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Abstract: For urban digital twin, this paper comes up with a novel urban data acquisition scheme,
denoted by collaborative reliable event transport (cRET), that conducts micro-scale sensing resolution
in urban environments. cRET relies on battery-powered sensors with Bluetooth low-energy (BLE)
modules and the smart mobile devices that people carry around urban places. However, the tradi-
tional data acquisition schemes with mobile assistance suffer from the poor communication channel
quality of BLE. So, it is tough to achieve enough reliability of event observation. Hence, cRET utilizes
overhearing-based collaboration among sensors to improve the data delivery ratio. It also could
support reliable transmission over mobile devices despite high-speed moving. A proof-of-concept
demonstrates that the reliability is improved by the overhearing and collaboration among sensors
against low-channel conditions and a high moving speed of mobile devices, i.e., 30 km/h and more.

Keywords: digital twin; smart city; wireless communication; mobile devices; Bluetooth

1. Introduction

In the era of digital transformation, a digital twin has emerged as a key technology.
Especially, the digital twin comes up as the next-generation technology to accelerate the
smart city [1]. The urban digital twin through urban digitization aims to provide virtual
twin models in order to solve many urban problems, such as traffic congestion, noise
pollution, air pollution, water pollution, disaster, and so on [2,3]. The virtual twin model as
a virtual representation of urban physical assets is built and should be updated as changes
in their physical assets through virtual three-dimensional modeling, visualization, machine
learning, and so on [4,5]. The provisioning for this urban digital twin fundamentally
demands a huge number of various kinds of data, e.g., floating population, noise level,
temperature, humidity, wind speed, air quality, traffic, etc., about the city [6]. Meanwhile,
the city includes several spaces, such as a commercial district, residential district, green
area, urban transport area, etc. Nowadays, an enormous number of sensors have been
distributed throughout such urban areas. Thus, it is not a trivial to acquire such data from
a large number of sensors in terms of network scalability and transmission reliability.

For this, low-power wide-area network (LPWAN) technologies, i.e., LoRa, Sigfox, etc.,
may be employed due to wide coverage by their long-range communication. However,
such LPWAN is vulnerable to congestion and collisions due to the massive connectivity
in urban environments where a vast number of sensors are ubiquitously deployed in the
city [7]. This is because hotspot issues frequently occur in which data from such sensors
to one gateway are concentrated. Therefore, this paper comes up with a novel strategy to
effectively acquire data from sensors via mobile devices in the citywide area where cellular
network infrastructures are well deployed. This strategy relies on off-the-shelf BLE-enabled
sensors and mobile devices located ubiquitously on the streets or roadsides. So, sensing
data are transmitted to mobile devices via the Bluetooth low-energy (BLE) channel. Then,
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the sensing data from mobile devices are collected centrally in data storage on the Internet.
We denote it mobile-assisted urban sensing (MaUS).

There has emerged a MaUS based on the mobile relay that delivers data from sensors
to a BS via mobile devices carried by people walking, riding a bike, and taking a vehicle
in urban places [8,9]. The mobile devices could allow their resources to acquire data
from sensors around them even while using them, since nowadays, mobile devices have
powerful resources such as high-performance chips with low-power technology, a large
volume of memory, etc. In other words, citizens would share some resources of their own
mobile devices to acquire data via participatory or opportunistic means [10]. Since such
mobile users already have connectivity in every region within cities, the mobile-assisted
manners can overcome costly infrastructure construction problems to cover citywide areas
through wireless network technologies, such as BLE and Wi-Fi, embedded on their own
mobile devices. Unlike LPWAN, it could locally limit the influence on congestion and
collisions by short-range communication with sensors around itself. In other words, BLE
employed in our scheme brings the effect that the overhead of total data traffic in an urban-
scale area is distributed to the location of each sensor, since data transmission is achieved
within only the sensor’s own communication coverage by using mobile devices carried by
urban people.

Meanwhile, in such MaUS, the reliability of sensing events, named event reliability
(ER), is a typical factor to provisioning accurate information services [11]. To achieve
the required accuracy of event sensing, the adequate number of reporting data into a
cloud server is a common requirement [12,13]. So, previous studies came up with various
ideas to accomplish the requirement. In common, when mobile devices communicate
with BLE-running sensors deployed in the city, the mobile devices employ two typical
approaches for communication with the sensors: connection-based approach (CA) and
broadcast-based approach (BA). However, the traditional approaches have communication
issues for transmission reliability in the data acquisition environment that relays digital data
from stationary sensors installed at a point to the Internet server via devices with mobility.
Due to the inherent properties of BLE communication, the communication approaches
of previous works could not guarantee ER achievement for mobile users. Especially, the
connection-based approach which has to beforehand perform the connection procedure
for data exchange is difficult to support high-speed mobile users with short available time
for communication.

To solve the problem, this paper proposes a collaborative data acquisition scheme
based on only the broadcast manner instead of considering the connection manner together:
so-called collaborative reliable event transport (cRET). As shown in Figure 1, BLE-running
sensors broadcast their sensing data to the air. So, all mobile devices and other sensors
within a transmission range of a sensor received the data. To apply this overhearing
environment, sensors in cRET also accept data received from other sensors and transmit
both data from themselves and others. To realize this idea, cRET allocates scanning periods
of BLE between adverting periods for data broadcasting. So, each sensor is able to overhear
other sensor’s data. In addition, cRET forms the comprehensive sensing data packet with
local area networking identifiers for the naming of sensors in a local region. In the realistic
BLE communication nature, the wireless link quality is poor, and the loss ratio for high-
speed mobile nodes is dramatically increased. The proof-of-concept prototype of cRET
shows that it could achieve ER requirements in such harsh communication environments.

The rest of this paper is organized as follows. Section 2 describes related studies.
In Section 3, we come up with and addresses the collaborative reliable event transport
(cRET). Then, the various experimental results are explained in Section 4. Finally, Section 5
concludes this article with performance evaluation results and presents future work.
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Figure 1. Urban Monitoring Environment with Collaborative Reliable Event Detection.

2. Related Work

In this section, we investigate related studies to traditional data acquisition schemes
over the wireless communication channel. Then, we analyze each scheme in terms of data
transmission using mobile devices on fast-moving subjects.

As mentioned in Introduction section, the acquisition schemes of related studies
are classified under two heads: the connection-based communication manner and the
broadcast-based communication manner.

2.1. Connection-Based Communication

In the traditional connection-based communication manners, data exchange is achieved
by the connection procedure of communication between sensors and mobile devices [14–16].
In [14], the AirSense system is proposed to monitor micro-level monitoring of air quality
at indoor and outdoor places. In the system, the mobile devices as data collectors deliver
data from air quality sensors, named air quality monitoring devices (AQMDs), to a cloud
server on the Internet. When the mobile device is near a sensor installed at a point in
the city, it tries to connect with the sensor over a Bluetooth communication channel. The
mobile device brings a tuple <sensor’s id, sensed data> from the sensor if the connection is
successfully established. After disconnection with the sensor, the mobile device delivers
the tuple to the cloud server over cellular networks, e.g., 3G-UMTS, 4G-LTE, etc.

In [15], a new mobile-crowdsensing scheme is introduced in which mobile devices
collect data from external sensor devices employed to detect more various environmental
data. Such external sensor devices have three kinds of sensors, i.e., temperature, pressure,
and humidity. Such sensors are installed on an Arduino board with BLE technology. Data
generated by this sensor device are collected via the mobile device, which is the same as a
process of data collection of [14].

In [16], the adaptive flow control (AFC) scheme is proposed to support a more reliable
communication scheme in an environment where the connection-based communication
between the sensor and mobile device with its arbitrary mobility is unreliable. The arbitrary
mobility of mobile devices makes it difficult to maintain connection by unexpected termina-
tion when the mobile device is out of the communication range of the sensor. Thus, in this
AFC scheme, a key point is to detect deviations from the communication range between the
sensor and mobile device based on the movement information and the location information.
For this, the AFC scheme estimates and exploits a connection time with these two types of
information. The connection time means the duration where the sensor and mobile device
are capable of communicating with each other. In other words, communication between
two devices is not possible if the connection times out.

In summary, traditional connection-based communication does not support reliable
transmission as the mobile device randomly moves in the real world. This is because such
random mobility disturbs stable data transmission, since such mobility makes it difficult
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to meet the requirement that a mobile device needs to stand nearby the stationary sensor
and has to maintain a location until the communication is terminated. Although the AFC
scheme in [16] considers an environment with such mobility, the data transmission ratio is
significantly dropped once the threshold of a certain movement speed is exceeded. In other
words, it is inadequate to support reliable communication. In this way, the connection-
based manner paradoxically aggravates data transmission reliability in communication
environments with the mobility of data collectors. Since mobility is related to the available
time for communication between devices, this could be worse as the moving speed of
mobile devices is higher.

2.2. Broadcast-Based Communication

To mitigate the above problem, broadcast-based communication manners could be
chosen. By the evolution of BLE technology, traditional broadcast-based manners operate
without a connection procedure [17,18]. Here, each sensor advertises its own data around
and each mobile device periodically scans the advertised data; data exchange in this
communication is accomplished when they are within a communication range of each other.

As one of the related studies, BLE-based proximity monitoring in [17] is presented
to detect human mobility in a workplace. In proximity sensing, a broadcast-based com-
munication mode is more suitable, since a connection-based mode not only is restricted
to two devices for communication but also causes delays before data exchange. For this,
the proximity sensors are deployed in the workplace environment, and they periodically
disseminate BLE-advertising packets around. Then, the mobile user could receive the data
including proximity information from such sensors over BLE communication. With this,
for accurate proximity monitoring, it detects when the mobile user closely contacts with
the proximity sensor.

In [18], a BLE-based indoor positioning scheme is proposed to measure a mobile
user based on the received signal information from a number of BLE-enabled beacons
deployed around. For accurate positioning, it is important to sufficiently collect data from
nearby BLE beacons at a point within indoor places. In other words, such positioning
data are collected for a long time interval. Therefore, the mobile user should not deviate
from the communication ranges of all beacons related to data gathered at the beginning
time of positioning before the positioning is terminated. With this, the accuracy of indoor
positioning could be improved.

In summary, the broadcast-based manner allows data acquisition at a low cost without
communication processes such as connection procedures. With this property, it could
be regarded as an appropriate manner to deliver data from stationary sensors to mobile
devices that move on fast. This is because it can even utilize connection time for data
delivery. However, in each relevant study, the operation of their applications is based on
the data of every beacon. In other words, since they depend on the location of beacons, the
application service is discontinued when the mobile device leaves the place where beacons
are deployed. So, in common with connection-based manners, this problem would be
deepened by the movement speed of mobile devices.

3. Collaborative Reliable Event Transport
3.1. Collaborative Data Acquisition

The collaborative data acquisition is achieved by a set of sensors with an overhearing
technique, and the overhearing is carried out by broadcast-based communication [17,18].
By the collaboration between sensors, each sensor could participate in work to deliver
the data from an adjacent sensor to a mobile device via oneself. With this, our scheme
obtains the effect that expands a range of data transmission. Accordingly, the mobile device
could acquire the data of the old sensor from the new sensor despite being out of the
communication range of the old sensor. In this way, the collaborative data acquisition,
which exchanges data between sensors by overhearing, could increase the opportunity of
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transmission for data of a certain sensor. As a result, it leads to improving the reliability of
the detection of urban events. The operation parameters are summarized in Table 1.

Table 1. List of Operation Parameters.

Term Definition

PMSi PM sensor i, (i ∈ N)

rBroadcast Radius of BLE broadcasting

dj Mobile device of a passerby j, (j ∈ N)

Vd Velocity of dj within PMSi

Tstay Time duration for staying of dj within PMSi

Tacq Time duration data acquisition

Nd The number of mobile devices

k Threshold for event detection

3.2. Overhearing for Collaboration between Sensors

Before we explain overhearing, the basic technique of collaboration, we should com-
prehend that the sensor and mobile device have communication processes: (1) advertising
and (2) scanning process. The advertising process is to propagate sensory data ADVData.
The process is performed at every ADVInterval. This advertising process advertises data
through advertising channels within an ADVEvent. The scanning process is used to receive
sensory data RxData. The process is performed at every SCANInterval. This scanning pro-
cess is operated for the length of the scan window in the starting point of the SCANInterval.
The successful communication means the advertised data from one device reach another
device within the scan window.

Figure 2 is a flow diagram of communication for overhearing among sensors PMSi
and a mobile device dj when dj passes through a line of PMSs in one way. dj is nearby
PMSi at T1 and around PMSi+1 at T2. Each sensor has two periods of communication.
One is a period of ADVEvent that advertises its own data, and another is a period of scan
window that is used to overhear data from adjacent sensors. Each sensor with these two
periods independently conducts communication as is pre-configured.

First, at T1, the data advertised from PMSi are delivered to others, which are PMSi−1,
PMSi+1, and dj. If the data of PMSi are advertised at ADVEvent, then other devices
receive the data RxData within themselves scan window. After receiving RxData, each
device performs data processing for RxData. As a result of the data processing, dj reports
RxData to the cloud, which is its own destination. Meanwhile, each PMS would prepare
to disseminate the overheard data of other PMSs.

Second, at T2, PMSi+1 advertises the overheard data at T1 to others, which are PMSi
and dj. Similarly, PMSi+1 sends a packet including overheard data and its own data around
itself. Unfortunately, when PMSi+1 advertises the packet, it is out of bounds for the scan
window of PMSi. Thus, PMSi cannot acquire the packet by the mismatch of ADVEvent
and scan window. On the other hand, dj would acquire the packet, since the data advertised
are reached in the bounds of its scan window. Consequentially, dj receives the data of PMSi
from PMSi+1.
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Figure 2. Flow Diagram of Overhearing among Sensors and a Mobile Device.

3.3. Algorithm for Collaborative Reliable Event Transport

In collaborative reliable event transport (cRET), each sensor has to work on switching
two communication processes periodically. This is because the sensor has to perform not
only the advertising process but also the scan process for overhearing, which receives data
from adjacent sensors. For this, the cRET is achieved by a key algorithm. Algorithm 1
is operated on the sensor until the end of its own battery lifetime Energy. The sensor
configures the communication schedule Tschedule for two processes. One is the scan interval
scanIntvl for scanning data from other sensors. Another is the advertisement interval
advIntvl for advertising its own or overheard data. When Tschedule is ‘SCAN’, the sensor
enters the scanning process. The sensor brings data from the reception buffer RxBu f f er
and executes data processing for overheard data. The sensor then pushes the processed
data Data′ in the transmission buffer TxBu f f er. At this time, Data′ is inserted at the head
of TxBu f f er. If there are data in the head, Data′ are stored with the existing data. The
packet which includes these data will be sent after the next advIntvl. When Tschedule is
‘ADV’, then the sensor enters the advertising process. The sensor checks TxBu f f er for data
to be transmitted to adjacent sensors. If data exist in the buffer, then the sensor advertises
the data. This algorithm enables one sensor to communicate with other sensors nearby.

According to the above algorithm, cRET is able to exchange its data between adjacent
sensors. Thus, the sensor is able to transmit its own data to other sensors farther away with
multi-hop communication. However, we restrict the range of communication hop to one-
hop by cRET in order to prevent the excessive use of energy from battery-powered sensors.
Under this condition, Equation (1) presents a probability of success for data transmission
that delivers one data through the number of sensors. Since all sensors and mobile devices
initially operate in broadcasting mode, it has a packet loss: `M and `S. So, we derive a
probability Pr(O) that a mobile device receives one data from the number of sensors by
exploiting `M and `S as follows:

Pr(O) = (1− `M) · {Ns(1− `S) + 1}, (1)
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where `M means a packet loss ratio with communication between a sensor and mobile
device, and `S means packet loss ratio with the overhearing between sensors. NS is the
number of sensors within a range in one hop.

Equation (2) estimates a reliability for transmission under the aforementioned assump-
tion. RE_BROADCAST is computed with advIntvl and Pr(O) as follows:

RE_BROADCAST =
Nd · Tstay · Pr(O)

k · advIntvl
, (2)

where Nd is the number of mobile devices, which are located at once around a certain
sensor. Pr(O) be deduced by Equation (1). Each sensor disseminates sensing data in a
pre-configured advertising interval advIntvl. k means the threshold for event detection.

Algorithm 1 Operation for Overhearing on Sensor

1: scanIntvl = SCAN_INTERVAL
2: advIntvl = ADVERTISEMENT_INTERVAL
3: Tschedule = register(‘SCAN’, scanIntvl)
4: Tschedule = register(‘ADV’, advIntvl)
5: while Energy 6= 0 do
6: if Tschedule =‘SCAN’ then
7: Data = RxBu f f er.pop()
8: if Data 6= null then
9: Data′ = Process.excute(Data)

10: TxBu f f er.push(Data′)
11: end if
12: end if
13: if Tschedule =‘ADV’ then
14: Data = TxBu f f er.pop()
15: if Data 6= null then
16: sendData(Data)
17: end if
18: end if
19: end while

4. Performance Evaluation

This section explains performance evaluation via the proof of concept with three sensor
nodes composed of Bluetooth (Bluetooth 5.0, BLE) and laser particular matter (PM2007) on
the Raspberry Pi 4 platform and ten mobile phones with iOS version 14.2 and Android OS
version 9.0 run.

Experiments have been conducted in environments where sensor nodes are consec-
utively deployed on a street, and there are a number of wireless communication devices
that continuously advertise their own wireless signal with diverse transmission power.
Experiments are designed to compare cRET with the existing works proposed that merely
rely on one of the communication modes, i.e., the traditional broadcast-based approach (BA)
or connection-based approach (CA), and do not consider event reliability. The traditional
broadcast-based approach represents research in [14–16]. The traditional connection-based
approach represents studies in [17,18]. Mobile devices dj with different Vd, Nd, and the
sensors with various scanIntvl and advIntvl are taken into account. We collect twenty
thousand values as data.

4.1. Preliminary Experiments for Sensors

In this section, we explore the BLE-based overhearing between sensors with wire-
less communications.

Figure 3 shows Vd impacts on a data transmission success ratio (DTSR) in BA and CA,
respectively. In all communication manners, DTSR is a downward trend according to Vd.
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Especially, DTSR is dramatically changed in the case of CA. DTSR is below 30% when Vd is
over 10 km/h as well as 0% when Vd is 30 km/h. This result means CA is not an appropriate
approach when mobile devices relay data in environments with them moving at high speed.
CA fundamentally requires a connection process, such as connection establishment and
close, for data communication. However, the movement of mobile devices makes it difficult
to successfully complete the connection process. In other words, mobile devices may be out
of the communication range of the sensor before the connection establishment is finished.
On the other hand, in the case of BA, the DTSR is higher than that of CA. Since BLE supports
data transmission without the connection process, BA has a tolerance of mobile devices that
are fast moving in comparison with CA. This is because it allows one-way communication
using the advertisement operation of sensors and scan operation of mobile devices. We
discover that DTSR is affected by the scanIntvl of a mobile device in a broadcast-based
approach. This is because it increases the opportunity for data reception of the mobile
device as the period of scan is shorter. Thus, as seen in Figure 3, DTSR is higher when
scanIntvl is 100 ms than when it is 1000 ms. Meanwhile, DTSR is close to 0% when Vd
is 30 km/h and scanIntvl is 1000 ms. This is because the communication opportunity
is remarkably lower as Vd is higher. Therefore, we have found two facts. One is that
connection-based manners are not suitable for communication between stationary sensors
and mobile devices that are fast moving. Another is that data exchange among wireless
communication devices is vulnerable to the long scanIntvl in broadcast-based manners.
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Figure 3. Vd versus DTSR.

Next, three experiments are to ascertain distance, scanIntvl, and advIntvl impact on
the reliability for wireless communications among sensors with overhearing. First, Figure 4
shows the impact of a distance between adjacent sensors for DTSR in which the scanIntvl
and advIntvl of all sensors are 1000 ms. As the result, DTSR is a slightly downward
tendency when the distance increases from 1 to 5 m. This is because the signal strength of
the sensor is declined by the distance. However, as the result, DTSR is kept on above 80%
even if the distance between sensors increases. The result shows that the data transmission
reliability is slight for the physical distance between sensors.
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Second, Figure 5 presents the scanIntvl impact on DTSR when the fixed distance
between sensors is 5 m and advIntvl is 1000 ms. A sensor as a receiver performs the scan that
tries to receive data from adjacent sensors as a transmitter. Since the number of transmitted
data is determined by advIntvl while conducting this experiment, the opportunity that
gains data is equal to advIntvl even if the sensor as a receiver is trying many times. On the
other hand, when the receiver is moving with its own speed as shown in Figure 3, the scan
operation many times to receive one data advertised from a sensor could be contributed to
improving DTSR. This is because the length of communication distance is subordinate to
moving speed and the length is related to the opportunity of communication. As Figure 5
shows, however, the influence on wireless inter-communication is trivial despite the control
of scanIntvl in which the position of the transmitter and receiver are stationary. This is
because of no changes in distance between a receiver and transmitter. As a result of this
experiment, DTSR is 84% and 83% when scanIntvl is 1000 ms and 500 ms, respectively.
Thus, we discover that DTSR is hardly affected by scanIntvl.
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Figure 5. scanIntvl versus DTSR.

Finally, Figure 6 describes the advIntvl impact on DTSR when the communication
distance is 5 m and scanIntvl is 1000 ms. In this experiment, we measure DTSR when the
advIntvl is decreased from 1000 to 100 ms. As a result, the average DTSR for every advIntvl
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is about 79%, but no DTSR is a noteworthy difference for each advIntvl. That is, advIntvl
almost has no effect on DTSR.
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Figure 6. advIntvl versus DTSR.

Through these preliminary experiments, we have analyzed the effect on data transmis-
sion reliability in terms of communication with adjacent sensors from various angles, such
as distance, scanIntvl, and advIntvl. In summary, we find out that these factors have no
big effect on the reliability of overhearing-based communication between sensors. Merely,
there is a transmission error rate of around 20% in terms of DTSR for each result of every
experiment. Nevertheless, the proposed scheme in the next section could overcome this
communication problem via collaboration among sensors.

4.2. Enhanced Reliable Event Transport

This experiment aims to explore the impact of Vd and Nd on the reliability for data
acquisition, ER and RE. In this experiment, we compare two communication manners,
traditional BA and cRET. Figure 7 shows the time Tacq that it takes to achieve k when k is
1000. Tacq has a higher BA than cRET in all sections. In the case of BA, Tacq becomes longer
as advIntvl becomes shorter because the packet loss ratio increases. Unlike BA, in case of
cRET, Tacq is 1000 in all sections without packet loss, since the collaboration scheme by
overhearing increases the DTSR for data sent from a single sensor.

Figure 8 describes the DTSR in each BA and cRET when dj with a different speed
is passing by three sensors, PMSi−1, PMSi, and PMSi+1. The sensors PMSs are evenly
deployed in rows, and dj is a moving at constant speed. Commonly, in each communication
manner, DTSR falls down as the speed of dj increases. This is because the time that dj is
staying within a communication area of any PMS decreases. In other words, we deduced
the opportunity that is able to receive data from any PMS. The most remarkable aspect in
this figure is that cRET has a higher performance than BA at every speed, i.e., 3.6 km/h,
20 km/h, and 30 km/h. Especially, in the case of BA, DTSR is almost zero when it reaches
30 km/h. In addition, even at 3.6 km/h, the peak of DTSR is about 90%. There is no
supplementation for transmission failure in any PMS since the traditional BA without the
overhearing technique only delivers its own data from PMS to dj. In contrast, cRET has the
effect of improving the reachability for data from PMS to dj despite the fast movement of
mobile devices compared to BA. This is because the data from one sensor are delivered to a
dj through some adjacent sensors in terms of data flow.
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Figure 9 illustrates the impact of Nd and Vd on RE for each communication manner
when scanIntvl and advIntvl are both 1000 ms. Similarly for both communication manners,
RE is decreasing as Vd is higher, regardless of Nd. This is because DTSR decreases as the
movement speed increases, as shown in Figure 3. That is, the number of sensory data
received per dj is reduced. When Nd is 1, the RE of both BA and cRET are similar to each
other where Vd is 3.6, 20, and 30 km/h. For each, the RE of cRET is always higher than that of
BA, since cRET improves DTSR by the collaboration of sensors. However, in this case, both
manners are not enough to satisfy k, which is given by the application operator. The mobility
of Nd prevents dj from having enough time for stable communication. Nevertheless, we
confirm that RE could achieve k when Nd is 10. In other words, the increasing Nd is related
to improving RE. This experiment was conducted under the assumption of an urban
crowded area containing a lot of people, since there are many residents in an urban area.
RE is achieved in every manner when Vd is 3.6 km/h. However, in the case of BA, it is a
decline in RE when Vd is 20 km/h and more. Although Nd increases, BA could not satisfy k
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as dj with a high moving speed. On the other hand, in the case of cRET, it satisfies k even if
Vd is 20 km/h and does not satisfy k when Vd is 30 km/h.

Nd_1,Vd_3.6 Nd_1,Vd_20 Nd_1,Vd_30Nd_10,Vd_3.6Nd_10,Vd_20Nd_10,Vd_30
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Figure 9. Nd, Vd versus RE.

5. Conclusions and Future Work

In this paper, the collaborative data acquisition scheme is proposed to support a
reliable transmission even where mobile devices having a high moving speed. The proof of
concept is implemented with mobile devices and PM sensors. With respect to RE, cRET is
1.01 to 2.05 times higher than BA. Thus, the results demonstrate that cRET can be taken
into consideration as a solution.

Furthermore, since the sensor exploited in our scheme operates on a battery, energy
efficiency is a very important part to prolong the lifetime of sensors with overhearing.
Therefore, in future work, the lifetime of each sensor will be improved. With this, the
transmission range via overhearing could be expanded to increase transmission reliability.
Moreover, this paper has conducted experiments in general environments where there are
a number of wireless communication devices, such as Wi-Fi and Bluetooth, with diverse
transmission power. However, in the city, there may be some areas with harsh environments
where there are only many wireless devices that propagate signals with strong transmission
power. In such harsh areas, signals could be attenuated or lost by frequent congestions and
collisions. Thus, in future work, we need to satisfy the required transmission reliability
even in harsh environments. This could improve the performance of cRET.
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