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Abstract: It is of great significance to ensure public transportation management capabilities by im-
proving urban public transport services. One method is to solve the problems related to the quality
of data submitted for public funding as well as the accuracy and transparency of the supervision
and review processes; moreover, improving public-transportation-service systems is a viable method
to solve such problems. With technological advancements and the application of new technologies
such as automatic driving and multiple payment, it has gradually become difficult for user-data
verification systems, based on the original single bus payment method, to cater to these new tech-
nologies. Diversified payment and complex management methods have highlighted the need for
new verification methods. Firstly, in this paper, we constructed the Origin–Destination (OD) model
of bus-passenger flows by using real-time transmission of passenger-multiple-payment data, on-
board-video passenger flow detection data and vehicle real-time positioning data. On this basis, the
bus waybill data of other intelligent bus systems and the wait data of bus stations were integrated,
so as to establish the travel chain theory by matching passenger flow and the temporal and spatial
distribution model. Then, an OD analysis of public-transport passenger flows could be carried out,
with a detailed analysis of vehicle, station and line-passenger flow, and the travel characteristics
of public transport passenger flow could be excavated. Then, according to the means-end chain
theory, the spatiotemporal distribution of the passenger flow data was obtained to carry out an OD
analysis of the passenger flow, so as to perform a refinement analysis of the vehicle, station, and
passenger flow. Thereby, the characteristics of the passenger flow were explored. Subsequently,
payment-authenticity-verification models were established for the data-validity assessment, video-
data analysis, passenger-flow estimation, and early warnings in order to determine the authenticity
of the payment data. Lastly, based on the multi-sensor passenger flow data fusion and the data
authenticity verification models, combined with the application of new technologies such as the use
of autonomous buses, the test was promoted. That is, by taking intelligent bus scheduling as the
scenario, the research method was tested and verified with real-time passenger flow data according to
historical data. The results showed that the method accurately predicted the passenger flow, and had
a positive role in improving the efficiency of payment-data-authenticity verification. The application
of the method can enhance the management and service quality of public transportation.
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1. Introduction

The coordination of comprehensive public transportation services requires a refined
analysis of passengers’ travel behaviors. Therefore, the establishment of an intelligent
bus-dispatching model aims to achieve operational cost-effectiveness for both passengers
and bus operators.

Several in-depth studies have been carried out in this field. For instance, Petersen
et al. [1] identified a few irregular peaks in bus-commuting times based on a multi-output
and multi-time-step convolutional LSTM neural network; their findings could be used to an-
alyze passenger-flow changes during traffic congestion and emergencies in metropolitan ar-
eas. Fang et al. [2] proposed a computationally efficient Contextual Spatial-Temporal Graph
Attention Network for a Travel Time Estimation (Con-STGAT) framework, to increase
accuracy through spatial–temporal correlation. In their study, they applied Convolution,
thereby capturing the bus routes in nearby road segments, while calculating the travel time
on each road segment in advance. Wihartiko et al. [3] established an integer programming
model using an improved genetic algorithm to optimize a bus timetable. Li et al. [4] studied
timetable optimization for one bus line. By taking the bus travel time as a fuzzy variable, a
fuzzy dual-objective model was established to minimize the total time efficiency for both
the service providers and end users. Consideration has also been given to passengers trans-
ferring between different types of public transport. Wei et al. [5] established an uncertain
bi-level programming model to optimize a bus timetable. An algorithm to estimate distri-
bution was designed to solve the bi-level models. Wu et al. [6] studied the coordination of
multiple bus schedules within transfer stations. Morales et al. [7] established an injection
stochastic model based on the second moment of headway distribution to determine when
a bus should be injected within the headway. Liu et al. [8] established a dual-objective
integer-programming model that considers the common interests of passengers and bus
operators. Cao et al. [9] explored the decision-making algorithm of a real-time automated
shuttle bus service (ASBS) based on the graph theory of the deficit function. In view of the
complexity of a large-scale Genetic algorithm, the binary variable iterative method was
used in the modelling. In addition, neural networks [10–12], fuzzy control [13,14], and deep
learning [15] have been widely used in bus scheduling. Through the recent introduction
of customized buses [16–18], the adoption of different payment methods [19–21], and
the promotion of self-driving vehicles [22–25], the complexity of bus-passenger flow has
significantly increased, which has led to new challenges for bus-scheduling services.

The bus-passenger-flow statistics usually adopt the binocular algorithm which collects
the passenger-flow data via sensitive multi-channel video, in a complex environment.
Through this reliable on-board passenger flow data, we can evaluate the daily ticket
number and supervise ticketing combined with the ticketing system. Although many
scientists adopt more advanced algorithms to improve the accuracy, many shortfalls are
still evidenced in public-transport management. One example is that the ability to resolve
the accumulated factors from a chain of rare events has still not been realized.

One key challenge for bus scheduling is to accurately determine passenger flow. In
recent years, the ticket-payment method has gradually shifted from a single-card method
to multiple-payment methods such as QR codes, digital wallets, and facial-recognition. As
a result, the significance of single-card data for an OD analysis has continuously declined.
In addition, public-transport subsidizing policies could cause a discrepancy between the
number of passengers and the number of payment transfers. These factors together will
impact the accuracy of passenger-flow analyses to a certain extent.

Therefore, improving the accuracy of passenger OD analysis and enhancing data
verification is essential to establishing an intelligent bus-scheduling model. To this end, a
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database for passenger behavior was established in this study based on multi-sensor data
fusion and payment authenticity verification. The study aimed to propose an intelligent
bus scheduling algorithm that minimizes passenger wait time and maximizes operational
efficiency. The method was tested based on real-time passenger flow data as well as
historical data, to improve bus-route planning and operation management.

2. Refinement Analysis of Bus Passenger Flow Based on Multiple Payment Methods

Bus passenger flow data represent a key component for regulatory decision making
and operation management. However, for the current bus payment data, only the boarding
location of passengers can be retrieved. Unfortunately, the destination location of passen-
gers is unknown, and is still hard to detect. Moreover, since the data only contain part of
the bus travel information, the data cannot reflect the real bus-traveling situations. There
are three main problems:

(1) For ordinary buses, the payment data (e.g., bus card and QR code) only reflect the
number of card-users boarding a bus. For bus rapid transit (BRT) buses, the payment
data only contains the card-user flow entering any one of the stations, while the
passenger flow exiting the station is unknown.

(2) The on-board passenger-flow-detection technology is able to obtain the flow of passen-
gers boarding and leaving the bus, yet the quantity of the flow of passengers boarding
on and leaving the bus is limited, and only certain buses are covered.

(3) The diversified payment data and on-board video passenger flow data only meet
the scheduling demand of a limited quantity of the flow of passengers boarding and
leaving the bus for buses. The data are not sufficient to analyze urban-scale travel
information and thus, do not provide comprehensive decision-making support for
bus scheduling.

In order to improve the quality of public-transport services and optimally allocate
transportation resources, we focused on the passenger payment data and built analysis
methods. Firstly, the data including passenger payment data, on board passenger flow
video data, real-time vehicle positioning data, as well as the bus waybill data and bus station
passenger-flow data from the other intelligent bus systems, were collected and arranged.
Then, to further analyze bus-passenger flow based on the original public-transport analysis,
according to the means-end chain theory, the spatiotemporal distribution of passenger flow
data was obtained to carry out the Origin–Destination (OD) analysis of passenger flow.
Finally, the passenger-flow-refinement analysis based on various dimensions including
vehicle, station, and passenger flow, could be carried out. The flowchart of bus passenger
flow analysis is showed in Figure 1.

2.1. Passenger Flow Analysis with Diversified Payment Data

The refinement analysis of bus-passenger-flow involves multi-dimensional passenger-
flow analyses, including a passenger-travel analysis, vehicle-passenger-flow analysis,
station-passenger-flow analysis, route-passenger-flow analysis, and regional-passenger
flow-OD analysis. A passenger flow analysis with diversified payment data is composed
of the following four types of analyses:

(1) Passenger-travel analysis: travel characteristics of a bus and a subway (transferring to
a bus).

(2) Vehicle-passenger-flow analysis: used to obtain individual passenger OD data.
(3) OD analysis of bus stations: used to display the bus stations according to their

OD levels, which can provide data references for bus-network modification and
scheduling.

(4) OD analysis of bus routes: used to display the bus routes according to their OD levels
and to perform a bus corridor analysis.



Electronics 2022, 11, 1522 4 of 11

2.2. Video Passenger Flow Data

In this study, video acquisition devices installed on the front and rear doors of the
buses and the BRT buses were used to collect and calculate passenger flow data accurately.
Figure 2 provides a schematic diagram of the video-data collection and transmission
processes.
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Figure 2. Collection and transmission of bus passenger flow data.

The video data enabled a real-time congestion analysis and the signalling of an
early warning in busses based on the congestion degree. Specifically, based on the video
passenger-flow data, the real-time passenger capacity of each vehicle was calculated. Then,
according to the vehicle’s passenger-carrying capacity, the congestion degree was calcu-
lated in real time. The congestion degree was divided into the following three levels: low,
medium, and high [21,26,27].
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2.3. Mobile Edge Computing

In the intelligent transportation service scenario, an onboard edge device was deployed
in each vehicle. A router module and an edge server module were encapsulated in the
device. The router module ensured the rapid response of the network information services
and overcame the problems of a limited external network bandwidth, large communication
latency, and a weak Wi-Fi signal. The edge server acted as the core module of the onboard
edge device, and it was also the focus of the mobile terminal-software system developed in
this study. In contrast to the centralized data processing mode based on cloud computing,
edge servers were distributed in different vehicles. By offloading some computing and
storage tasks from the cloud servers to the edge servers, the service response time was
shortened since the edge servers were close to the users.

The mobile edge computing system included the following four parts: intelligent
mobile terminal, WeChat server, vehicle on-board edge device, and cloud server. The
workflow of the application software system is shown in Figure 3.
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Figure 3. Application software system.

A long TCP connection was established between the edge server and the cloud server
to enable interactions between them. The edge server regularly sent data packets to the
cloud, including user personal information, user behavior data, edge server CPU load, and
memory usage. Furthermore, the cloud regularly updated the local database of each edge
server.

In addition, roadside unit (RSU) devices installed along the routes of autonomous
buses could also be used as fixed-edge computing devices and communication relays.

3. Intelligent Bus Scheduling Based on Payment Authenticity Verification

Payment-authenticity verification refers to the review of passenger payment data and
the actual riding behavior. Taking a certain bus route as an example, the actual number
of passengers could be obtained through video data analysis and edge computing, and
the relationship with the total number of payments made by passengers at the stations
of the route. The diversified payment data were audited before data sorting using the
following two perspectives: the integrity and the authenticity of the riding behavior of the
passengers.

After authenticity verification, considering the current application of new technologies
such as self-driving buses, the intelligent scheduling method included the following five
steps:

Step 1: Multiple RSUs were installed at equal intervals along the bus route to achieve
relay communication between the dispatch center and the autonomous driving bus.

Step 2: For any specific bus route, buses were dispatched at equal intervals. Bus
scheduling for each route was independently controlled.

Step 3: Every time the self-driving bus passed one of the RSUs, the data for the quantity
of the flow of passengers boarding and leaving the bus were sent to the dispatch center.
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Step 4: The dispatch center monitored the quantity of the flow of passengers boarding
and leaving the bus in real time. When the quantity of the flow of passengers boarding and
leaving the bus on a bus exceeded the threshold for a single ride, the bus was marked as an
overloaded vehicle, and the specific station was labeled as an overloaded station. Then, the
bus at the next shift was notified through the RSU and dispatched toward the overloaded
station.

Step 5: The dispatch center monitored the number of overloaded vehicles in real time,
and if the number exceeded the set threshold, the departure interval of the buses on the
route was shortened.

It should be noted that the departure interval was dynamically calculated, that is,
according to the emergency operation plan, the time required to arrive at the overloaded sta-
tion was calculated dynamically in the background according to the actual traffic conditions,
and it was difficult to use a fixed, empirical value.

4. Results and Analysis

In this study, experimental tests were carried out in the following two dimensions:
a specific bus route and the bus network. The bus-operation data in Changsha City on
3 December 2021 was used as the basis for the bus-travel-demand analysis. Based on multi-
sensor data fusion and payment authenticity verification, intelligent bus scheduling was
carried out. Changsha had a total of 294 bus routes and 5321 stations. On 3 December 2021,
there were 36,813 bus trips, providing transportation services for 1,498,900 passengers. In
terms of the payment methods, there were 2.2255 million registered mobile users at the time
of the study. The bus route examined in this study was No. 115, which had 372 bus trips
(including inbound and outbound trips) that day, transporting a total of 15,757 passengers.

Figure 4 shows the number of diversified payments and the number after authenticity-
verification, categorized by the time period and the station number of inbound No. 115
buses on 3 December 2021. The x-axis in the figure is the time period or station number (s),
and the y-axis in the figure is the number of passengers, including the number of diversified
payments and the number of passengers after authenticity verification. Figure 5 shows
the data for outbound No. 115 buses. In order to accurately reflect the passengers’ riding
behavior, the data for the route over the whole month were calculated using the same
method, as shown in Figures 6 and 7.
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As shown in Figures 4 and 5, the accuracies of the daily passenger flow data reached
84.31–100.00% and 80.47–100.00%, respectively, with averages of 92.10% and 92.67%. As
shown in Figures 6 and 7, the accuracies of the monthly passenger flow data reached
84.31–100.00% and 80.47–100.00%, respectively, with averages of 92.10% and 92.67%.

In order to reflect the passenger flow of the entire bus network, the bus network was
divided into fourteen main bus areas (area code q) according to the distribution of the main
roads and passenger-concentrated areas. A comparative analysis was conducted between
the diversified payment data and the authenticity verification data, as shown in Figure 8. It
should be noted that the public transport area was counted according to the total number
of upward and downward bus lines.
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According to the statistical results of the fourteen bus areas, the accuracy of the daily
average passenger flow reached 97.73–99.60%, with an average of 98.87%. Taking bus
No. 115 as an example, based on the diversified payment data of the passengers and the
travel data that were verified for authenticity, and using the actual bus-operation data and
the actual timetable on the day as the test data, a traffic simulation was conducted using
the intelligent bus-scheduling method. The applicability of the scheduling method was
analyzed based on the accurate vehicle-load data and the travel data that was verified for
authenticity.

In this study, the fixed-line operation cost, as the consideration condition of bus
dispatching, was not considered for bus scheduling, and only the wait time of the passen-
gers (the wait time was deduced from the signaling data of the passengers using mobile
payment) was used as the verification index. The whole-route bus frequency and the
partial-route bus frequency were coordinated. In the scheduling method, only the whole-
route buses served the passengers. That is, all the buses completed the entire route one by
one. Based on the comparison of the diversified payment data and the travel data verified
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for authenticity, the wait time of the passengers was calculated for the same scheduling
algorithm, as shown in Figures 9 and 10. The x-axis in the figures is the station number,
and the y-axis in the figures is the per-passenger wait time for December 2021. The data
for the 46th station in Figure 9 are represented by zero. This is because the station was
the terminal station, and there were no waiting passengers. As shown in Figure 10, the
outbound route had only 42 stations, and the 42nd station was the terminal, so the data are
represented by zero.
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In general, the bus-scheduling method based on travel data that were verified for
authenticity led to a shorter wait time than the method based on diversified payment
data. It can be seen from the figure that the difference was more obvious in the morning
and evening peak hours. During off-peak hours and for low vehicle load conditions, the
difference between the two was not obvious. In addition, the scheduling efficiency was
higher on working days than on holidays. According to our results, the per-passenger wait
time was reduced by 12.37% for the inbound No. 115 buses using the method proposed in
this study, while the per-passenger wait time was 9.07% for outbound buses.
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5. Discussion and Conclusions

In order to improve the efficiency of bus scheduling, based on multi-sensor data fusion,
we carried out passenger-payment-authenticity verification to ensure the accuracy of the
passenger flow data. In view of the employment of self-driving buses, an intelligent bus
scheduling method was established. With the premise of not increasing the operation
cost, and with the objective of reducing passenger wait time, we used the real operational
data to conduct a traffic simulation, thereby verifying the applicability of the intelligent
bus-scheduling method. The results showed that the efficiency of the bus scheduling was
effectively improved after the verification of the authenticity of the passenger-flow data,
which was beneficial for the operation efficiency of the whole bus network. Since the abnor-
mal data points were blacklisted and preliminarily processed in the early stage, some traffic
cards with abnormalities were blacklisted and preliminarily handled, so the comparison
occurred between preliminary-handled data and processed data. Moreover, considering the
limitations of the proposed method and the conducted tests, more practical factors could be
incorporated into the bus-optimization-scheduling problem in future research in this area,
such as traffic lights and co-route buses. In bus-scheduling optimization, the objectives of
passenger wait time, bus-operating cost, and cross-vehicle penalty were comprehensively
considered, and the multi-objective model was converted into a single-objective model
with cost-conversion parameters. However, the determination of the parameter values
remains a challenge. The stochasticity of travel demand varied greatly in different cities
and even in different areas within a city. In future work, we will try to directly solve the
multi-objective model.
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