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Szczypiorski, K.; Janicki, A. Detection

of Image Steganography Using Deep

Learning and Ensemble Classifiers.

Electronics 2022, 11, 1565. https://

doi.org/10.3390/electronics11101565

Academic Editor: Stefanos Kollias

Received: 14 April 2022

Accepted: 11 May 2022

Published: 13 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Detection of Image Steganography Using Deep Learning and
Ensemble Classifiers
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Abstract: In this article, the problem of detecting JPEG images, which have been steganographically
manipulated, is discussed. The performance of employing various shallow and deep learning
algorithms in image steganography detection is analyzed. The data, images from the BOSS database,
were used with information hidden using three popular steganographic algorithms: JPEG universal
wavelet relative distortion (J-Uniward), nsF5, and uniform embedding revisited distortion (UERD)
at two density levels. Various feature spaces were verified, with the discrete cosine transform
residuals (DCTR) and the Gabor filter residuals (GFR) yielding best results. Almost perfect detection
was achieved for the nsF5 algorithm at 0.4 bpnzac density (99.9% accuracy), while the detection of
J-Uniward at 0.1 bpnzac density turned out to be hardly possible (max. 56.3% accuracy). The ensemble
classifiers turned out to be an encouraging alternative to deep learning-based detection methods.

Keywords: steganography; machine learning; image processing; BOSS database; ensemble classifier;
deep learning; steganalysis; stegomalware

1. Introduction

Steganography is a method of hiding classified information in non-secret material.
In other words, we can hide a secret message in data that we publicly send or deliver, hiding
the very existence of a secret communication. Steganographic methods pose a significant
threat to users, as they can be used to spread malicious software, or can be used by such
malware (so-called stegomalware [1]), for example, for C&C communications or to leak
sensitive data.

An important share of steganographic methods use multimedial data, including
images, as a carrier. These methods are often referred to as digital media steganogra-
phy and image steganography, respectively. An example is a method used by the Vaw-
trak/Neverquest malware [2], the idea of which was to hide URL addresses within favicon
images. Another example would be the Invoke-PSImage [3] tool, where developers hid
PowerShell scripts in image pixels using a commonly used least-significant bit (LSB) ap-
proach. Yet another variance may be hiding information in the structure of GIF files [4],
which is quite innovative due to the binary complexity of the GIF structure.

It is observed that a growing number of malware infections take advantage of some
kinds of hidden transmission, including that based on image steganography. Since malware
infections pose a significant threat to the security of users worldwide, finding efficient,
reliable, and fast methods of detecting hidden content becomes very important. Therefore,
numerous initiatives and projects have been recently initiated to increase malware and
stegomalware resilience–one of them is the Secure Intelligent Methods for Advanced
RecoGnition of malware and stegomalware (SIMARGL) project [5], realized within the EU
Horizon 2020 framework.

The experiments presented in this article are part of this initiative. The aim of our
research was to find the most effective automatic methods for detecting digital steganogra-
phy in JPEG images. JPEG-compressed images are usually stored in files with extensions:
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.jpeg, .jpg, .jpe, .jif, .jfif, and .jfi. JPEG compression is commonly used for image storage and
transfer; according to [6], 74.3% of web pages contain JPEG images. Therefore, these images
can also be easily used for malicious purposes. In this study, we researched various machine
learning (ML) methods of creating predictive models able to discover steganographically
hidden content that can be potentially used by malware. Such a detection method can be
integrated with antimalware software or any other system performing file scanning for
security purposes (e.g., a messaging system).

The great advantage of our research is that we experimented both with shallow ML
algorithms and with deep learning methods. As for shallow algorithms, we focused on
ensemble classifiers, which have been recently shown to yield good results in detection
tasks. When dealing with deep learning methods, we concentrated on a lightweight
approach, which did not involve computationally-intensive convolutional layers in a
neural network architecture. However, for the sake of simplicity, we did not research the
impact of hidden content on detection accuracy—all experiments were conducted with
random hidden messages.

Our article is structured as follows: first, in Section 2, we briefly review the state of
the art in the area of hiding data in digital images and its detection. Next, in Section 3, we
describe the experimental environment, including the test scenarios and the evaluation
metrics used. The results are described in Section 4. The article concludes with discussion
of the results in Section 5 and a summary in Section 6.

2. Related Work

This article focuses on JPEG images as carriers of steganographically embedded data.
The popularity of this file format has resulted in a number of data-hiding methods being
proposed, as well as various detection methods. In this section, we briefly review the basics
of JPEG-based image steganography, including the most commonly used algorithms. Next,
we proceed to the detection methods.

2.1. JPEG-Based Image Steganography

While multiple steganographic algorithms operate in the spatial domain, there are
some that introduce changes on the level of discrete cosine transform (DCT) coefficients
stored in JPEG files. Moreover, certain algorithms are designed to minimize the probability
of detection through the use of content-adaptiveness: they embed data predominately in
less predictable regions, where changes are more difficult to identify. Such modifications
are the most challenging to detect; this is why we selected them for our study. Follow-
ing other studies, e.g., [7], we chose nsF5 [8], JPEG universal wavelet relative distortion
(J-Uniward) [9], and uniform embedding revisited distortion (UERD) [10]. They are briefly
characterized in the following subsections.

2.1.1. nsF5

The nsF5 [8] algorithm embeds data by modifying the least significant bits of AC
(“alternating current”, having at least one non-zero frequency) DCT coefficients of JPEG
cover objects. Data is hidden using syndrome coding. Assuming that the sender has a
p-bit message m ∈ {0, 1}p to embed using n AC DCT values with their least significant
bits x ∈ {0, 1}n while only k coefficients xi, i ∈ I are non-zero, only some bits xi, i ∈ I are
modified, thus receiving y ∈ {0, 1}n. This vector needs to satisfy:

Dy = m,

where D is a binary p× n matrix that is shared between the sending and receiving party.
The embedding party needs to find the solution for the aforementioned equation that does
not require modifying the bits of zero-valued coefficients (xi = yi, i /∈ I). The solution
needs to minimize the Hamming weight between the modified and unmodified least-
significant-bit vectors (x− y). Using this coding method allows the sender to introduce
fewer changes than there are bits to embed, thus decreasing the impact of embedding



Electronics 2022, 11, 1565 3 of 14

on the carrier object. While the example provided shows how syndrome coding works,
usually a more sophisticated coding scheme, syndrome trellis coding (STC) [11], using a
parity-check matrix in place of D, is applied. The y vector represents a path through a
trellis built based on the parity-check matrix.

2.1.2. J-Uniward

J-Uniward [9] is a method for modeling steganographic distortion caused by data
embedding. It aims to provide a function that determines which regions of the cover object
are less predictable and harder to model. Changes introduced during steganographic data
embedding in those areas are harder to detect than if they were introduced uniformly
across the carrier. Through computation of relative changes of values based on directional
filter bank decomposition this method is able to detect smooth edges that are easy to model.
By detecting these predictable and unpredictable areas, this method provides a way of
determining where embedding changes would be least noticeable. This method is paired
with a coding scheme, such as syndrome trellis coding (STC), to create a content-adaptive
data-hiding algorithm.

2.1.3. UERD

UERD [10] is a steganographic embedding scheme that aims to minimize the probabil-
ity of steganographically encoded information’s presence being detected, by minimizing
the embedding’s impact on the statistical parameters of the cover information. It achieves
this by analyzing the parameters of DCT coefficients of given modes, as well as whole
DCT blocks and their neighbors. Through this, the method can determine whether the
region can be considered “noisy” and whether embedding will impact statistical features
such as histograms of the file. “Wet” regions are those where statistical parameters are
predictable and where embedding would cause noticeable changes. The scheme does not
exclude values such as the DC mode coefficients or zero DCT coefficients from being used
when embedding, as their statistical profiles can make them suitable from the security
perspective. UERD attempts to uniformly spread the relative changes of statistics resulting
from embedding. UERD employs syndrome trellis coding (STC) to hide message bits in the
desired values.

Figure 1 shows a sample clean image, the same image with random data hidden using
the UERD algorithm at 0.4 bpnzac (bits per non-zero AC DCT coefficient) rate, and an
image which is the difference between them. As can be observed, despite there being almost
5% hidden data in the image (b) no artifacts can be perceived. What is more, it is hardly
possible to observe any difference between the clean and steganographically-modified
image, even if they are displayed next to one another. It is only the differential image
(c) that proves the manipulation. The same refers to nsF5, J-Uniward, and other modern
algorithms realizing image steganography—their manipulations are often imperceptible
and difficult to detect, considering that the original image is rarely available.

2.2. Detection Methods

In recent years, several methods of detecting image steganography have been re-
searched. They usually involve the extraction of some sort of parameters out of analyzed
images, followed by applying a classification algorithm. They are usually based on an
ML approach, employing either shallow or deep learning algorithms. Therefore, in this
subsection, we first describe the features most frequently used with steganalytic algo-
rithms, and then briefly describe typical examples of shallow and deep learning-based
detection algorithms.
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(a) (b) (c)

Figure 1. (a) Clean image, (b) image with data hidden using UERD algorithm, and (c) differential
image between them, scaled 100 times. Density of steganographic data: 0.4 bpnzac, which means
here 2638 B of hidden data in each 53 kB image file. Clean image source: unsplash.com (accessed on 8
April 2022).

2.2.1. Feature Extraction

In the literature, several feature spaces for image steganalysis have been researched.
One of them is based on discrete cosine transform residuals (DCTR) [12], the main purpose
of which is to analyze the data resulting from obtaining the DCT value for a given image.
First, in this method, a random 8 × 8 pixel filter is created that will be applied to the entire
analyzed set. Then, a histogram is created after applying the convolution function with
the previously mentioned filter, iterating through each fragment of the analyzed image.
In [13], an example of using DCTR parameters in connection with a multi-level filter is
proposed. A different variation of this approach is a method based on gabor filter residuals
(GFR) [14]. It works in a very similar way to DCTR, but instead of a random 8 × 8 filter,
Gabor filters are used. Article [15] describes a successful application of GFR features in
JPEG steganography detection. Another approach to parameterization is using the phase
aware projection model (PHARM) [16]. In this approach, various linear and non-linear
filters are used, while the histogram is constructed from the projection of values for each
residual image fragment.

2.2.2. Shallow Machine Learning Classifiers

A number of shallow classification methods have been proposed for JPEG steganalysis.
These include the use of algorithms such as support vector machines (SVM) [17–19] or
logistic regression [20]. A method often appearing in recent publications is an ensemble
classifier built using the Fisher linear discriminant (FLD) as the base learner [21]. In certain
cases [7], parameter extractors coupled with this ensemble classifier outperformed more
recent deep learning-based systems. As such, this algorithm has become a point of reference
when looking into the performance of shallow ML methods in detecting steganography.
The rationale driving attempts to increase its detection accuracy is the fact that data is split
randomly into subsets used to train each base learner. Thus, it may be possible that certain
base learners are assigned less varied datasets. Their detection accuracy may suffer from
poor generalization capabilities. Simple ensemble vote-combining methods such as the one
used by default do not take such effects into consideration.

unsplash.com


Electronics 2022, 11, 1565 5 of 14

2.2.3. Deep Learning Methods

In recent years, neural networks have often been reported as being used for detecting
steganographically hidden data in digital images. As input data, extracted image param-
eters based on decompressed DCT values such as DCTR, GFR, or PHARM have been
used. Proprietary variants of convolutional networks such as XuNet [22], ResNet [23],
DenseNet [24], or AleksNet [25] are most often used for this purpose. The common feature
of these networks is combining the convolution-batch normalization-dense structures,
i.e., the convolutional function, the normalization layer, and the basal layer of neurons with
the appropriate activation function. Functions such as sigmoid [26], TLU [27] (threshold
linear unit), and Gaussian [28] are used, but the most common are rectified linear unit
(ReLU) [29] or TanH [22].

3. Materials and Methods

In our experiments, we compared how shallow and deep learning methods cope with
detecting hidden data in JPEG images. We tested a variety of deep and shallow ML-based
classifiers and various feature spaces. Initially, we used raw DCT coefficients as input
for the tested methods. As it did not produce satisfactory results, we extracted various
parameters from the images. We performed experiments in DCTR, GFR, and PHARM
feature spaces. We taught our models features extracted from pairs of images: without
and with steganographically hidden data. Details of the data and the classifiers used are
presented in the next subsections.

3.1. Datasets Used

We used the “Break Our Steganograhic System” (BOSS) image collection [30], which
contains 10,000 black and white photos (with no hidden data). The photos were converted
into JPEG with a quality factor of 75. Then, we generated three other sets of images, hiding
random data with a density of either 0.4 or 0.1 bpnzac, using three different steganographic
algorithms: J-Uniward, nsF5, and UERD. We used their code published at [31]. All exper-
iments, including generation of the steganographic files, were run on a virtual machine
with 64 GB RAM and 8 vCPU cores of Intel Xeon Gold 5220 processor, running on a DELL
PowerEdge R740 server. Each dataset was divided in parallel into training and test subsets,
in the ratio of 90:10.

3.2. Configuration of Ensemble Classifier

The base component of the shallow classifier is the ensemble classifier based on the
FLD model [21]. A diagram presenting the way the ensemble classifier operates is shown
in Figure 2. The set of feature vectors created by extracting DCTR, GFR, or PHARM charac-
teristics from pictures is used to generate smaller subsets through a random selection of
samples from the original set (a process called bootstrapping). These subsets are then used
to train individual base learners independently from each other to diversify their classifica-
tion logic. Throughout the training process, the size of the subset and the population of the
ensemble (the number of base learners) is adjusted to minimize the out-of-bag error of the
system. These subsets are then used to train individual base learners. Upon testing, each
base learner reaches its decision independently of others and the results from the whole
“population” are aggregated to produce a single decision.

Figure 2. A diagram showing the structure of the ensemble classifier.
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In our work, we focused on maximizing the detection ability of this classifier through
the use of various methods to combine the votes of base learners. While the individual votes
in the original ensemble were fused by simply choosing the more popular classification
decision, we decided to explore the potential gain of employing machine learning for
this. We trained the original ensemble classifier and then used it to obtain the decisions
of all base learners for both the training and testing sets. The resulting data formed new
feature vectors, which were used for further analysis with different ways of combining the
votes of individual base learners. We performed this analysis using primarily methods
implemented in the scikit-learn library [32]. As such, the original ensemble became a
dimension-reducing layer.

3.3. Deep Learning Environment

The neural network environment was based on the Keras [33] and Tensorflow [34]
library due to the simplicity of the model definition. The network architecture was mainly
based on the Dense-BatchNormalization structure, but not using the convolution part as
described in the available literature. We also tested various activation functions for the
dense layer, such as sigmoid, softsign, TanH, and softmax, but the best results were obtained
for the ReLU function. We used two optimizers: adaptive moment estimation (Adam) [35]
and stochastic gradient descent (SGD) [36], which gave different results depending on
the type of input parameters. The last parameter that significantly influenced the model
learning efficiency was the learning rate. We found that lowering it gave very promising
results without changing the network architecture and the optimizer. One of the network
configurations used is displayed in Figure 3.

Figure 3. Example of 3 Dense-BatchNormalization neural networks used for detecting data hidden
by a JPEG-based steganographic method.
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3.4. Testing Scenarios

For the shallow ML-based algorithms, we decided to focus on the ensemble classifier,
which has been reported in related studies as one of the most promising. During our
experiments, we verified a number of ML-based methods used to combine the set of votes
coming from all base learners to return the final classifier decision. These include: linear
regression, logistic regression, linear discriminant analysis (LDA), and k nearest neighbors
(k-NN). Moreover, the majority voting scheme (i.e., choosing the most popular classification
decision, which is the original ensemble vote fusion method), as well as unquantized
majority voting (i.e., classification based on the sum of non-quantized decisions of the
whole ensemble) was included for comparison.

As for deep learning methods, two network architectures were selected for experiments:

• Three dense layers with the ReLU activation function, with 250 neurons in the first,
120 in the second, and 50 in the third, used in four reference models;

• Two dense layers also with the ReLU function, having 500 neurons in the first layer
and 250 in the second, used in the last (fifth) reference model.

We decided not to use any convolutional layers due to their high computational
requirements. However, we used additional normalization layers (BatchNormalization)
between the dense layers. Half of the three-layer dense models used the Adam optimizer
and half used SGD models, while the two-layer dense model used only the Adam optimizer.
In the case of learning rate for the Adam optimizer, the values 1 × e−4 or 1 × e−5 were
used, while for SGD, 1 × e−3 or 1 × e−4 were used. The version of the SGD optimizer
with learning rate 1 × e−3 or 1 × e−4 and the 1 × e−4 version of the Adam optimizer
were omitted here, because they yielded much worse results compared to the version with
three dense layers. In total, five different neural network configurations were tested for
steganography detection.

3.5. Evaluation Metrics

To evaluate the models created, we employed commonly used metrics. The first is
accuracy, which indicates what percentage of the entire set of classified data is the correct
classification. The second metric is precision, which determines what proportion of the
results indicated by the classifier as belonging to a given class actually belongs to it. Another
metric is recall, which determines what part of the classification results of a given class is
detected by the model. The fourth metric analyzed is the F1-score, which is the harmonic
mean of precision and recall. It reaches 1.0 when both components give maximum results.
The last metric we used to test the effectiveness of the model is the area under the ROC
curve (AUC). We will also present the ROC curves themselves, as they visually present the
effectiveness of the detection model.

In our results, we focus on evaluating the accuracy for each model combination, while
for the best parameters we also provide the values of the other metrics. Since the testset is
ideally balanced, the accuracy score is not biased and reflects well the detection ability of a
given classifier.

4. Results

Tables 1 and 2 show the results of steganography detection obtained by shallow
and deep methods, respectively. We display the accuracy values achieved for various
steganographic algorithms and various hidden data densities, accompanied by average
accuracies for each classifier/parameter combination.
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Table 1. Accuracy of image steganography detection (in percentages) for various classifiers and
ensemble configurations. The best values in each column are shown in bold.

Classifier Parameters
J-Uniward nsF5 UERD

Avg.
0.1 0.4 0.1 0.4 0.1 0.4

Majority
voting

DCTR 50.9 84.9 78.7 99.9 66.1 95.3 79.3
GFR 54.9 89.4 70.4 99.2 65.5 95.9 79.2

PHARM 53.9 84.9 70.5 98.7 64.5 94.6 77.9

Unquant.
majority
voting

DCTR 53.3 85.0 79.4 99.9 66.3 95.3 79.9
GFR 55.4 89.5 70.3 99.2 65.9 95.7 79.3

PHARM 54.1 50.8 50.7 51.7 50.0 50.0 51.2

Linear
regression

DCTR 54.2 85.6 79.7 99.9 66.1 95.2 80.1
GFR 56.3 89.8 70.2 99.2 66.2 95.7 79.6

PHARM 54.5 85.7 70.1 98.8 64.0 94.0 77.9

Logistic
regression

DCTR 54.3 85.4 79.4 99.7 66.2 94.9 79.9
GFR 56.3 89.5 70.1 99.1 65.9 95.5 79.4

PHARM 54.6 62.0 − 98.5 64.5 94.7 70.7

LDA
DCTR 54.2 85.6 79.7 99.9 66.1 95.2 80.1
GFR 56.3 89.7 70.2 99.1 66.2 95.7 79.5

PHARM 54.4 85.7 70.1 98.8 64.0 94.0 77.8

k-NN
DCTR 53.8 85.0 78.9 99.9 66.8 95.2 79.9
GFR 56.1 89.8 70.2 99.3 66.1 95.9 79.6

PHARM 54.8 − − 93.9 63.5 94.8 67.8

Table 2. Accuracy of image steganography detection (in percentages) for various architectures of
neural networks and optimizers. The best values in each column are shown in bold.

Network Arch. Optimizer Parameters
J-Uniward nsF5 UERD

Avg.
0.1 0.4 0.1 0.4 0.1 0.4

250 × BN × 120 ×
BN × 50
(3 layers)

Adam 1e−4
DCTR – 83.1 76.3 98.8 66.5 94.5 78.3
GFR – 86.5 68.3 95.5 63.4 92.9 76.1

PHARM – 74.7 62.3 95.9 51.4 88.5 70.5

Adam 1e−5
DCTR – 83.0 74.2 99.7 64.7 93.1 77.5
GFR – 88.4 68.0 98.2 62.6 92.5 76.6

PHARM – 76.1 66.1 93.4 55.5 89.4 71.8

SGD 1e−3
DCTR – 77.0 73.8 99.6 62.8 91.4 75.8
GFR – 78.6 68.8 97.5 58.5 91.9 74.2

PHARM – 58.4 51.4 59.8 50.6 61.5 55.3

SGD 1e−4
DCTR – 73.3 52.1 99.1 51.6 91.9 69.7
GFR – 82.2 58.6 97.6 52.1 91.9 72.1

PHARM – 60.9 – 69.7 50.6 68.9 58.4

500 × BN × 250
(2 layers) Adam 1e−5

DCTR – 80.8 73.5 99.6 61.9 93.5 76.6
GFR 53.6 86.4 67.6 97.4 64.2 91.9 76.9

PHARM – 75.0 54.1 94.2 54.0 87.9 69.2

On average, the use of ML for ensemble vote combination allowed for higher detection
accuracy when using the systems based on DCTR or GFR features, despite marginally
worse performance in certain cases (such as GFR features extracted from nsF5-modified
files at 0.1 bpnzac). The PHARM-features-based classifiers sometimes yielded results worse
than when using the default, majority-based scheme, or failed to converge altogether.
There was no combination of type of parameters used (DCTR, GFR, PHARM) and method
of fusing base-learner votes into the final decision that outperformed the others in all
testing scenarios. The configuration that, on average, achieved the best results for the
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steganographic algorithms tested turned out to be the linear regression classifier fed with
DCTR features. While using linear discriminant analysis (LDA) to fuse votes coming
from a system operating on DCTR parameters achieved equal averaged accuracy, linear
regression is considered in further sections due to slightly better performance with GFR
and PHARM features.

As for the deep learning algorithms (Table 2), the lowest accuracy was obtained for the
set based on J-Uniward. Better results in terms of accuracy were obtained for the sets based
on UERD, and the best were achieved for nsF5. When analyzing the tested configurations,
the worst results are those based on the SGD optimizer, while the configurations based on
Adam performed better at higher learning rates. Comparing the configuration based on
three layers and two layers, the results are rather similar for the Adam optimizer.

Looking at the various feature spaces, it can be seen that the least accurate results were
always obtained for PHARM. On the other hand, the results obtained for the DCTR and
GFR parameters for all combinations were much better and rather similar, which means
that most probably they can be used interchangeably in JPEG steganalytic tools.

These observations are further confirmed in Figure 4. The PHARM parameters always
yielded the worst results. The GFR features usually gave slightly better results for the
higher embedding rate (0.4 bpnzac), while for the lower embedding rate (0.1 bpnzac) it was
the DCTR feature space that turned out to be slightly better for most of the tested classifiers,
both shallow and deep learning-based.

Figure 4. Accuracy achieved for various feature vectors against classifiers or network architectures.

After conducting the research, we selected the best configurations for specific types of
sets, differentiating for shallow and deep learning methods, and calculated the remaining
metrics. Their outcomes are visualized in Figure 5, while the details are shown in Tables 3
and 4. Based on Figure 6, one can notice that the differences between the main evaluation
metrics for the best shallow and deep methods for density 0.4 bpnzac are only minor.
A somewhat higher difference can be observed for all the tested steganographic algorithms
applied at the lower embedding rate: 0.1 bpnzac. Here, the ensemble (shallow) classifier
usually turned out to be slightly better.



Electronics 2022, 11, 1565 10 of 14

Table 3. Results of image steganography detection (in percentages) for the best shallow method
(linear regression).

Metric
J-Uniward nsF5 UERD

Avg.
0.1 0.4 0.1 0.4 0.1 0.4

Accuracy 54.2 85.6 79.7 99.9 66.1 95.2 80.1
Precision 54.2 86.4 80.2 99.9 67.9 96.1 80.8
Recall 54.1 84.4 78.9 99.8 61.1 94.1 78.7
F1-score 54.1 85.4 79.5 99.9 64.3 95.1 79.7
AUC 54.9 91.8 87.7 99.9 72.4 98.8 84.3

Table 4. Results of image steganography detection (in percentages) for the best deep learning method
(250 × BN × 120 × BN × 50 with Adam 1 × e−4 based on DCTR parameters).

Metric
J-Uniward nsF5 UERD

Avg.
0.1 0.4 0.1 0.4 0.1 0.4

Accuracy 50.2 83.1 76.3 98.8 66.5 94.5 78.2
Precision 50.2 80.2 74.5 98.5 63.6 94.6 76.9
Recall 46.1 87.7 80.7 99.0 78.7 94.3 81.1
F1-score 48.1 83.8 77.3 98.8 70.1 94.4 78.8
AUC 50.3 91.6 84.5 99.8 72.8 98.7 83.0

Figure 5. Visualization of evaluation results for the best shallow and deep steganalytic algorithms.

These observations are confirmed by the scores shown in Tables 3 and 4. The highest
difference is for the J-Uniward 0.1 set, where the difference is about 4% relative, while
for other sets we usually observe about 1–2% relative advantage in favor of the ensemble
classifier, which means that these differences are only minor.

In total, the parameters of detecting data hidden using nsF5 at 0.4 embedding rate
are close to 100%, regardless of the method. In contrast, the metrics for detection of data
hidden with J-Uniward at 0.1 bpnzac are very poor. For the ensemble classifier with linear
regression, all metrics are around 54%, while for the best neural network for most of
the results are at the chance level. In general, the detection of all the tested JPEG-based
steganographic methods working at the embedding rate of 0.4 bpnzac can be conducted
with accuracy, with F1-score and AUC scores above 85%. The detection of hidden content
embedded at a low rate of 0.1 bpnzac is problematic both for shallow and deep methods.
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In the best case, the detection accuracy reached 85% for the easiest, nsF5 algorithm, while it
was significantly lower for UERD and J-Uniward.

(a) (b)

Figure 6. Comparison of ROC curves for the best neural network and the best ensemble classifier for
data hidden (a) with density 0.4 bpnzac and (b) with density 0.1 bpnzac.

5. Discussion

The results obtained were compared to the results of similar studies. In article [37], the re-
search was also carried out for the BOSS dataset using an alternative version of J-Uniward—an
SUniward algorithm. The model was based on the Convolution-BatchNormalization Dense
neural network scheme. The authors obtained AUC at the level of 97.9% for density 0.4 bpn-
zac. It was a similar result to our best model, which is much less computationally complex,
due to the lack of a convolutional layer.

Articles [13,14] also conducted research on the BOSS dataset using the DCTR parame-
ters and the Gabor filters on the J-Uniward algorithm, while using different decision models.
They obtained a detection error, calculated based on false-alarm and missed-detection prob-
abilities, as proposed in [37], of around 0.04–0.05 for DCTR, and the out-of-bag error for
the Gabor filter was around 0.39, both assessed for density 0.4. Unfortunately, these re-
sults are difficult to compare with ours due to the different metrics used and the testing
methodology.

During experimentation with various types of neural network layers, we noticed
that adding a normalization layer significantly improved the effectiveness of a model.
For example, for the nsF5 method, it improved the results by about 15–20% relative, while
for the J-Uniward 0.4 case it made it possible to build a reasonable model. Without this layer,
the network tended to classify all images into one class. It indicates that normalization
layers in the Convolution-Dense-BatchNormalization model are indispensable, in contrast
to convolution layers, the lack of which can be compensated for by, for example, choosing
a different feature space.

The results achieved in our study for the three-layer and two-layer network configu-
rations were quite similar for the Adam optimizer. This may indicate that enlarging the
architecture of a neural network is pointless, as it can only have a negative impact on the
computational efficiency of the neural model.

It is noteworthy that the BOSS dataset used in this study is comprised exclusively of
grayscale images. Thus, only the luma channel was present in each JPEG file. However,
the steganographic algorithms tested (nsF5, J-Uniward, and UERD) typically introduce
changes only to DCT coefficient values of the luma channel. As such, non-grayscale
(colored) images can easily be analyzed in the same way as the files from the BOSS dataset,
with the chrominance channels being ignored in the detection process.
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6. Conclusions and Future Work

In this article, we analyzed the effectiveness of detecting hidden content in JPEG
images using either shallow, ensemble classifiers, or deep learning methods. We found that
performance depended heavily on the steganographic method used and on the density of
the embedded hidden data. While detecting the presence of content hidden with the nsF5
algorithm at the density 0.4 bpnzac is almost perfect, the detection of data hidden using
J-Uniward at 0.1 bpnzac is hardly possible, regardless of the analysis method used.

One of the aims of our study was to find the best feature space for image steganalysis.
DCTR and GFR parameters yielded the best results, while the feature space built on
the PHARM parameters returned worse scores. Therefore, we recommend extracting
either DCTR or GFR features when scanning JPEG files for security purposes, e.g., by
antimalware software.

We also found that the performance of the best deep learning algorithm (with the
network architecture: 250 × BN × 120 × BN × 50 and the Adam 1 × e−4 optimizer) was
either similar or slightly inferior to that of the best ensemble classifier built on linear
regression. Therefore, we claim that carefully selected ensemble classifiers could be a
promising alternative to deep learning methods in the field of image steganalysis.

Future work could concentrate on searching for effective detection methods for rates
of embedding hidden data lower than 0.4 bpnzac, bearing in mind malware or advanced
persistent threats (APTs) exchanging lower amounts of data. Researchers should especially
focus on steganalysis of algorithms such as J-Uniward, which turned out to be particularly
difficult to detect. It would be also interesting to see an application of elaborated algorithms,
e.g., in an intrusion detection system (IDS). A study on the impact of characteristics of the
hidden data (random, text, script) on the detectability of a JPEG-based steganographic
method would also be beneficial.
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Analysis of Media Files. In Proceedings of the 15th International Conference on Availability, Reliability and Security, ARES’20,
New York, NY, USA, 25–28 August 2020. [CrossRef]

5. Secure Intelligent Methods for Advanced RecoGnition of Malware and Stegomalware (SIMARGL) Project. Available online:
http://simargl.eu/ (accessed on 18 January 2022).

6. W3Techs—Web Technology Surveys. Available online: https://w3techs.com/technologies/overview/image_format (accessed
on 6 May 2022).

https://www.kaggle.com/datasets/h2020simargl/jpeg-stegochecker-dataset
https://www.kaggle.com/datasets/h2020simargl/jpeg-stegochecker-dataset
http://doi.org/10.1109/ACCESS.2020.3048319
http://dx.doi.org/10.1109/MITP.2018.032501746
https://github.com/peewpw/Invoke-PSImage
https://github.com/peewpw/Invoke-PSImage
http://dx.doi.org/10.1145/3407023.3409187
http://simargl.eu/
https://w3techs.com/technologies/overview/image_format


Electronics 2022, 11, 1565 13 of 14

7. Yang, Z.; Wang, K.; Ma, S.; Huang, Y.; Kang, X.; Zhao, X. IStego100K: Large-scale Image Steganalysis Dataset. In Proceedings
of the International Workshop on Digital Watermarking, Chengdu, China, 2–4 November 2019; Springer: Berlin/Heidelberg,
Germany, 2019.

8. Fridrich, J.; Pevný, T.; Kodovský, J. Statistically undetectable JPEG steganography: Dead ends, challenges, and opportunities.
In Proceedings of the the 9th ACM Multimedia & Security Workshop, Dallas, TX, USA, 20–21 September 2007; Association for
Computing Machinery: New York, NY, USA, 2007; pp. 3–14.

9. Holub, V.; Fridrich, J.; Denemark, T. Universal distortion function for steganography in an arbitrary domain. EURASIP J.
Multimed. Inf. Secur. 2014, 2014, 1. [CrossRef]

10. Guo, L.; Ni, J.; Su, W.; Tang, C.; Shi, Y.Q. Using Statistical Image Model for JPEG Steganography: Uniform Embedding Revisited.
IEEE Trans. Inf. Forensics Secur. 2015, 10, 2669–2680. [CrossRef]

11. Filler, T.; Judas, J.; Fridrich, J. Minimizing Embedding Impact in Steganography using Trellis-Coded Quantization. In Proceedings
of the Media Forensics and Security II, San Jose, CA, USA, 17–21 January 2010; Memon, N.D., Dittmann, J., Alattar, A.M., Delp,
E.J., III, Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2010; pp. 38–51.

12. Holub, V.; Fridrich, J. Low-complexity features for JPEG steganalysis using undecimated DCT. IEEE Trans. Inf. Forensics Secur.
2015, 10, 219–228. [CrossRef]

13. Wang, C.; Feng, G. Calibration-based features for JPEG steganalysis using multi-level filter. In Proceedings of the 2015 IEEE
International Conference on Signal Processing, Communications and Computing (ICSPCC), Ningbo, China, 19–22 September
2015; pp. 1–4. [CrossRef]

14. Song, X.; Liu, F.; Yang, C.; Luo, X.; Zhang, Y. Steganalysis of adaptive JPEG steganography using 2D Gabor filters. In Proceedings
of the 3rd ACM Workshop on Information Hiding and Multimedia Security, IH&MMSec’15, Portland, OR, USA, 17–19 June 2015;
Association for Computing Machinery: New York, NY, USA, 2015; pp. 15–23.

15. Xia, C.; Guan, Q.; Zhao, X.; Xu, Z.; Ma, Y. Improving GFR Steganalysis Features by Using Gabor Symmetry and Weighted
Histograms. In Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, IH&MMSec’17,
Philadelphia, PE, USA, 20–22 June 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 55–66. [CrossRef]

16. Holub, V.; Fridrich, J. Phase-aware projection model for steganalysis of JPEG images. In Media Watermarking, Security, and Forensics
2015; Alattar, A.M., Memon, N.D., Heitzenrater, C.D., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA,
USA, 2015; pp. 259–269.

17. Fridrich, J.; Kodovský, J.; Holub, V.; Goljan, M. Breaking HUGO—The Process Discovery. In Information Hiding; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2011.

18. Bhat, V.H.; Krishna, S.; Shenoy, P.D.; Venugopal, K.R.; Patnaik, L.M. HUBFIRE—A multi-class SVM based JPEG steganalysis using
HBCL statistics and Fr Index. In Proceedings of the 2010 International Conference on Security and Cryptography (SECRYPT),
Athens, Greece, 26-28 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–6.

19. Shankar, D.D.; Azhakath, A.S. Minor blind feature based Steganalysis for calibrated JPEG images with cross validation and
classification using SVM and SVM-PSO. Multimed. Tools Appl. 2020, 80, 4073–4092. [CrossRef]

20. Lubenko, I.; Ker, A.D. Steganalysis using logistic regression. In Media Watermarking, Security, and Forensics III; SPIE: Bellingham,
WA, USA, 2011; Volume 7880, p. 78800K.

21. Kodovsky, J.; Fridrich, K.; Holub, V. Ensemble Classifiers for Steganalysis of Digital Media. IEEE Trans. Inf. Forensics Secur. 2012,
7, 432–444. [CrossRef]

22. Xu, G.; Wu, H.Z.; Shi, Y.Q. Structural Design of Convolutional Neural Networks for Steganalysis. IEEE Signal Process. Lett. 2016,
23, 708–712. [CrossRef]

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recongnition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

24. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

25. Mohamed, N.; Rabie, T.; Kamel, I.; Alnajjar, K. Detecting Secret Messages in Images Using Neural Networks. In Proceedings of
the 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 21–24 April
2021 ; pp. 1–6.

26. Tan, S.; Li, B. Stacked convolutional auto-encoders for steganalysis of digital images. In Proceedings of the Signal and Information
Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, Siem Reap, Cambodia, 9–12 December 2014;
pp. 1–4.

27. Yang, J.; Shi, Y.; Wong, E.K.; Kang, X. JPEG steganalysis based on DenseNet. arXiv 2018, arXiv:1711.09335
28. Qian, Y.; Dong, J.; Wang, W.; Tan, T. Deep learning for steganalysis via convolutional neural networks. In Proceedings of

the Media Watermarking, Security, and Forensics 2015, San Francisco, CA, USA, 8–12 February 2015; Alattar, A.M., Memon,
N.D., Heitzenrater, C.D., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2015; Volume 9409,
pp. 171–180.

29. Pibre, L.; Pasquet, J.; Ienco, D.; Chaumont, M. Deep learning is a good steganalysis tool when embedding key is reused for
different images, even if there is a cover sourcemismatch. Electron. Imaging 2016, 2016, 1–11. [CrossRef]

30. Break Our Steganographic System Base Webpage (BossBase). Available online: http://agents.fel.cvut.cz/boss/ (accessed on 18
January 2022).

http://dx.doi.org/10.1186/1687-417X-2014-1
http://dx.doi.org/10.1109/TIFS.2015.2473815
http://dx.doi.org/10.1109/TIFS.2014.2364918
http://dx.doi.org/10.1109/ICSPCC.2015.7338897
http://dx.doi.org/10.1145/3082031.3083243
http://dx.doi.org/10.1007/s11042-020-09820-7
http://dx.doi.org/10.1109/TIFS.2011.2175919
http://dx.doi.org/10.1109/LSP.2016.2548421
http://dx.doi.org/10.2352/ISSN.2470-1173.2016.8.MWSF-078
http://agents.fel.cvut.cz/boss/


Electronics 2022, 11, 1565 14 of 14

31. Digital Data Embedding Laboratory. Steganographic Algorithms. Available online: http://dde.binghamton.edu/download/
stego_algorithms/ (accessed on 18 January 2022).

32. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

33. Ketkar, N. Introduction to Keras. In Deep Learning with Python: A Hands-on Introduction; Apress: Berkeley, CA, USA, 2017;
pp. 97–111. [CrossRef]

34. Pang, B.; Nijkamp, E.; Wu, Y.N. Deep Learning With TensorFlow: A Review. J. Educ. Behav. Stat. 2020, 45, 227–248. [CrossRef]
35. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
36. Ketkar, N. Stochastic Gradient Descent. In Deep Learning with Python: A Hands-on Introduction; Apress: Berkeley, CA, USA, 2017;

pp. 113–132. [CrossRef]
37. Wang, H.; Pan, X.; Fan, L.; Zhao, S. Steganalysis of convolutional neural network based on neural architecture search. Multimed.

Syst. 2021, 27, 379–387. [CrossRef]

http://dde.binghamton.edu/download/stego_algorithms/
http://dde.binghamton.edu/download/stego_algorithms/
http://dx.doi.org/10.1007/978-1-4842-2766-4_7
http://dx.doi.org/10.3102/1076998619872761
http://dx.doi.org/10.1007/978-1-4842-2766-4_8
http://dx.doi.org/10.1007/s00530-021-00779-5

	Introduction
	Related Work
	JPEG-Based Image Steganography
	nsF5
	J-Uniward
	UERD

	Detection Methods
	Feature Extraction
	Shallow Machine Learning Classifiers
	Deep Learning Methods


	Materials and Methods
	Datasets Used
	Configuration of Ensemble Classifier
	Deep Learning Environment
	Testing Scenarios
	Evaluation Metrics

	Results
	Discussion
	Conclusions and Future Work
	References

