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Abstract: It is critical to maintain a balance between the supply and the demand for electricity because
of its non-storable feature. For power-producing facilities and traders, an electrical load is a piece
of fundamental and vital information to have, particularly in terms of production planning, daily
operations, and unit obligations, among other things. This study offers a deep learning methodology
to model and forecast multistep daily Turkish electricity loads using the data between 5 January 2015,
and 26 December 2021. One major reason for the growing popularity of deep learning is the creation
of new and creative deep neural network topologies and significant computational advancements.
Long Short-Term Memory (LSTM), Gated Recurrent Network, and Convolutional Neural Network
are trained and compared to forecast 1 day to 7 days ahead of daily electricity load. Three different
performance metrics including coefficient of determination (R2), root mean squared error, and mean
absolute error were used to evaluate the performance of the proposed algorithms. The forecasting
results on the test set showed that the best performance is achieved by LSTM. The algorithm has an
R2 of 0.94 for 1 day ahead forecast, and the metric decreases to 0.73 in 7 days ahead forecast.

Keywords: neural network modeling; electricity load forecasting; deep learning; artificial neural
networks; time series analysis

1. Introduction

Accurate electricity load models and forecasts are critical for electric power system
planning and operation. Many important decisions about how to run the power system and
trade energy are easily made when you know how much load you will have. Load forecasts
are used to make a variety of operational decisions, including generation allocation, security
assessment, and maintenance management. It has been changed since the early 1990s when
a deregulation structure was added and competitive markets were set up. Market rules
such as spot and derivative contracts are being considered by a large number of individuals
as a method to trade energy [1].

Electricity, a need for most people, is a limited resource. Economic efficiency, or
making the greatest use of limited resources, is at the heart of economic theory. Consumer
and producer wellbeing may be seen as a single pie that can be maximized via economic
efficiency. Complex relationships among the players in the electrical business need varying
levels of government action. Instantaneous adjustment is required in the system for
generating and transferring power. When there is not enough electricity to go around, there
are power outages. Although power outages have decreased in recent years, they continue
to occur in Turkey [2].

Stochastic characteristics of the electrical load make it difficult to precisely forecast
power production and consumption on a normal day. Therefore, the ability to predict
electricity loads is critical to the planning of both demand and supply. It is a common yet
tough time-series forecasting subject researched by both academics and practitioners alike.
The forecasting period is an essential aspect of any time series forecasting, along with the
load data’s input–output linkages, stationarity, and periodicity. The forecasting period is
usually divided into three categories. For short-term load forecasting, the range is from
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one hour to one week. Medium and long-term load forecasting, on the other hand, covers a
range of periods from a few weeks to several months and from a year to several years in
the future [3,4].

This study aims to forecast multiple steps of daily electricity loads in Turkey by
employing and comparing recurrent neural network (RNN) algorithms and convolution
neural network (CNN) for the periods between 5 January 2015 and 26 December 2021.
The suggested model forecasts both short-term and mid-term timeframes. Moreover, we
propose a model that uses its own lag, such as univariate times series methodology. In
many time series applications, this sort of model has been employed since it does not
make any assumptions about the time series and is particularly good at mimicking the
nonlinear structure that occurs in the time series. Although the strongest aspect of this
model seems to be that it only employs its lags, it does not need the basic assumptions in
traditional time series analysis such as linearity, normality, and zero error covariance. Some
of the efficient studies and areas that RNN models used in time series models other than
electricity load are air pollutants [5], COVID-19 mutation rate [6], the stock price [7], natural
gas demand [8], workload of cloud data center [9], and solar power system assessment [10].

To the best of our knowledge, this will be the first study that employs and compares
RNN algorithms of gated recurrent unit (GRU), long-short term memory (LSTM), and CNN
to forecast and model multistep daily Turkish electricity load. The proposed models are
compared to forecast 1 to 7 days’ electricity loads. An attempt was made to propose a single
model that can be used in short- to mid-term forecasting without using any exogenous
variables. In light of the context presented in the section on the literature review, the
following contributions of this research to the literature might be listed:

1. Using a deep learning technology, Turkey’s daily electricity loads can be modeled and
forecasted with an impressive degree of accuracy up to 7 days ahead. The proposed
model can be used for short- and mid-term forecasting.

2. The suggested model is of the univariate type, which means that it simply makes use
of information collected just from the time series. Since it creates a solid prediction
using just its own lags, it is cost and time effective. As a result, it is both efficient and
powerful.

3. LSTM is demonstrated to be superior to GRU and CNN type methods when compared.
It is, thus, a viable option for forecasting many stages of electricity loads without
considering other factors.

4. A thorough evaluation of forecast models is carried out.

The rest of this paper is structured as follows. Section 2 summarizes the available liter-
ature, while Section 3 provides the theoretical foundation for the methods used. Section 4
is dedicated to data and analysis. Finally, Section 5 brings this study to a close.

2. Recent Literature

The literature review is organized into four sections. In the first part, studies on
short-term forecasting are introduced. It is followed by mid-term and long-term forecasting.
Lastly, some recent studies on Turkey are summarized. Since the literature on the electricity
load model is intense, we cannot mention many valuable studies. We refer interested
readers for a comprehensive review to [11–13].

Pai and Hong [14] compared Support Vector Machine (SVR) hybridized by simulated
annealing (SA) algorithms by autoregressive integrated moving average (ARIMA) to fore-
cast 1 year ahead electricity load of Taiwan. The authors used yearly data sets between
the periods 1945 and 2003. The empirical results show that the suggested model provides
a viable option for use in electricity load modeling. Zhang et al. [15] developed a hybrid
model for predicting short-term power demand based on improved empirical mode de-
composition (IEMD), wavelet neural network (WNN), ARIMA, and optimization via fruit
fly optimization algorithm (FOA). The suggested model’s performance is shown using
electrical load data from the Australian and New York energy markets, and the results
showed that the proposed model outperforms the compared models.
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The short-term electricity load of Macedonia was forecasted by [16] using a deep
belief network and the results indicate that the proposed model is superior to traditional
methods. An Ensemble Kalman Filter (EnKF) was combined with multiple regression and
shrinkage methods proposed by [17] to model the short-term electricity load of Tokyo.
When compared to current state-of-the-art models, the authors discovered that their pre-
dictions were far more accurate, and this method also provides rich analytical data. A
new feature selection algorithm with a hybrid deep learning methodology based on Elman
neural network (ENN) and ridgelet neural network (rNN) was suggested by [18] to model
electricity loads of Australia, North America, and Pennsylvania–New Jersey–Maryland.
It has been determined that the suggested approach of the study is effective based on the
findings obtained.

Khwaja et al. [19] improved short-term electricity demand forecasting by using artifi-
cial neural networks (ANN) based on machine learning. In contrast to earlier strategies, the
suggested solution combines bagging and boosting to teach bagged–boosted (BB-ANN).
According to the authors, the proposed method reduces bias and variance when com-
pared to a single ANN, boosted ANN, and bagged ANN using actual data. In addition,
the authors demonstrate that it minimizes predicting errors when compared to current
approaches.

In [20], an AS-GCLSSVM hybrid model that combines autocorrelation function (ACF)
and least squares support vector machines (LSSVM) is constructed to forecast the electricity
demand of Australia. ACF selects interesting input variables and LSSVM predicts. LSSVM
parameters are tuned by Grey Wolf Optimization Algorithm (GWO) and cross-validation.
The suggested model forecasts the next week’s half-hour power load, and when compared
to benchmark models, the experimental findings reveal it to be a very successful strategy.
Deep learning-based forecasting is used in [21] to predict power demand. As a result,
an improved support vector machine (ISVM) and extreme learning machine (ELM) are
used for classification and forecasting, as well as feature selection utilizing the hybrid
feature selector and feature extraction. A meta-heuristic method is used to adjust ELM
hyper-parameters. The simulation findings show that the novel techniques outperform
those deemed state of the art. Indonesian electricity load is modeled by [22]. The article
proposes a hybrid method that consists of singular spectrum analysis (SSA), linear recurrent
formula (LRF), weighted fuzzy time series (WFTS), and ANN. Empirical analysis showed
that the SSA-LRF-NN approach, which is based on the RMSE and MAPE, is the most suited
method for predicting the future values of electrical load series.

A strong deep learning model, the N-BEATS neural network, is used in [23] to illustrate
how well it performs in midterm load forecasting over 35 European nations. Based on 35
monthly European power demand time series, the methodology is compared against 10
baseline methodologies including machine learning, traditional statistical methods, and
hybrid approaches. According to the results of the empirical investigation, the suggested
neural network surpasses all rivals in terms of accuracy and prediction bias.

The dynamic and fuzzy time series (D-FTS) methodology is hybridized by [24] to
model the midterm electricity loads of Seoul. The hybrid approach is applied to the
household, public, service, and industrial sectors independently in order to allow various
reactions from each load sector. Researchers found that the suggested model is more
accurate in its prediction and less than 3% off the mark when it comes to the actual monthly
power load for each sector.

Dudek and Pelka [25] trained pattern similarity-based machine learning algorithms
to forecast mid-term electricity loads of 35 European countries. There are four models
considered by the authors: fuzzy neighborhood, nearest-neighbor, general regression neural
network, and kernel regression. Three alternative approaches were offered. A fundamental
one- and two-hybrid solution based on similarity and statistical methodologies. The
suggested models surpass both conventional statistical and machine learning models in
terms of optimization ease, simplicity, and accuracy. The most accurate strategy was a
combination of similarity-based algorithms and exponential smoothing. Using phase space
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reconstruction (PSR) and SVM approaches, Li and Roozitalab [26] provided a multistep
forecasting strategy. The model can forecast configurable stages of future load without
divergence of inaccuracy and so has significant engineering application relevance. Applied
to the European Network on Intelligent Technologies (ENIT) dataset, the findings suggest
that the multistep implemented model is more accurate and resilient than earlier techniques.
The approach is very simple to use and may be used with other sophisticated methods to
improve performance. Baek [27] offered an RNN-based forecasting approach for mid-term
daily peak demand. A recurrent-type ANN application and input data substitution for
special days are proposed in the research as a solution to these challenges in mid-term load
forecasting. During heat waves, the suggested RNN performs well in terms of predicting
rapid and nonlinear demand increases. The suggested RNN’s performance and efficacy are
shown via case studies using South Korean load data.

Li et al. [28] offered a mid-term load forecasting approach based on manifold learning
(ML) that can identify the underlying components of load changes to assist enhance fore-
casting accuracy and greatly cut computation time. In comparison to linear dimensionality
reduction techniques, ML has more nonlinear feature extraction capabilities and is better
suited for load data with nonlinear features. In the low-dimensional space formed by
manifold learning, LSTM neural networks are also used to develop forecasting models.
The suggested approach is evaluated using New England datasets, and load forecasting is
performed on different ranges of time intervals. The numerical findings demonstrate that
the suggested strategy outperforms numerous mature solutions in the mid-term time scale.

Ahn et al. [29] proposed a 12-month SARIMA-based forecasting technique for 16 South
Korean regions. Mohammed and Al-Bazi [30] improved an ANN model with an ABPA for
forecasting long-term power load demand. To account for behavioral differences between
training and future input datasets, ABPA incorporates unique forecasting formulations.
The proposed innovation is based on the Multi-Layer Perceptron (MLP) model architecture
and its standard Backpropagation Algorithm (BPA). Adjustment variables are used to
smooth out behavior variations across the training and test datasets. The proposed ABPA,
including the adjustment factor, enables current ANN techniques to anticipate long-term
energy demands.

In [31], machine learning strategies such as artificial ANN, MLR, ANFIS, and SVM
were used to figure out how much electricity Cyprus needs and what criteria should be
used for power generation. Long-term and short-term data were used to analyze power
use in 2016 and 2017. Long-term and short-term research revealed that SVM and ANN
outperformed other ML approaches in terms of producing more accurate and dependable
results for Cyprus’s time series forecasting criterion for electricity production. A brief
representation of the above-mentioned literature can be found in Table 1.

Specifically, this paragraph is dedicated to studies on the Turkish electrical market,
the majority of which are forecasts for the short-term. Bozkurt et al. [32] compared ANN
and seasonal autoregressive integrated moving average (SARIMA). Model performances
were observed over an average of 12 test weeks, and ANN generated 1.80% mean absolute
percentage error (MAPE), outperforming SARIMA, which produced 2.60% MAPE. The
authors conclude that the ANN model is more appropriate for the Turkish market than
the SARIMA model. SARIMA, on the other hand, outperforms ANN in certain situations,
particularly when it comes to predictions following holidays. Çevik and Çunkaş [3]
proposed to forecast short-term electricity loads by utilizing fuzzy logic and an adaptive
neuro-fuzzy inference system (ANFIS). In the study, historical data were evaluated, and
weekdays are classified based on their load characteristics. Then, as inputs, historical load,
temperature differential, and season are used, and the hourly load projection is conducted
over one year. Using extremely large test data sets over one year, this research demonstrates
that fuzzy logic may provide excellent outcomes.
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Table 1. Brief representation of some recent studies in forecasting electricity load.

Method Dataset Reference Forecast
Horizon

SVM-SA Taiwan [14]

Short-term

IEMD, ARIMA, WNN,
FOA Australia and New York [15]

DBN Macedonia [16]

rNN, ENN
Australia, North America,
Pennsylvania-New
Jersey-Maryland

[18]

EnKF Tokyo [17]
BB-ANN New England [19]
AS-GCLSSVM Australia [20]
ISVM, ELM New England [21]
SSA-LRF, WFTS, ANN Indonesia [22]

N-BEATS 35 European Countries [23]

M
id-term

D-FTS Seoul [24]
ML methods 35 European Countries [25]
PSR, SVM ENIT [26]
RNN South Korea [27]
ML, LSTM New England [28]

SARIMA South Korea [29]

Long-term

ANN Iraq [30]

ANN, MLR, ANFIS, SVM Cyprus [31]

The artificial neural networks (ANNs) are used in [33] to estimate the short-term load
in Düzce, Turkey. The data from April were used as a baseline, and the estimations were
created based on the input results from that month. As a consequence of this research,
it has been discovered that ANN is capable of accurately forecasting load consumption
while dealing with nonlinear data. Yukseltan et al. [34] used a linear model to build a
technique for estimating hourly demand on yearly, weekly, and daily timescales utilizing
harmonics and seasonal modulation of diurnal periodic oscillations. There is no use of
meteorological or economic data in the suggested model, which is exclusively based on
sinusoidal fluctuations and anticipates hourly changes. Data from the Turkish electricity
market between 2012 and 2014 were used to model demand across the daily and weekly
timeframes.

Another study based on Fourier transforms is performed by [2] to model Turkish
electricity load. The study compares ARIMA and harmonic regression. The results showed
that the model’s predicting ability for Turkish electricity consumption seems to be superior
to that of the classic time series model. For long-term, mid-term, and short-term load
forecasting in the Turkish electricity distribution network, Nalcaci et al. [1] proposed three
models based on multivariate adaptive regression splines (MARS), ANN, and LR. Model
predictions are based on wind, humidity, day of the year (holiday, summer, weekday), and
temperature data. The MARS model outperforms the ANN and LR models in terms of
accuracy and stability. Four distinct ANN models were constructed in [35], and the best
one was chosen to simulate the impacts of seasonality and the trend of monthly Turkish
electricity load. Furthermore, the chosen ANN model was compared to the SARIMA model
to improve the ANN model’s acceptance and dependability. The ANN model, which can
produce effective and high-accuracy forecasts based on performance metrics, was used to
forecast Turkey’s monthly power consumption between 2015 and 2018.

Nature-inspired approaches are employed in [36] to assist fuzzy models in forecasting
the quantity of Turkey required in the future. Ant colony optimization (ACO) and a
genetic algorithm were used to improve the suggested models (GA). The scientists utilized
historical hourly load consumption and temperature data acquired between 2011 and 2014
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to train and test the new systems. The authors discovered that the suggested models may
increase the accuracy of hourly short-term load predictions during the experiments. Based
on least square SVM and ARIMA, a hybrid model is proposed in [37]. Results from this
hybrid technique are compared to multiple linear regression (MLR), ARIMA, government
predictions, and comparable research in the literature. Moreover, it is used to anticipate
Turkey’s projected net power consumption until 2022. Findings show that the suggested
model may provide more accurate and dependable predictions. It also reacts better to
certain unexpected responses in the time series.

Yukseltan et al. [38] offered a feedback-based forecasting system that uses the current
hour’s inaccuracy to update the estimate for the following hour. In the Turkish electricity
market from 2012 to 2017, the suggested technique offers a strong tool to forecast demand
on an hourly, daily, and annual basis using only historical demand data. The hourly
forecasting errors in demand are 0.87 percent, 2.90 percent, and 3.54 percent, respectively,
in the MAPE norm. To improve the accuracy of the Fourier series expansion predictions, an
autoregressive (AR) model is utilized. A summary of the Turkish electricity load forecasting
can be found in Table 2.

Table 2. Brief representation of some recent studies in forecasting the electricity load of Turkey.

Method Forecast Horizon Reference Dataset

ANN, SARIMA

Short-term

[32]

Turkey

ANFIS [3]
ANN [33]
LR-FS [34]
HR [2]
ANN, SARIMA [35]
Fuzzy-ACO-GA [36]
SVM-ARIMA [37]
LR-FS [38]

LR-FS Mid-term [34]

MARS, ANN, LR Long-term [1]

As Table 2 suggests there are many valuable studies in forecasting the electricity
loads of Turkey. These studies are mainly based on short-term forecasting. The proposed
algorithms are ANN, SARIMA, LR-FS, HR, and simple LR. Neither of them proposed
to use deep neural networks in a univariate sense. These studies are a precious part of
the literature. We tried to extend and utilize new algorithms that are powerful in both
short-term forecasting and mid-term forecasting. Shortly said, we offer a novel technique
for forecasting Turkish power demand over a multi-step time horizon. Our research, to the
best of our knowledge, is the first to look at and compare different forecasting algorithms
for both short and mid-term load forecasting of Turkey. In addition, it should be noted that
the suggested model is based on a univariate case. To make use of this characteristic, it
only requires data received directly from the examined time series itself. As a result, it may
be utilized in any place and not only in the research location.

3. Theoretical Background

Deep learning (DL) is a subset of machine learning (ML) that is inspired by brain
structure. It attempts to imitate the network of neurons found in the human brain. The
human brain has billions of neurons. Neurons are in charge of transmitting electrical and
chemical messages. ANN is a mathematical model that simulates a neural network. Each
neuron is in charge of weighting and summing the incoming information and pulsing it
to other neurons through a non-linear function (activation function). The input layer, the
hidden layer, and the output layer are the three layers of neurons in a basic ANN. The input
values (features) are taken by the input layers, and these values are passed through to the
hidden levels through synapsis. The inputs are weighted by synapsis. All of the weighted
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inputs are summed in the hidden layers, and then an activation function is applied. The
altered weighted total of the inputs is then pulsed to additional neurons. Finally, the
output layers provide a value. In time series analysis, ANN offers several benefits. Unlike
traditional autoregressive moving average (ARIMA) models, it does not need analyzed
data to be stationary. It may also employ non-linear activation functions to better simulate
complicated non-linear systems. The authors of [39] provide further theoretical context.

By training on examples, artificial neural networks provide a feasible method for
forecasting a vector-valued, real-valued, or binary output. It is categorized as supervised
learning. In supervised learning, the algorithm is fed inputs with labels. The algorithm
then forecasts the proper outcome using the cases provided by the user. The network
may be utilized for regression with real-valued target functions as well as classification
with binary goal functions. ANN is made up of layers that are linked together. The layers
comprise artificial neurons, which are also known as nodes or units. An input layer, an
output layer, and multiple hidden layers comprise multilayer feedforward neural networks.
If the network does not include hidden layers, it is termed as a Perceptron and is used
to anticipate linearly behaved situations, while a feed-forward neural network (FFNN) is
employed in many nonlinear forecast problems. RNNs are referred to as such when they
include feedback connections in the model.

For example, RNNs are utilized for time-series data, text, and picture classification.
RNNs are a form of neural network. In networks with loops, information may be preserved
and re-used throughout time. Grid-based data processing is its specialty. Inputs can be
used as outputs, but hidden states may be maintained. To put it another way, the network
has feedback loops that may be utilized for predicting purposes. One way to conceive
of an RNN is that it is made up of many identical networks that all communicate with
one another by sending messages to each other. RNN suffers from the issue of vanishing
gradients. There is a fresh approach to this problem proposed by [40]. Long Short-Term
Memory is an RNN extension. Essentially, it is an RNN variant capable of learning about
long-term associations. An LSTM representation is shown in Figure 1.

Figure 1. Representation of an LSTM cell.

In the case of LSTMs, the problem of long-term dependency is purposely avoided.
Long-term memory is a natural state of things for them, and they do not have to exert any
efforts to maintain it. In addition, as seen in Figure 1, LSTM introduces a new parameter
ct, which denotes the memory cell and is utilized to encode information up to the time t.
The activity of a memory cell is governed by three gates: ft, it, and it, which are referred
to as the input gate, forget gate, and output gate, respectively, in the circuit diagram. The
equations for the three gates are as follows.

ft = sigmoid
(

Vf ht−1 + U f xt + b f

)
, (1)

it = sigmoid(Viht−1 + Uixt + bi), (2)

ot = sigmoid(Voht−1 + Uoxt + bo). (3)
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The rest of the updating equations are as follows.

ht = ot ∗ tanh(ct), (4)

ct = ft ∗ ct−1 + it ∗ dt, (5)

Component-wise multiplication is denoted by *. To add information to the cell, the
input gate adds it, the forget gate removes it, and the output gate chooses information from
the cell to be utilized as input in the prior step. The first forget gate acquires information at
epoch t as a function of the input xt and the previous hidden layer ht−1. If the forget gate’s
value is close to one, the last memory cell ct−1 will be retained. Otherwise, the data are
deleted. Second, the new information is combined with the old concealed state to generate
the input gate it. It is turned into a memory cell to create a new ct. Finally, the output gate
determines which information will be utilized to create the next concealed state. More
information on the algorithm’s architecture may be found in [41].

GRU is also presented as a solution for the vanishing gradient issue, similarly to how
LSTM works. Sherstinsky [42] presented an extension to the LSTM. The system’s recurrent
units can handle long-term dependencies across a broad range of periods. In the GRU
algorithm, the input and forgotten gates of the LSTM are coupled with a single update gate,
which serves as both the input and forgotten gates. Furthermore, the cell states and the
hidden states are combined in the method developed by [43]. The representation of a GRU
cell can be seen in Figure 2.

Figure 2. Representation of a GRU cell.

The architecture has been enhanced by the addition of two additional gates. The two
sorts of gates are reset gates and update gates. The gates are used to store information
and transfer it ahead as needed. The following is the model for GRU that may be written
utilizing the new gates.

rt = sigmoid(Urht−1 ∗ xt), (6)

zt = sigmoid(Uzht−1 ∗ xt), (7)

h̃t = tanh(Utrtht−1 ∗ xt) (8)

ht = (1− zt)ht−1 + ztht (9)

GRU’s performance is boosted by the reset and the update, which also saves time [44].
It is up to the reset gate and hidden layer to decide whether or not the knowledge gleaned
from the prior state will be lost. Data parsing has had a significant impact on the model’s
overall performance and speed. Please refer to [42] for further in-depth details.

CNN are specific types of networks that function very well when dealing with data
that possess a grid-type architecture, such as time-series data, images, and streaming



Electronics 2022, 11, 1524 9 of 19

videos. The mathematical process that gave origin to the network’s name is referred to as
“convolution.” CNN performs convolution. Then, pooling, normalizing, and completely
connected layers follow, each with the main purpose of multiplication, dot product, or
ReLU. The first layer in CNN is the convolutional layer. Convolutional layers convolve the
input and transmit the output to the next layer. This is analogous to a neuron’s reaction
to a particular stimulus in the visual cortex. Each convolutional neuron only processes
information for its receptive field. Although fully linked feedforward neural networks
may be used to learn features and categorize data, they are often unfeasible for bigger
inputs such as high-resolution photos. The second layer is the pooling layer. Pooling layers
reduce the size of data by combining the outputs of neuron clusters at one layer into a
single neuron at the next layer. This makes the data smaller. Local pooling brings together
small groups of people. Global pooling affects all the neurons in the feature map, which
means it affects all of them. Two types of pooling are used a lot: max and average. In the
feature map, max-pooling takes the maximum value from each cluster of neurons. Average
pooling only takes the average value from each cluster. The third layer is the flattening
layer. It consists of taking the pooled feature map that was created during the pooling stage
and converting it into a one-dimensional vector using a one-dimensional vector transform.
This is performed in order to be able to feed them as inputs to the thick layer later on.
The last layer is the fully connected layer. When all neurons in one layer are connected
to all neurons in another layer, they work together to make sense of things. A multilayer
perceptron neural network is the same as one that has a lot of different layers. To classify
images, the flattened matrix proceeds through a layer that is fully connected. Figure 3
represents a CNN.

Figure 3. Representation of a CNN.

The majority of the time, this form of network is employed in image processing.
Images are seen as a two-dimensional grid of pixels by the system. When applied to
time-series data, this method is highly successful. As a result, it regards time-series data
as a one-dimensional space of space intervals. For a more in-depth study of CNN, we
recommend the book [45].

4. Data and Analysis

The dataset of this study is obtained from the publicly available website [46]. The
data set contains the total electricity production of Turkey and is measured in MWh. It
aggregates the electricity production from natural gas, lignite, river, import coal, wind,
solar, fuel oil, geothermal, asphaltite coal, black coal, biomass, naphtha, LNG, import,
and waste heat. The data set represents the real-time production of Turkey. We obtained
the daily total electricity loads of Turkey for the periods between 5 January 2015, and
26 December 2021. The data set starts on Monday and ends on Saturday. The data set
contains 2548 observations that correspond to 364 weeks. The electrical demands for all
days in the forthcoming week are projected based on measurements from which complete
weeks of lags are included in the prediction. We use the sliding window technique to
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forecast one to seven days ahead of observations. In each case, different lag lengths and
numbers of nodes are used. The analysis is perfombed by using Python libraries Keras
and Sklearn on the compiler Atom. Figure 4 summarizes the analysis procedure of the
manuscript.

Figure 4. Summary of the forecasting procedure.

Our methodology consists of five steps as Figure 4 indicates, and these steps are
summarized as follows:

1. Since high valued values may yield high weight values, high weight values are often
unstable, resulting in poor learning performance and input sensitivity, which leads to
greater generalization error. To overcome instability, the entire data set is transformed
by using min–max scaler transformation:

Xn =
X− Xmin

Xmax − Xmin
, (10)

where X represents the observation, and Xmin and Xmax represent the lowest and
highest values of the data set, respectively. After the transformation, the data set is
divided into train and test sets. In the train set, the hyper parameter of the algorithm
is decided, and on the test set, the algorithm runs on observations that are not used
in training the data. The train set contains 312 weeks of observations while the test
set contains 52 weeks of observation. The first six years act as the training data while
the last year serves as the test set. Approximately, the training set contains 85% of the
data while the test set contains 15%.

2. In the second step, LSTM, GRU, and CNN algorithms are trained on the training set.
A different number of lag lengths (sliding window length) and the number of nodes
were tested to achieve the highest performance. The sliding window lengths are as
follows: 1 week, 2 weeks, 3 weeks, 4 weeks, half a year, a year, one and a half year, and
two years. Because the proposed deep learning design is data-driven, it is not possible
to talk about a separate architecture. As a consequence, different numbers of nodes
are chosen to find the best structure because the number of nodes that is employed is
determined by the size of the inputs. For each sliding window, we employed a total
of 100 nodes. In each model, Adam was used as the optimizer, and the mean square
error was used as the loss function.
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3. In the third step, the lag lengths and number of nodes with the highest performance
are run on the test set.

4. In the fourth step, forecasted values are back-transformed to the observed range.
5. In the last step, performance metrics are calculated to compare the performances of the

algorithms. Three different performance metrics are utilized. These are mean absolute
error (MAE), root mean squared error (RMSE), and coefficient of determination (R2).
The formulas for each metric are given as follows:

R2 = 1− SSres

SStot
, (11)

RMSE =
√

MSE =

√
1
n

n

∑
i=1

(
yi − f̂i

)2
=

√
1
n

n

∑
i=1

ei
2 (12)

MAE =
1
n

n

∑
i=1

∣∣∣yi − f̂i

∣∣∣ = 1
n

n

∑
i=1
|ei|, (13)

where SSres =
n
∑

i=1

(
yi − f̂i

)2
=

n
∑

i=1
ei

2; it is known as the residual sum of squares and

f̂i is the anticipated output. SStot =
n
∑

i=1
(yi − y)2 is the total sum of the square, and

y is the mean of the observed data. Small values of RMSE and MAE indicate good
performance while a value near 1 for R2 represents a good fit.

The computer’s operating system is Windows 10, with a CPU Intel(R) Core(TM) i7-
10510U and 8 GB of RAM, on which the algorithms are trained. We used the Keras library
with an Adam optimizer with a learning rate of 0.001 and an epoch size of 100 to train
the models mentioned above. An early stop mechanism is also employed to obtain the
best possible outcome on the test set. MSE is used as the loss function while the activation
function is set as ReLU. In LSTM, the following layers are utilized: LSTM layer with shape
of (1,100) while the dense layer shape has shape (1,7). The computation time of LSTM is 3 s
for each step. We employed a fixed window size for CNN layers. Columns are assigned to
features, while rows are assigned to lagged values. The computation time is 2 s for each
step. The architecture of the CNN is convolution layer of size (None, 1,64), MaxPooling
layer of size (None, 1,64), flatten layer of size (None, 64), dense layer (None, 100), and dense
layer (None, 7). Finally, the computation time for GRU is 3 s for each step. GRU consists of
GRU layer of size (1,100) and dense layer of (1,7). The performance metrics for LSTM for
different lag lengths on the test set are given in Table 3.

Here, ŷt represents the next-day forecast, ŷt+1 represents the two-day-ahead forecast,
and in the same manner, ŷt+6 represents the seven days ahead forecast. Each panel rep-
resents the performance metrics when different lag lengths are used. For example, if we
consider Panel A, we may summarize the forecasting procedure as xt−7; xt−6 . . . , xt−1 are
used to forecast ŷt ,̂ ŷt+1 . . . , ŷt+6 where xt represents the input values.

According to the results given in Table 3, the best performance is achieved when lag
length is determined as 364. This case is given in Panel F. R2 for the day ahead forecast is
calculated as 0.94, and it decreased to 0.73 for seven days ahead forecasts. Moreover, in this
case, the algorithm achieves its lowest MAE and RMSE for each forecasted value. Table 4
represents the performance metrics of GRU on the test set.

According to the results given in Table 4, the best performance is achieved when lag
length is determined as 364. The case is given in Panel F. The R2 for the day ahead forecast
is calculated as 0.91, and it decreased to 0.58 for seven days ahead forecasts. Moreover,
in this case, the algorithm achieves its lowest MAE and RMSE for each forecasted value.
Table 4 represents the performance metrics of GRU. The difference between GRU and LSTM
occurs in the mid-term forecast. As both tables indicate the performance of LSTM is better
than GRU. The R2 of GRU in the mid-term decreases faster than in the LSTM case. Lastly,
Table 5 represents the performance metrics of CNN.
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Table 3. Performance metrics of LSTM on train set for different lag size.

Estimated Values

ŷt ŷt+1 ŷt+2 ŷt+3 ŷt+4 ŷt+5 ŷt+6

Panel A: Lag length = 7

MAE 15,699.05 24,122.23 29,272.79 32,555.04 34,794.46 36,880.26 38,159.13
RMSE 24,521.72 38,779.39 45,610.30 50,527.04 53,893.34 56,125.76 57,531.93
R2 0.92 0.80 0.73 0.67 0.62 0.59 0.57

Panel B: Lag length = 14

MAE 15,581.20 22,976.76 27.896.99 31,732.34 34,604.03 36,783.64 37,949.07
RMSE 23,701.21 36,435.10 44,048.82 50,052.43 54,024.80 56,539.06 5793.76
R2 0.93 0.83 0.75 0.67 0.62 0.59 0.56

Panel C: Lag length = 21

MAE 19,410.90 29,598.37 36,034.68 40,335.45 41,303.46 43,352.67 43,856.13
RMSE 31,150.22 47,841.76 60,509.59 68,103.54 68,850.81 65,431.78 63,913.05
R2 0.87 0.70 0.52 0.40 0.39 0.45 0.47

Panel D: Lag length = 28

MAE 17,153.52 26,952.24 32,011.75 35,466.31 38,208.38 38,528.40 39,586.90
RMSE 26,279.81 40,563.74 48,472.51 53,813.52 57,249.44 58,689.03 59,796.33
R2 0.91 0.79 0.69 0.62 0.57 0.55 0.54

Panel E: Lag length = 182

MAE 17,451.31 25,541.31 28,991.61 31,138.22 32,718.46 33,835.26 36,008.39
RMSE 2509.98 38182.16 43,601.38 47,018.59 48,844.44 49,449.23 51,886.17
R2 0.92 0.81 0.75 0.71 0.69 0.68 0.65

Panel F: Lag length = 364

MAE 15,502.61 23,570.24 27,577.30 30,641.93 32,041.78 32,760.72 34,045.72
RMSE 21,561.57 32,538.21 37,346.16 40,974.10 42,506.322 43,478.06 45,782.79
R2 0.94 0.86 0.82 0.78 0.77 0.76 0.73

Panel G: Lag length = 546

MAE 16,262.13 24,255.68 30,396.81 32,241.56 32,610.89 35,494.71 36,846.01
RMSE 22,835.58 33,540.96 40,476.96 43,986.36 45,137.09 47,090.86 48,918.94
R2 0.93 0.85 0.79 0.75 0.74 0.71 0.69

Panel H: Lag Length = 728

MAE 16,976.59 24,364.76 28,113.48 31,015.43 34,180.15 36,634.84 38,668.64
RMSE 23,308.74 33,971.50 39,104.11 42,854.71 46,421.85 49,947.78 52,931.25
R2 0.93 0.85 0.80 0.76 0.72 0.68 0.64

In this case, according to the performance metrics, the best length is 546, which
represents a year and a half. R2 for the next day forecast is calculated as 0.92, while for
seven days ahead, it is calculated as 0.66. As in the case of GRU, R2 decreases as the length
of the forecasting horizon increases. When CNN is compared to LSTM and GRU, it has the
second-best performance according to the calculated performance metrics.
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Table 4. Performance metrics of GRU on train set for different lag size.

Estimated Values

ŷt ŷt+1 ŷt+2 ŷt+3 ŷt+4 ŷt+5 ŷt+6

Panel A: Lag length = 7

MAE 19,394.83 29,989.55 37,397.96 43,087.90 47,997.79 49,682.09 50,972.89
RMSE 29,685.12 44,974.25 54,601.31 60,463.16 64,933.41 67,078.77 68,605.49
R2 0.88 0.73 0.61 0.52 0.45 0.42 0.39

Panel B: Lag length = 14

MAE 18,442.08 30,479.90 39,077.06 47,732.60 50,860.67 51,966.74 51,205.42
RMSE 26,251.80 44,369.63 57,378.43 67,591.32 71,879.19 73,737.69 73,698.62
R2 0.91 0.74 0.57 0.41 0.33 0.30 0.29

Panel C: Lag length = 21

MAE 19,200.65 31,087.74 40,138.71 47,851.97 54,597.72 57,569.05 58,608.46
RMSE 27,639.07 43,832.20 54,643.56 64,115.14 72,562.20 77,055.52 78,916.40
R2 0.90 0.75 0.61 0.46 0.32 0.23 0.19

Panel D: Lag length = 28

MAE 18,268.73 30,688.07 39,384.86 47,825.35 55,541.09 60,740.50 66,4387.58
RMSE 25,493.66 43,038.88 55,662.88 65,935.28 74,158.95 78,728.52 83,011.19
R2 0.91 0.76 0.60 0.43 0.29 0.20 0.10

Panel E: Lag length = 182

MAE 20,759.19 30,960.13 30,643.27 32,815.74 36,172.25 37,763.67 40,939.88
RMSE 28,232.99 42,474.98 44,552.46 47,638.76 49,405.75 48,905.59 52,472.01
R2 0.90 0.76 0.74 0.70 0.68 0.69 0.64

Panel F: Lag length = 364

MAE 20,281.40 30,132.46 38,391.27 37,534.92 3866.23 40,951.27 44,929.31
RMSE 26,900.16 39,285.18 48,824.45 48,195.70 51,052.09 52,933.20 56,855.68
R2 0.91 0.80 0.69 0.69 0.66 0.64 0.58

Panel G: Lag length = 546

MAE 22,134.43 34,811.60 45,676.56 52,662.06 49,250.80 48,575.73 46,582.51
RMSE 28,952.59 44,469.78 57,428.50 66,416.10 64,495.22 64,762.98 63,057.94
R2 0.89 0.74 0.57 0.46 0.46 0.46 0.48

Panel H: Lag Length = 728

MAE 19,724.99 39,265.06 49,729.89 49,852.41 52,810.00 45,557.80 64,353.77
RMSE 27,133.75 50,171.98 61,195.24 61,860.46 64,526.60 57,388.58 81,414.38
R2 0.90 0.67 0.51 0.50 0.46 0.57 0.14

Table 5. Performance metrics of CNN on train set for different lag size.

Estimated Values

ŷt ŷt+1 ŷt+2 ŷt+3 ŷt+4 ŷt+5 ŷt+6

Panel A: Lag length = 7

MAE 16,356.06 25,708.07 31,697.22 35,591.24 37,120.37 37,861.61 39,063.72
RMSE 25,765.27 40,912.00 49,607.64 55,626.94 58,202.84 58,216.24 59,015.31
R2 0.91 0.78 0.68 0.60 0.56 0.56 0.55

Panel B: Lag length = 14

MAE 16,445.03 24,700.00 30,280.47 35,430.57 37,406.25 38,861.45 37,997.71
RMSE 25,034.40 39,139.99 48980.26 55,134.06 57,333.28 59,121.08 58,697.51
R2 0.92 0.80 0.69 0.60 0.57 0.55 0.55
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Table 5. Cont.

Estimated Values

ŷt ŷt+1 ŷt+2 ŷt+3 ŷt+4 ŷt+5 ŷt+6

Panel C: Lag length = 21

MAE 16,724.63 26,348.3 32,906.18 37,370.37 38,553.61 38,771.68 39,881.52
RMSE 2622.37 40,865.14 50,672.01 56,788.21 58,362.08 57,924.47 59,204.25
R2 0.91 0.78 0.66 0.58 0.56 0.57 0.54

Panel D: Lag length = 28

MAE 18,348.50 27,976.51 33,386.07 37,748.13 41,008.70 40,982.05 40,650.68
RMSE 26,852.14 41,811.17 51,001.62 58,105.20 61,217.19 60,627.58 60,271.08
R2 0.90 0.77 0.66 0.56 0.51 0.52 0.52

Panel E: Lag length = 182

MAE 21,458.65 29,987.71 32,860.28 37,032.26 41,267.43 39,066.82 39,647.72
RMSE 31,305.85 44,841.78 48,393.33 54,752.09 59,953.79 57,048.44 57,289.49
R2 0.87 0.74 0.69 0.61 0.53 0.58 0.57

Panel F: Lag length = 364

MAE 19,893.01 28,803.52 34,274.11 37,084.61 39,495.88 37,885.74 36,249.55
RMSE 29,312.52 40,326.48 47,292.92 50,441.64 54,319.91 52,452.09 50,747.24
R2 0.89 0.79 0.71 0.67 0.61 0.64 0.66

Panel G: Lag length = 546

MAE 17,694.61 27,589.23 33,409.78 37,503.49 38,201.54 39,553.46 37,239.67
RMSE 25,212.95 39,388.38 46,514.93 52,304.83 52,018.61 53,394.24 52,067.60
R2 0.92 0.80 0.72 0.64 0.65 0.63 0.65

Panel H: Lag Length = 728

MAE 17,505.89 27,472.71 29,315.02 32,728.29 35,896.08 35,859.17 34,807.66
RMSE 24,884.32 38,493.64 41,143.23 46,708.97 50,173.87 50,275.14 49,692.07
R2 0.92 0.81 0.78 0.72 0.67 0.67 0.67

5. Discussion

The aim of this study is to forecast short-term to mid-term electrical usage utilizing
deep learning algorithms such as LSTM, GRU, and CNN. These algorithms were selected
for this investigation because they have been utilized effectively in various time-series
studies. Moreover, the proposed models can handle entire data sequences as well as
single data points. Although there are many powerful RNN algorithms, in this study, we
employed LSTM because the LSTM cell increases long-term memory capacity in an even
more efficient manner since it allows learning even more parameters. Moreover, it has the
capacity of handling a large amount of non-linear data [47]. This makes it the most effective
method of forecasting, particularly when there is a longer-term trend in the data set. We
trained LSTM and others algorithms in the same way that we would estimate a time series
model of Box–Jenkins. Algorithms, as a time series model, use the lags of the time series
data that we are analyzing. The suggested methodology exclusively employs data derived
solely from time-series itself. As a result, it is effective, straightforward, and forceful. The
univariate structure of the methodology leads it to be utilized globally as well as locally

It should also be noted that we represented the loads in a univariate manner; thus, the
information is entirely generated from the data itself, which increases the model’s efficacy
while minimizing its overall complexity. To the best of our knowledge, this is the first
research study that compares Turkey’s short-term and mid-term algorithms. Because of this,
the suggested model is not limited to the Turkish market but may also be applied in any
other market. It does not need the use of any exogenous variables or other information. It is
worth mentioning that this is the first research to use deep learning algorithms to simulate
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the short-term Turkish power market. Table 6 summarizes the performance metrics of the
proposed model for the best cases of each.

Table 6. Summary of the performance metrics of the investigated models on train set.

Estimated Values

ŷt ŷt+1 ŷt+2 ŷt+3 ŷt+4 ŷt+5 ŷt+6

Panel A: LSTM (Lag Length = 364)

MAE 15,502.61 23,570.24 27,577.30 30,641.93 32,041.78 32,760.72 34,045.72
RMSE 21,561.57 32,538.21 37,346.16 40,974.10 42,506.322 43,478.06 45,782.79
R2 0.94 0.86 0.82 0.78 0.77 0.76 0.73

Panel B: GRU (Lag length = 364)

MAE 20,281.40 30,132.46 38,391.27 37,534.92 3866.23 40,951.27 44,929.31
RMSE 26,900.16 39,285.18 48,824.45 48,195.70 51,052.09 52,933.20 56,855.68
R2 0.91 0.80 0.69 0.69 0.66 0.64 0.58

Panel C: CNN (Lag length = 546)

MAE 17,694.61 27,589.23 33,409.78 37,503.49 38,201.54 39,553.46 37,239.67
RMSE 25,212.95 39,388.38 46,514.93 52,304.83 52,018.61 53,394.24 52,067.60
R2 0.92 0.80 0.72 0.64 0.65 0.63 0.65

LSTM and GRU had the best performance when lag lengths are set as 364 while the
best performance of CNN is achieved with 546 lag lengths. According to the empirical
results provided in Table 6, the best algorithm when compared to CNN and GRU is found
to be LSTM. It has an R2 of 0.94 in the short-term and 0.73 in the mid-term. Moreover, it is
interesting to see that GRU and CNN have high R2 in the short-term forecasting but decrease
gradually in mid-term forecasts. Thus, LSTM with a one-year lag can be used efficiently to
model and forecast the daily Turkish electricity load of Turkey. The proposed model only
needs its own lagged values; when compared to the other studied in the literature, it is more
efficient and powerful. In some cases, we obtained very good forecasting results without
using any exogenous variables such as temperature, precipitation, and other influencing
factors.

The power of the proposed model not only comes from its univariate case but it can
also handle multi-step forecasting with low computation costs. There are many valuable
studies that attempt to forecast electricity loads of Turkey or stations located at Turkey.
The next two paragraphs compare the results of our study with the literature on Turkish
case, which uses ML, DL, or Fuzzy time series analyses. The first paragraph devoted to
multivariate case, while the last paragraph is about the univariate case.

In their studies, Tosun et al. [33] proposed to forecast short-term electricity loads of
Düzce, Turkey with ANN. The model used hour, temperature, previous temperature, and
previous consumption as the features. The proposed model is a multivariate methodology,
and the results showed that, on average, the best R2 for hourly electricity consumption
ranged in 0.927 and 0.978. Bozkurt et al. [32] also preferred multivariate modeling for
short-term electricity loads. The feature set of ANN contains calendar date, previous load
estimation plan, electricity price, weather, and currency. Each feature set also contains
a different number of features. The total number of features to train ANN was 19. The
performance metrics of MAPE ranged from 0.98 to 3.26. Luy et al. [36] used temperature as
a feature of the proposed algorithms to forecast short-term electricity loads of Turkey. The
other features are the last day of consumption, the last week of consumption, the weekly
load trend, and the weekly air temperature trends. In the best case, MAPE is calculated as
3.389. Kaytez [37] used multivariate methodology to forecast net electricity consumption
of Turkey and MAPE of the best case ranging from 0.971 to 1445. Several environmental
variables are used by [1] to forecast loads of Turkey in short- and mid-term periods. In the
best case, the performance metric of R2 is calculated at 0.907.
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Hamzaçebi et al. [35] used ANN in a univariate case to forecast monthly electricity
loads of Turkey. Different ANN combinations are compared, and the best model had RMSE
ranged from 438 to 572.95.

In light of the above two paragraphs, our study is as powerful as the multivariate
cases according to Table 6. Moreover, we introduced a model in the univariate case that
can be used in both short- and mid-term forecasting. To the best of our understanding,
there is only one univariate time series methodology that utilizes ANN to forecast monthly
electricity loads of Turkey. We would like to emphasize once again that the proposed model
is based on a univariate case and is capable of forecasting daily electricity loads of Turkey
in multiple steps. Thus, it can be used to forecast and model Turkish electricity loads to
have better projections and planning.

6. Conclusions

Electricity is a critical indicator of human life and the health of a country’s economic
structure. When developing economic planning, it is vital to have precise projections of
power consumption levels. Accurate energy demand forecasting is crucial for decision-
makers and power-generating firms when it comes to policy creation and power generation
planning. Several approaches have been explored in the past to increase peak load fore-
casting accuracy. The data set used in this study is a daily data collection used to assess
electrical demands. In classical time series analysis, despite the fact that the methodology’s
predicting ability has been shown, some assumptions must be satisfied, such as the assump-
tion of stationarity. It should be emphasized that the Box–Jenkins type models are linear
time series models, as opposed to the other types of deep learning and machine learning
algorithms. In the literature, there are many valuable works that compare ARIMA-type
models with the others. For example, Akdi et al. [2] showed that HR is more powerful
than AR or Tokgöz, and Ünal [48] compared ARIMA with deep neural networks and
showed that ARIMA had the lowest MAPE. Instead of using the Box–Jenkins approach, we
used a very customized model of deep learning in our study. The proposed model has no
assumptions, such as the stationarity of the investigated model or the residuals terms of
the model that should be normally distributed and are uncorrelated. This feature can be
shown as the strength of the proposed model.

Although the suggested model’s primary strength is its univariate structure, further
research into the relationships between electrical demand and meteorological parameters,
such as those described in [1], will be possible via the use of deep learning algorithms.
Additionally, as mentioned in [49], the combination of time series approaches and deep
learning algorithms to forecast electricity consumption may be of interest; on the other
hand, as in [47], the effects of wavelet transformation can be investigated. To anticipate
power demands in Turkey, it is also possible to study the hybrid approaches of [5] and
the machine learning methods of [50], which may be used in both uni- and multivariate
contexts. Moreover, the proposed models are utilized and investigated as standalone. It is
also possible to use them together as hybrid models or in an ensemble manner as in [51].
Since there is no exact rule to decide the hyper parameters of the proposed algorithm.
This can be shown as the weakness of the models and the optimization of the proposed
algorithms can be performed by using the metaheuristic algorithms of [52]. We leave these
ideas as future research opportunities.

Weather and seasonal impacts have a direct influence not only on load demand
but also on the utilization of certain renewable energy sources in Turkey’s power grid;
hence, the load forest must be considered as a collection of factors including people’s daily
routines [53]. It may also be interesting to investigate the influence of weather-related
time series and people’s daily habits on power demand forecasting as a challenge. The
holiday weekdays and weekends affect power use in diverse ways, as has been shown in
several research studies [54]. It is obvious that the forecasting ability of the models will be
improved by including these elements as the features of the algorithms. In addition, the



Electronics 2022, 11, 1524 17 of 19

impact of these variables on the forecasting capacity of the model should be investigated
with different data pre-processing techniques [55].

In this study, the main aim was to train and test different deep neural networks to
forecast short-term to mid-term forecasting of Turkish electricity load in a univariate sense.
The proposed models are investigated to forecast 1 to 7 data points simultaneously and
it was observed that, overall, LSTM has the best performance compared to CNN and
GRU. Long-term forecasting is more challenging than short- and mid-term forecasting.
There are three categories of issues in long-term power demand forecasting: what technical
and economic aspects to include, what regional and temporal scales to pick, and to what
degree long-term and short-term uncertainty should be taken into consideration [12]. It
might be more challenging to model long-term electricity loads by univariate time series
methodologies. The other influencing variables should be considered in this task.

The development of effective energy forecasting models is critical in the development
of energy policy, which may involve planning, production, pricing, and consumption. As
illustrated in this research study, determining the appropriate lag length and plugging in
models improve the accuracy of forecasts and predictions. In conclusion, LSTM should
be viewed as a potent tool for electrical load forecasting in the short- and mid-term for
both short- and mid-term forecasting. Because this model more closely matches the data
than GRU and CNN models, it will be more helpful in developing policies based on
energy demand. In this context, the findings of this study’s methodology provide valuable
evidence for policymakers on how to interfere in electricity markets in a manner that
legitimizes evidence-based policymaking, which is critical in today’s world.
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