resources. The virtual machines have their own OS called guest OS.
The resources allocated by a virtual machine are partitioned resources so that it is not
possible to access other virtual machines.
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The hypervisor is a monitoring program that redistributes abstract resources through
virtualization and manages the execution of virtual machines. The hypervisor provides a
service in response to resource requests or service execution requests from virtual machines
in a form similar to a kernel in an OS. The resources of the system are under the supervision
of the hypervisor whose area is inaccessible to virtual machines for administrative and
security reasons. Virtual machines need an interface to request resources to the hypervisor
because they are not directly accessible to the hypervisor’s resources and hardware. The hy-
percall is the interface for this request, so it is possible to communicate a resource request
and service request to the hypervisor only through a hypercall. The hypervisor provides
the corresponding services according to the type of hypercall and passes the return value
of the service to the OS.

For example, Intel has defined the root mode and the non-root mode to separate the
hypervisor and the virtual machines in the virtualization architecture [13–15]. The root
mode and the non-root mode are similar to the kernel mode and user mode of the OS.
Each mode grants privileges differently, such as restrictions on the commands that can
be executed. In the root mode, the hypervisor grants all system resources, commands,
and so on. On the other hand, in the non-root mode, the use of resources and commands is
restricted from virtual machines. Virtual machines can use a hypercall to request resources
that require privilege.

Since the root mode and the non-root mode have different privileges, they need the
ability to switch to each other’s state. In the x86 platform, the VM entry and the VM exit
operation perform the corresponding function. When a virtual machine requests a privilege
using a hypercall, a software trap is generated on the CPU to perform a VM exit function.
The VM exit function switches the state of the CPU to the root mode and calls the handler
implemented in the hypervisor. The hypervisor handler parses the requested hypercall
and performs the service using the root mode privileges. After switching to the non-root
mode in which the system enters the virtual machine, the virtual machine performs the
return operation of hypercall with limited privilege. If the virtual machine accesses an area
to be executed in the root mode or uses a privilege command, the CPU generates a trap
and performs a VM exit to notify the hypervisor that an exception handling routine has
occurred. The hypervisor performs the appropriate exception handling routine to prevent
the virtual machine from accessing the privilege area [13].

Recent processors have been developed with virtualization instructions. Describing
virtualization technology as hardware instructions has advantages such as faster execu-
tion of the virtualization platform and more extensive resource distribution. In addition,
isolating service routines using virtualization instructions can increase reliability by en-
suring isolation and performance at the hardware level. The benefits of this virtualization
technology are being applied in a variety of areas, and a lot of research is studying the secu-
rity platform with virtualization. Representative examples include the dynamic analysis
of malicious code using virtual machine, event logging analysis through virtualization,
and analysis through a system playback function of virtualization [16–19].

2.2. Security Isolation

The security isolation technique uses a strategy of isolating the service from the
vulnerable OS and avoiding the attack, rather than solving the vulnerability of the OS.
Although it is difficult to protect the entire mobile OS, it is more practical to limit the impact
of possible vulnerability. In general, OS has a vast amount of code, so it is difficult to verify
all the codes in the security aspects. However, the amount of source code of secure service
is part of the whole OS. In addition, the security isolation platform is lightweight because
it is written in code for security service execution. Therefore, the amount of code to be
verified is less than that of the OS source code, so that there is little chance of being exposed
to the vulnerability.

In the security isolation platform, the TCB (Trusted Computing Base) is defined as
the area where security is completely maintained regardless of whether other domains
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are vulnerable to attack if the secure service routine is fully implemented in terms of
security and reliability [20–22]. A TCB is a secure area from a security attack because it is
isolated from the area normally used by the user. Therefore, secure services, secure libraries,
and drivers should be designated as TCB. As the size of the TCB increases, it becomes
difficult to secure the reliability. Therefore, the reliability of the entire system is increased
by minimizing the TCB size.

Based on the security isolation method, researchers designed various secure execution
architectures. Among them, secure execution using virtualization and sandbox-based
secure execution architecture are widely used. Virtualization technology is a technology
that allows for running multiple virtual machines on one system by abstracting and redis-
tributing resources provided by modern CPUs. Redistribution of resources is managed
by monitoring software called a hypervisor. In this architecture, virtual machines or hy-
pervisors have the advantage of being isolated from each other, so that the secure service
can be isolated from the environment used by other users. Another architecture is the
sandbox-based architecture in which the secure service is executed by using special space
provided in CPU design. This space is only accessible with privileged commands, so the
secure service can be easily isolated.

2.3. Hypervisor Based Secure Execution

The hypervisor-based secure execution platform and secure OS-based secure execu-
tion platform use virtualization technology to achieve isolation of secure service. In a
virtualization platform, virtual machines do not have direct access to the hypervisor area.
This is because the hypervisor executes with special privilege. The hypervisor-based secure
execution method uses this feature to achieve isolation by placing secure services in a
hypervisor area. Therefore, even if the normal OS is modified by vulnerability, secure
service can maintain its reliability because the secure service is not affected.

In [1,23], they address that a lot of research has been proposed for the secure execution
method with virtualization technology. Using this architecture, many studies have pro-
posed a hypervisor-based security service platform, which aims to minimize the security
threat by reducing the size of the TCB. XMHF [5] is one of the representative lightweight
hypervisor-based security frameworks for the research of security services developed
by Vasudevan et al. As shown in Figure 1, XMHF achieved being lightweight using the
rich single guest OS execution model. The platform was developed to run only a single
guest OS in order to simplify guest OS control routines. In addition, the hypervisor dele-
gated control of all the devices in the system to the guest OS, which greatly reduced the
complexity by allowing the hypervisor to control only a minimal amount of devices and
resources. Thus, the hypervisor achieved being lightweight and reduced the possibility of
containing vulnerabilities.

XMHF also uses DRTM (Dynamic Root of Trust for Measurement) technology to
provide verification of its integrity at the time of system boot and initialization. DRTM
isolates and prevents code from being attacked for reliable execution of code [24], which has
been provided by commercial x86 CPUs. In addition, XMHF also uses IOMMU protection
technology for input and output memory management. Since XMHF hands over control of
the device to the OS, it needs to provide integrity for the memory area.

XMHF provides a module called hyperapp that allows for developing and running
secure services. The hyperapp supports the security services in the hypervisor area to run in
isolation from the guest OS. The guest OS uses a hypercall that is the only communication
method to request a hyperapp. When the guest OS invokes the secure service using the
hypercall, the XMHF event hub delivers to hyperapp for executing secure service. Secure
service invocation and delivery are protected by virtualization, so there is no other way to
access secure service in the guest OS. This ensures reliable secure service execution [4,5].
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Figure 1. An Architecture of XMHF [5].

Another implementation of secure service on hypervisor for trusted mobile computing
has been provided in [25,26]. TGVisor is a framework to ensure reliability of a user’s
geolocation information to provide reliable cloud service in a mobile environment [25,26].
The framework aims to provide cloud service based on geolocation, minimize TCB and
verify TCB and geolocation information. To provide cloud service based on trusted ge-
olocation, framework encrypts the user’s geolocation data and sends it with geolocation
data to the cloud server. The cloud server provides service by verifying the integrity
and the possibility of tampering. By reducing TCB, it is possible to reduce vulnerability.
In addition, TGVisor performs verification of TCB. It verifies whether the attacker attacks
using vulnerabilities of protocols defined by TGVisor and analyzes vulnerabilities. Figure 2
shows the architecture of TGVisor.

Figure 2. An Architecture of TGVisor [25].
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As TGVisor framework is implemented using the XMHF framework, it verifies its own
code to ensure integrity at boot time. The GPS module is connected to the serial port, and hy-
perapp can acquire the geolocation information using the serial port. Therefore, it is possible
to implement cryptographic service using TPM in hyperapp. As XMHF is a lightweight
hypervisor and TGVisor has been developed while being light weight, only a small number
of lines of codes are added to reduce the possibility of attack on vulnerabilities.

2.4. Secure OS-Based Secure Execution

Another approach for providing secure service is a secure OS-based execution frame-
work. The framework allocates and executes secure service in virtual machines separate
from normal OS. In this case, isolation can be achieved because the normal OS does not
affect securing OS even if the normal OS is attacked.

A representative platform of secure OS-based secure execution is ARM TrustZone [27].
The modern ARM architectures provide for virtualization of a single physical core into
two logical cores for the implementation of a secure execution platform. Each logical core
is divided into normal world for a normal OS execution and secure world for a secure OS
execution. The two worlds are executed in different privilege modes. The access path
between two worlds is managed by software similar to a hypervisor called secure monitor.
The secure service is performed in secure OS included in secure world. When a secure
service is needed, normal OS requests it using a special command called secure monitor call
(SMC), which is trapped by the secure monitor for performing the request operation. At the
time of the SMC call, the ARM core automatically changes to a privileged mode for secure
monitor execution because the secure monitor is included in a secure world. Because of
this privilege difference, normal OS cannot be accessed by secure service.

Recently, LTZVisor has been developed based on the TrustZone for providing real-
time secure service by porting RTOS to a secure world [2]. The feature of LTZVisor is that
secure world has a high priority for CPU preemption to guarantee real-time secure service.
The secure OS scheduler is capable of scheduling without being restricted by secure service
execution timing using the higher priority. In addition, the normal world where general OS
is ported is executed when secure world is in Idle state. Because the secure monitor does
not have a scheduler, so the CPU preemption of general OS follows the scheduler policy of
RTOS in secure world.

3. Problem Definition

As described in the previous section, the secure service in secure execution platform
runs in a special space isolated from normal OS. However, the isolation and privilege
difference for secure service execution require a certain duration during which the normal
OS cannot occupy the CPU. While a secure service is running, the normal OS cannot
perform the operation because the OS does not obtain an occupancy of CPU. In particular,
on a single-core system, there is only one CPU time to execute one of normal OS and secure
service at a certain time. Thus, while a secure service is executed, the normal OS will stop
because there is no free time to execute a OS task (see Figure 3). In addition, while the
secure service is running, the normal OS has no way to get a privilege from the secure
service. Thus, the OS hanging problem persists until the secure service is terminated.

As the execution time of secure service becomes longer, the CPU occupation time of
normal OS is limited. If the system only has a single core, the normal OS cannot provide
any service for that period. This problem does not affect the communication between
normal OS and user if a secure service consumes only a slight time. However, if a secure
service occupies the CPU for a long time, users can not do any other work while executing
the secure service. In addition, even if the secure service is repeatedly executed, the user
experiences inconvenience.

In order to solve this OS hanging problem, we propose a secure service provisioning
platform for hypervisor systems. The purpose of proposed framework is to guarantee
the execution time of normal OS. The current frameworks do not guarantee normal OS
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runtime because they focus on isolation and execution of secure services. Therefore, we
limit the execution time of secure service to guarantee the execution time of normal OS
within a certain period. In order to limit the execution time, a secure service is divided
into a certain size and implemented so that these slices are executed sequentially. Then,
when a partitioned service is done, the normal OS is executed. Thus, the execution time
of normal OS is guaranteed. On the other hand, since the execution of secure service
must be guaranteed, the execution time of normal OS is also limited to be executed for a
predetermined time. As a result, the secure service and the normal OS are executed within
a period of time.

Figure 3. A time table of secure service execution—on a normal environment.

4. Proposed Framework

In the proposed framework, the secure service is divided into several sub-services in
order to limit the preemptive execution time. The normal OS is executed after a slice of
secure service is terminated. The normal OS and secure service are executed only for a
certain time of period in order to guarantee normal OS and secure service execution, which
enables fine-grained service execution. The following sub-sections describe the framework
more in detail:

4.1. Fine-Grained Service

In the proposed framework, a secure service is divided into several sub-services in
order to solve the normal OS hanging problem. In case of a security service with a short
execution time of several milliseconds, the CPU is returned to the normal OS immediately,
so that it does not interfere with the user. Therefore, the proposed work divides the service
routines, which enables the normal OS to preempt the CPU for providing OS service.

A secure service consists of several routines with sequential order. When the all
routines are executed in sequence, the service is completed. The service developer develops
several routines in a modular form with consideration of this architecture. As shown in
Figure 4, developed routines are organized in a chain form and executed in that order.
When one routine finishes in one cycle, the next routine is executed in the next cycle.
Depending on the implementation of the service, the service routine is implemented to be
reusable by changing the order or repeating a routine. When all the routines are finished,
the service stores the result and ends. Each service routine is executed at regular intervals.
When one service routine is finished, the CPU occupation is passed to the OS. Therefore,
the shorter each service routine, the faster the OS can occupy the privilege, which can
further reduce the hang of the OS.

Figure 4. A time table of secure service execution—on fine-grained environment.

The partitioned secure service routines are also advantageous for minimizing the
vulnerability because each routine is performed independently. In the proposed method,
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all service routines are implemented modularly. Routine interactions have no effect other
than to save and pass the result. Therefore, since the LOCs for verification are inevitably
small, the probability of the vulnerability is reduced.

4.2. Secure Service Execution

The previous secure execution platforms perform services on the same core where the
application requesting the service is executed. However, the proposed method separates
the secure service request and execution for management of fine-grained service execu-
tion. When the service manager receives a service request from the normal OS, it returns
immediately after the request operation. This allows that the normal OS can use the CPU
without wasting time in root mode. While the secure service is running, the application
requesting secure service periodically checks the result and receives the result when the
secure service is completed.

The service execution is separate from the service request, so it is necessary to store
the input value for executing routine. Since the fine-grained secure services are performed
independently of each other, the previous routine needs to transfer the data to the next
routine. Therefore, we define additional fields in SSCB for storing the values required
for service execution. This field contains the value received as an input at the time of
service request and the value that is calculated during service execution and passed to the
next routine.

4.3. Scheduling

Since the execution of normal OS must be guaranteed during the execution of secure
service, the secure service completion time is longer than the original secure service comple-
tion time. Thus, we made the fine-grained secure services possible to be schedulable, so that
they can provide the proper order of secure service according to situation. The scheduling
algorithms implemented in the proposed framework are as follows.

4.3.1. First-In First-Out

The secure service inserted first in the service queue is processed first. When a secure
service is executed, the other services must wait until the executing secure service is
terminated. Since the execution order of the secure service is ensured, the first received
secure service is processed quickly, and the result value can be obtained quickly. However,
if the execution time of the currently executing service becomes long, the time taken for the
service to be executed later is delayed. Therefore, there is a possibility that execution of the
entire service is delayed.

4.3.2. Round Robin

All of the fine-grained secure services in the service queue are executed once in order.
When a routine of a partitioned service finishes execution, it is re-inserted to the end
of the service queue and waits for the next turn without performing the next routine.
The algorithm ensures that all the fine-grained secure services run fairly. However, as more
services are queued in the service queue, the time required to perform a service becomes
longer, so that it takes more time to obtain the result of the entire service.

4.3.3. High-Priority First

The secure services are given priorities and the service having the highest priority is
executed first. The services are sorted by the priority in service queue. The service manager
takes the highest-priority service from the sorted queue and runs the service first.

5. Implementation

We developed the proposed architecture based on the XMHF framework. Figure 5
shows the framework of proposed architecture. The framework is based on hypervisor
and runs the existing OS as a virtual machine. The hypervisor consists of XMHF-core for a
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secure platform, Service Request Management (SRM) for managing security service requests
and executions, and Secure Service Pool (SSP) for implementing secure services.

Figure 5. The architecture of the proposed framework.

5.1. Secure Service

The XMHF provides a service for secure execution called hyperapp. The hyperapp
can be loaded in the hypervisor area and executed independently of normal OS. However,
XMHF provides only a service as a framework for a single service. Thus, we modified this
framework to be able to perform multiple services.

Since the XMHF is designed for providing a single service, there is no need to distin-
guish between services. Thus, the hyperapp runs immediately upon receipt of a service
request via hypercall. In the proposed framework, however, it is necessary to distinguish
services when requesting service. For service classification, we assigned each service with
a unique number. The service number is entered as a parameter of the service request,
and this parameter is used to distinguish which service is required. SSCB is also assigned
with a service ID to distinguish service execution. Each running service is identified by the
service ID, so that even the same service can be classified as a separate service according to
the request.

In addition, we modified hypercall to use for service requests and return results.
The normal OS calls the desired service using hypercall, and then periodically calls hypercall
to check if the service result is ready to be returned. To distinguish between service call and
service result confirmation, we added a parameter to distinguish it. The SRM performs the
corresponding work by using this parameter. Figure 6 shows the main components and
service flows in the proposed framework.

5.2. Service Request Manager

The SRM is a manager that creates and executes a service requested by a user and
returns the result value. The framework needs to distinguish services because users can run
multiple services simultaneously. Therefore, the proposed method uses the Secure Service
Control Block (SSCB) for management. A SSCB is a basic unit for scheduling services,
and consists of basic information for providing services. The SSCB is created at the time of
service request, which is used to distinguish each service. Because a secure service has a
unique SSCB, some secure services performing the same operation are treated as a different
service according to the SSCB. Thus, secure services can be executed simultaneously by
managing them as service control blocks.
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Figure 6. Components and service flows in the implementation.

As shown in Figure 7, the generated SSCB is inserted into the queue and waits
for execution. The SRM dequeues and executes the SSCB inserted in the service queue
according to the scheduling policy. In order to simplify the service execution routine, we
defined a single queue for inserting a service. This is to avoid increasing the vulnerability
due to increased LOC when queue management becomes complicated. In addition, we
defined a result list to store the execution result of the service. The application calling
secure service inquires the execution status of service periodically to check whether the
service is completed. The service manager retrieves the result of corresponding service
from the result list and returns the result value.

In the proposed method, fine-grained services should be executed periodically. The ser-
vices are implemented in the hypervisor, but the OS occupies most of the time on the system.
Thus, the framework needs a trigger to request the execute of service periodically. The trig-
ger uses the timer interrupt to periodically invoke service execution regardless of normal
OS execution. However, the hypervisor has limited use of the timer due to the limita-
tions of XMHF architecture. Therefore, the implemented framework replaces trigger by
implementing periodic call using vmcall instead of timers.

Figure 7. Secure service queue with SSCB.

5.3. Secure Service Pool

The SSP is an area where a service developer implements a secure service. This area
stores service codes for executing a service when a user requests. A partitioned service has
several routines whose addresses are stored and managed in the SSCB. The SRM reads the
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information of current service execution recorded in the SSCB and calls the corresponding
routine using a stored address.

In the SSP, a service consists of an initialization routine, a terminate routine, and inter-
mediate routines. The initialization routine is called when the SSCB is created. This routine
stores input data received from the normal OS and initial values needed for execution of
secure service routines. Intermediate routines are routines that need to be computed for
service provision. The developer develops routines that divides a service into appropriate
function units. The developer can specify the next routine to execute multiple routines
in order or the current routine recursively at the end of the intermediate routine. Finally,
the terminate routine is invoked when the operation of secure service is completed and per-
forms the task to save the result data in result list. After this routine is executed, the SSCB
is deleted and the service execution is terminated.

6. Evaluation

In order to evaluate that the secure service provisioning platform is working properly,
we implemented the SHA256 encryption algorithm as a secure service. The SHA256
encryption algorithm is an algorithm that encrypts original data with abbreviated data
using a hash function. The abbreviated data are a unique value. If the original data are
changed even by one bit, the abbreviated data become a totally different value. This
characteristic is used to verify the authenticity of the original data. We implemented this
algorithm by separating it into five routines. The first routine is a routine for initialization
and is performed at the time of service request. The last routine is a routine for returning
results. Thus, the actual routine for executing the service consists of three routines.

Based on the implemented framework and secure services, we measured code length
and execution time. We show that the size of the TCB is small through code length
measurement. In addition, we analyzed the service execution overhead by measuring
execution time.

6.1. Minimized TCB

Since the proposed framework is a framework for secure execution, the length of
source code affects TCB reliability. We have measured the source code length of the
implemented framework using cloc command in linux to prove that the size of TCB is small.

Table 1 shows the lines of source codes of the proposed framework. The implemented
framework consists of the existing XMHF core part, the secure service handler that imple-
ments the proposed method, and the secure service routines that implement the developed
service. The XMHF core part is a hypervisor part for secure execution service. For reliability,
we have not modified this part. We only implemented the proposed method in hyperapp,
which is the handler part that executes the developed service routines. Therefore, the pro-
posed method with a scheduler is implemented in the hyperapp handler part. The service
function is the part where the developed service routines of the service to be provided is
implemented, and the sha256 function we have implemented for testing is written.

Table 1. Lines of code in the implemented region.

Part Lines of Code

XMHF core 6018
hyperapp handler 198
service function 330

As shown in Table 1, the handler part added to implement the proposed method is
about 3.2% of the whole framework and has a very small number of lines. This shows that
the implementation of the proposed method is consistent with the tendency to reduce the
TCB for reliability.
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6.2. Performance

We measured the execution time of the implemented service to check the performance
of the proposed framework. One to four services were executed simultaneously, and the
OS guaranteed time of the framework was set to 1 s. That is, the routines of service are
executed periodically at intervals of 1 s. The service to be executed simultaneously called
the same SHA256 service.

Table 2 shows the response times of first and last services for the number of services.
As the number of services increases, the amount of time that all services are terminated
increases in proportion to the number of services. Although the services run at the same
time in Table 2, the response times are different according to the scheduling policy, FIFO
(First-In First-Out) or RR (Round-Robin). For example, when four concurrent services are
executed, the first service finishes at about 3 s in FIFO policy. On the contrary, the first one
in RR policy ends at about 9 s. Let us note that we do not include the execution results of
the priority-based scheduling scheme because the results are similar to FIFO policy except
the order of services.

Table 2. Response times with a single timer.

Number of Services 1 2 3 4

FIFO First service 3000.72 3000.7 3000.76 3000.9
Last service - 6001.2 9002.85 12,002.25

RR First service 3000.77 5001.04 7001.37 9001.73
Last service - 6001.15 9001.77 12,002.21

(time : ms).

As we measured the scenarios, we also observed the hanging phenomenon of OS. As a
result, the OS is delayed slightly at intervals of 1 s because the implemented framework
is set up to perform service execution every one second. Thus, the OS is guaranteed to
occupy the CPU except the requesting time. Although the service response time is more
than 3 s, as shown in Table 2, the normal OS does not hang up for the whole response time
but is delayed just for the service execution time every one second.

The service time or OS hanging time consists of execution time of secure service
routine, hypercall time to execute secure service, and time for handling secure service.
As shown in Table 2, a maximum of 2850 us is required excluding the time required to
guarantee OS execution.

We also experimented with increasing the number of execution times on which the
service is running. Table 3 shows the results of execution time in which service runs two
times per period based on the experiment in Table 2.

Table 3. Response times with double timers.

Number of Services 1 2 3 4

FIFO First service 1500.5 1500.49 1500.51 1500.5
Last service - 3000.75 4501.01 6002.25

RR First service 1500.5 2500.72 3500.92 4501
Last service - 3000.74 4501.11 6001.42

(time : ms).

As a result of measurement, the response time of service was half of the previous
execution time. In addition, the execution overhead excluding OS execution time is not
very different from the previous experiment. During the experiments, we found that there
is no severe OS hanging problem at the double rate execution of the services.



Electronics 2022, 11, 1606 13 of 15

7. Discussion and Conclusions
7.1. Discussion

In this paper, the proposed method is based on a single core platform where the core
can only perform one task at a time. Thus, if the core executes a secure service, the normal
OS will stop because there is no extra core to execute. However, current commercial off-the-
shell CPUs are mostly multicore. In the multicore, even if one secure service is executed,
the normal OS does not stop because the OS can continuously perform operations on other
cores. Thus, it seems that the multicore platform is the solution to the OS hanging problem.

However, it is possible to execute multiple services on a multi-core platform. There
are many applications running on the normal OS, and many apps require secure services.
There are also many kinds of services provided by the secure platform. Thus, if the number
of requested services is equal to the number of cores at the same time, the OS may be
stopped again. For this reason, the multicore approach is not a fundamental solution.

We expect that, if the fine-grained secure service is extending, it also can support
multicore-based security service framework. The proposed framework separates service
request and execution, and it is possible to execute appropriately by applying service
scheduling. Therefore, it is possible to avoid a case where multiple services are simul-
taneously executed through scheduling. In addition, it is possible to distribute service
execution cores in a balanced manner, thereby preventing degradation of normal OS due to
service execution.

In addition, in order to solve the problem that normal OS is hanged due to simulta-
neous execution of secure services, it is possible to fundamentally solve the problem by
limiting the number of concurrent service executing cores. Limiting the number of cores
guarantees the normal OS execution because at least one core can execute the normal OS.
Alternatively, there is a way to restrict a particular core to execute only secure services.
In this case, the performance of the normal OS is deteriorated. However, it is impossible to
attack the vulnerability due to shared data in core such as vulnerability attack technique
which tracks back the cache at same core, so reliability of secure service is improved.

As a limitation of this study, there is the data race problem of shared resources. Since
the proposed method executes on a single core, the problems such as deadlock caused by
shared resource usage violation are not serious. However, this issue is expected to become
more prominent on a multi-core platform. When a number of services are executed, a race
for preemption of a shared device or a resource frequently occurs, which has the possibility
to lead to a sharing resource violation. In addition, since the secure service can invade
another memory, the memory access restriction should also be considered. Thus, we need
to find solutions to these problems.

In the proposed framework, the real-time secure service execution is guaranteed by
periodically executing the divided functions which are developed by the service provider.
If one of the divided functions runs for a long time, the task in the OS runs out of deadline
time, violating the deadline. To solve this problem, we need to extend the framework to
execute non-divided secure services for a certain amount of time periodically like scheduler
in normal OS. In future studies, we plan to apply this concept to the framework so that
real-time is guaranteed even if the developer does not divide the function.

7.2. Conclusions

The proposed platform describes how to solve the hanging problem of normal OS on
a secure execution platform. The secure execution platform, like XMHF, has a problem
that the OS is hanged while the secure service is running. This problem is caused by the
difference between execution area and privilege. Due to this difference, the normal OS has
limited the way of occupying CPU while secure service is running.

To solve this problem, we propose a fine-grained secure service provisioning platform
for hypervisor systems. The proposed platform divides and executes the secure service.
In addition, when one partitioned service is terminated, the normal OS is executed to
guarantee execution time. Since there is no way for normal OS to occupy CPU itself when
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a secure service is executed, we have restricted the execution of secure service to guarantee
normal OS execution time.

We implemented the proposed method based on XMHF framework. The implemented
framework does not immediately execute the secure service request but stores it in a queue
for a waiting of execution. In addition, the scheduler is called periodically to execute the
secure services stored in the queue according to scheduling policy. When a developed
secure service is executed, the CPU occupation is returned to normal OS, thereby ensuring
the execution of the OS.

We measured the execution time of implemented framework and confirmed that
normal OS execution time is guaranteed. As an experiment result, although the secure
service execution time was long, it was confirmed that the OS execution time is guaranteed
during that time. Since we need further investigation on the system overhead, we are
working on more experiments to analyze the system performance.

In future studies, we will extend the proposed method to be applied on multicore
platforms. In discussion, we described the extensions that we need to apply on multicore,
and we need to validate and apply them in future studies. In order to analyze the proposed
architecture, we will conduct more experiments for performance evaluation. We also need
to discuss the validation of security service implementation for providing vulnerability of
secure service software.

Another direction of further research is security analysis of the proposed framework.
For example, when real-time tasks with trusted and untrusted execution parts are given to
the framework [12], a new scheduling analysis is required to guarantee both real-time and
security requirements of tasks.
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