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Abstract: Recently, deep learning algorithms have become one of the most popular methods and
forms of algorithms used in the medical imaging analysis process. Deep learning tools provide accu-
racy and speed in the process of diagnosing and classifying lumbar spine problems. Disk herniation
and spinal stenosis are two of the most common lower back diseases. The process of diagnosing
pain in the lower back can be considered costly in terms of time and available expertise. In this
paper, we used multiple approaches to overcome the problem of lack of training data in disc state
classification and to enhance the performance of disc state classification tasks. To achieve this goal,
transfer learning from different datasets and a proposed region of interest (ROI) technique were
implemented. It has been demonstrated that using transfer learning from the same domain as the
target dataset may increase performance dramatically. Applying the ROI method improved the disc
state classification results in VGG19 2%, ResNet50 16%, MobileNetV2 5%, and VGG16 2%. The results
improved VGG16 4% and in VGG19 6%, compared with the transfer from ImageNet. Moreover, it has
been stated that the closer the data to be classified is to the data that the system trained on, the better
the achieved results will be.

Keywords: transfer learning; deep learning; lumbar spine disc classification; lumbar spine; medical
image analysis; artificial intelligence; machine learning; convolution neural network

1. Introduction

Since the 1970s, researchers have built systems to analyze medical images and diagnose
diseases based on images uploaded to computers. The reason for the spread of medical
images and the interest of researchers in this analysis is due to a large number of diseases
and their spread in the world, especially lower back diseases. The causes of this pain can be
due to spinal deformity, herniated disc, osteoporosis, or muscle strain as a result of modern
lifestyle through office work. In addition, sitting for long hours in front of computers has
led to an increase in the spread of lower back pain (LBP) [1,2].

LBP is considered the main cause of lost productivity due to disability, and its percent-
age increases among the elderly [3,4]. Neuritis that is due to either mechanical pressure or
chemical irritation leads to pain [5]. In addition, spinal stenosis and disc herniation are
significant factors in LBP [6]. The lumbar spine consists of five vertebrae, labeled L1 to L5,
and these vertebrae progressively increase in size moving downward. Each vertebra is
connected with the other vertebrae by intervertebral discs. The intervertebral discs help
stabilize the spine and act as shock absorbers, in addition to protecting the bones from
friction and interference. These discs are filled with a gel-like fluid and, if they dry out, it is
an indication of some problem [7].

Disc herniation and spinal stenosis are two of the most common lower back diseases.
The process of diagnosing pain in the lower back is performed by radiologists and doctors
analyzing medical images. Due to the number of these images and the analysis process,
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which requires expertise in the field of diagnosis, as well as the potential fatigue of experts,
the difference of opinion among doctors, and the financial cost of this process, researchers
are moving toward building computer systems that help experts to make decisions and
speed up the diagnosis process. There are many types of medical imaging techniques that
help radiologists in making decisions. The most common of these techniques are computed
tomography (CT), X-ray, magnetic resonance imaging (MRI), and thermal images. MRI is
the most popular technique used to diagnose spinal diseases [8–13].

The processes of computer-assisted diagnostics and medical imaging analysis mainly
rely on machine learning (ML). After the development of ML techniques and the emergence
of the field of deep learning (DL), DL has been adopted as one of the adopted methods in
the diagnostic process. Although there are many ML techniques to analyze medical images
in various fields, DL has become the state-of-the-art method to analyze and diagnose
medical problems due to its accuracy. Currently, deep learning on MRI images has become
the approved method for many researchers, including for lumbar spine diagnosis [14].

In the medical image analysis process, Convolutional Neural Network (CNN) is
currently one of the best deep learning algorithms. In CNN, the spatial relationships are
preserved after filtering the input images. In the field of radiology, these relationships
are very important [15–17]. Features in CNN can be extracted automatically. The final
prediction can be made based on the features that were extracted from the input image
combined with layers in CNN; weight factors change over the training procedure [18].

It is known that CNN models require large amounts of data for the purpose of training.
The most important challenge facing these models is the lack of data for the purpose of
training them. Collecting a large amount of labeled data, especially medical data, is very
difficult. However, the problem of lack of data is solved by using transfer learning. The
transfer method is considered efficient in solving the problem of lack of data. Simply, the
model is trained on a large amount of labeled data, such as (ImageNet). In the next step,
the model is fine-tuned for training on small labeled data [19–22].

This paper aims to solve the problem of lack of training data in disc state classification
of the lumbar spine, improve the performance of disc state classification tasks and to
determine if the kind of images used for transfer learning has an impact on performance. In
this regard, we propose several procedures to overcome these challenges. The contributions
of this work can be summarized as follows:

1. The problem of a lack of training data has been solved by utilizing transfer learning.
2. The novel selection method is applied to select the most essential images. This method

saves us a lot of time and effort in selecting important images to be used in the process
of classifying lumbar spine discs compared with the manual method. Where images
are selected automatically and quickly, this method is applied to the images taken
from the magnetic resonance devices to describe the problem of the lumbar spine.

3. A custom grading system was built for radiologists to label images.
4. We proposed a new technique to extract ROI that splits the images into many blocks,

and we identified the most important blocks. The proposed ROI achieved excellent
results when we applied it in disc state classification. In the process of diagnosing
images of lumbar spine discs, there were many shapes in the image overlapping with
the object to be analyzed, such as the image of the intervertebral disc.

5. A new private lumbar spine dataset was built. This dataset had 1448 MRI images
of the lumbar spine. We had 905 images belonging to the axial T2, 181 belonging to
sagittal T2, and 362 belonging to myelography. In this dataset, we labeled two subjects
in lumbar spine disc state and canal stenosis.

6. Three datasets were built, two as sources and one as a target. One of them represented
the final database, with label data on which the classification process was carried
out. The second dataset (209,083 MRI images) described an unlabeled dataset that
was used in the training process from scratch. Finally, the third dataset (16,441 MRI
images) was a dataset compiled from several public datasets labeling brain tumors.

7. Various training procedures have been performed with many deep learning models.
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8. It has been demonstrated that using TL from the same domain as the target dataset
may increase performance dramatically.

9. Applying the ROI method improved the disc state classification results in VGG192%,
ResNet50 16%, MobileNetV2 5%, and VGG16 2%.

10. The results improved in VGG16 4% and in VGG19 6% compared with those transferred
from ImageNet. This is because labeled datasets and unlabeled dataset images are
closer to lumbar spine MRI than the images in ImageNet.

This paper is organized as follows. Section 2 illustrates the work related to lumbar
spine diseases and disc state classification. Section 3 presents the details of the datasets that
are used in the experiments, the steps taken to build our dataset, and various procedures
and methods applied to these datasets, which led to improving the classification task.
Section 4 describes the results and performances of the models. Section 6 offers a conclusion
of the work.

2. Related Work

Deep learning has become the trailblazing method for analyzing and diagnosing
medical conditions because of its accuracy. There have been many previous studies on
computer-aided techniques. Sa et al. [23] proposed a method of disc detection through
X-ray images by using Faster R-CNN. Due to the lack of medical images, they fine-tuned
a pre-trained deep network on a small medical dataset and obtained satisfactory results.
The method achieved an average accuracy of 0.905, with an average computation time per
image of three seconds.

Kuok et al. [24] proposed a hybrid approach using image processing for the detection
of the vertebrae and CNN in the segmentation task of the vertebrae. They used a private
dataset from the National Cheng Kung University Hospital in Taiwan for 60 X-ray images.
The segmentation efficiency using the proposed method was significantly elevated with a
DSC value of 0.941.

Some studies using CT images, such as that of Navab et al. [25], worked on CT scans
where the proposed approach was the automatic detection and localization of vertebrae in
volumetric CT. The location of each part was predicted by the contextual information in the
image by using deep feed-forward neural networks. A public dataset of 224 arbitrary field-
of-view CT scans of the pathological cases was used to evaluate the method. The detection
rate was 96% and the total operating time was less than three seconds.

In contrast, Zaho et al. [26] proposed a technique to perform the localization and
segmentation of the vertebra applied on CT imaging using transfer learning; 500 spine CT
images were used from a SpineWeb public dataset. The results displayed that the proposed
approach could indicate considerable properties of the spinal vertebrae as well as provide
useful localization and segmentation performance.

Some studies using MRI images, such as that of Jamaludin et al. [27], proposed an
approach to automatically predict radiological scores in spinal MRIs. They also determined
diseases based on radiation scores. They worked on a two-fold approach: (i) architecture
and training of CNN and (ii) the prediction of a heat-map of evidence hotspots for each
score. The results show that the hotspots of pathology and radiological scores can be
projected at an excellent level.

Davies et al. [28] proposed a method that uses magnetic resonance of the cervical and
lumbar spine to classify disc degeneration. The goal of this method was to explore the
association between histological grading and magnetic resonance of IVD degeneration in
the lumbar spine and the cervical spine for patients undergoing diskectomy.

Heinrich and Oktay [29] presented a method for finding anatomical landmarks in
spine MRI scans by using Vantage Point Hough Forests and multi-atlas fusion. The pro-
posed method achieved Dice segmentation overlaps of almost 90%, sub-voxel localization
accuracy of 0.61 mm, as well as a processing time of approximately ten minutes per scan.

Hetherington et al. [30] proposed a method of vertebral level labeling and identification
without the use of an outer chase device. The suggested CNN successfully distinguished
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ultrasound images of the sacrum, intervertebral spaces, and vertebral bones, with a 20-fold
cross-validation precision of 88 percent. A total of 17 of 20 test ultrasounds provided a
wealthy recognition of all vertebral levels and processed a real-time speed of 40 frames
per second.

Kim et al. [31] proposed a new deep learning network to divide intervertebral discs
from MRI spine images. The traditional method (U-net) is known to work well for medical
image segmentation. However, its performance in terms of segmentation details, such
as boundaries, is limited by structural limitations of the maximum clustering layers. The
proposed network achieved 54.62% compared with 44.16% for convolutional U-net.

In contrast, Zhou et al. [32] suggested a deep learning-based detection algorithm. The
data hail from Hong Kong University’s Department of Orthopedics and Traumatology.
The MRI dataset consisted of samples from various age groups and used 2739 unhealthy
and 1318 healthy samples. To train the CNN to detect the lumbar spine, they worked on
a similarity function, and the proposed method compared similarities between vertebrae
using an earlier lumbar image instead of distinguishing vertebrae using annotated lumbar
images. S1 was identified due to its unique shape, and a rough area around it was removed
in order to look for L1–L5. The accuracy, precision, mean, and standard deviation (STD) of
the results were calculated, and this detection algorithm had an accuracy of 98.6 percent
and precision of 98.9 percent. The majority of the failed findings were due to misplaced S1
vertebrae or undetected L5 vertebrae.

Whitehead et al. [33] worked on spine segmentation by proposing a technique that
was not model based. They proposed a technique established on a string of four pixel-
wise division networks. They used a dataset from UCLA Radiology, and each network
chunk MR imaged at several scales. The input to the network in the chain was fed by the
output from the previous network. Each sequential network produced an increasingly
filtered segmentation outcome by using both the original image and the output from the
last network as input. In comparison to the U-net segmentation method, the proposed
approach improved the segmentation task in the vertebrae and discs at the rate of 1.3% and
4.9%, respectively.

In addition, Hu et al. [34] used deep learning to distinguish patients with LBP from
healthy persons in static standing. They used 44 chronic LBP and healthy individuals and
the spine kinematics and pressure points were listed. The outcomes showed that deep
neural networks could identify LBP persons with a precision of up to 97.2%. The study
showed the classification task with precision and recall could be carried out by deep
learning networks.

Lu et al. [35] worked to classify MRI lumbar spinal stenosis using CNN, the natural
language processing used to extract the labels for different types and degrees of spinal
stenosis from radiology diagnoses. They used U-net architecture for the segmentation of
the lumbar spine vertebrae and localization of the disc level. Data from the Department of
Radiology of Massachusetts General Hospital during the period from April 2016 to October
2017 was used. In the segmentation task of the vertebral body, the standard guaranteed
that all lumbar intervertebral discs could be taken away with the algorithm. The pass rate
for the test group according to these criteria was 94%.

Palkar and Mishra [36] proposed a method to generate a single image containing all
the important features from MR and CT images of the lumbar spine by using CNN and
wavelet-based fusion. First, using wavelets, both MR and CT images were analyzed into
detail and approximation coefficients. Then, using a CNN framework, approximation
coefficients were fused with the corresponding detail. Finally, the fused image was gener-
ated using inverse wavelet transform. A SpineWeb public dataset was used. Experimental
results indicated that the proposed method had performed well when compared with
conventional methods.

Mbarki et al. [37] studied identification of a herniated lumbar disc by working on
MRI, using CNN, based on the VGG16 geometry. A special dataset was used from Sahloul
University Hospital in Sousse, Tunisia. U-net was used with an axial view MRI to locate



Electronics 2022, 11, 85 5 of 27

and detail the location of the herniated lumbar disc. The accuracy of the proposed model
was 94%.

Won et al. [38] validated the utility of the computer-assisted spinal stenosis classifica-
tion system by comparing agreements between experts trained in CNN classifications and
a diagnostic agreement between two experts. For the detection process, they used Faster
R-CNN, and for the classification process, they used VGG network. After the grading agree-
ment was completed, the differences in the results between each expert and the trained
models were not considerable, while the final agreement between the trained model and
the expert was 74.9% and 77.9%, respectively.

Lakshminarayanan and Yuvaraj [39] proposed a method for analyzing and classifying
spinal vertebrae images. After scanning the spinal vertebrae, the images were analyzed and
classified into different disc types using the CNN ConvNet algorithm. In their proposed
model, they showed the CNN system was better than the SVM system. However, the
precision of the SVM was 90%, while the CNN was 96.9%. The results stated that the
proposed method provided speed and accuracy compared with traditional algorithms.

Medical imaging is a significant tool for diagnosis. Computer-aided diagnosis is
gaining popularity with advances in computer technology such as deep learning. However,
medical pictures are created using specialized medical equipment, and their collection and
labeling by professionals is an expensive process. As a result, gathering adequate training
data is often costly and challenging. Most of the related work for disc state classification
used CNN models. It is known that CNN models require large amounts of data for training.
The most critical challenge facing these models is the lack of data to train them. Collecting
a large amount of labeled data is very difficult, especially medical data. Transfer learning
technology may be applied for medical imaging analysis. Pre-training a neural network on
the source domain and then fine-tuning it based on examples from the destination domain
is a typical transfer learning strategy.

3. Materials and Methods

In this section, we will illustrate the datasets and the procedures that we applied
to these datasets. This section consists of five parts: building the lumbar spine dataset,
analysis of collected dataset, the proposed ROI, the datasets used in this work, and the
proposed methods.

3.1. Building the Lumbar Spine Dataset

Real world data often contain a lot of noise, errors, and missing values. This data may
be in a format that is not directly usable in various applications such as ML. Therefore, pre-
processing the data is an essential step to clean that data and convert it into a format suitable
for use as required. In general, in the context of artificial intelligence, pre-processing aims
to raise the quality of datasets to improve the accuracy and efficiency of different models
and systems.

3.1.1. Raw Data Collection

Data collection is one of the significant obstacles to deep learning. The spread of
deep learning and artificial intelligence applications has created many applications in
which sufficiently classified data are not available, especially in which deep learning
automatically engineers and creates features, unlike traditional machine learning. However,
deep learning leads to the need for large amounts of classified data. One of the exciting
things is that modern research has become focused on the process of collecting data and
building databases in a considerable way in all fields.

The private dataset was collected for subjects with LBP in the lumbar spine for a
period of one year, from 1 January 1 2020 to 1 January 2021, from the Fallujah Teaching
Hospital—Radiology and Sonar Department.
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3.1.2. Novel Selection Method

The PACK server has a large number of images; the main problem with these images
is that they are raw data, unlabeled, and belong to many diseases. During a full year
of work at the Fallujah Teaching Hospital, we collected 48,642 MRI images belonging to
400 patients suffering from lumbar spine problems. Radiologists in the hospital’s radiology
department were able to label images for only 181 patients. So, for those 181 patients (mean
age ± standard deviation, 44 years ± 15), we have 21,470 MRI images. These images come
with extension DCOM, so we converted them to a JPG extension to facilitate their handling
and processing of images.

From this group of medical images, we chose 1448 images by applying a novel selection
method; with this method, we selected the most essential images (as shown in Figure 1) so
that each patient had eight images:

• One image for sagittal view T2 for the lumbar spine.
• Two images for myelography.
• Five images for five intervertebral lumbar disc.

Figure 1. Novel selection method.

From this massive number of images, the selection process of sagittal view T2 for the
lumbar spine was performed according to the following equation:

Y =
⌊n

2

⌋
+ 1 (1)
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where Y represents the frame number to be selected from the sagittal view T2 (T2-sag)
image series and n represents the number of frames in the series. For example, if we have
13 images in T2-sag, we select the seventh image in the sequence.

The selection process for five lumbar spine discs of axial view T2 conducted according
to the following equation

Z = 3x + 2(x− 1) (2)

where Z represents the frame number to be selected from the lumbar disc axial view T2
image series and x represents the sequence of the intervertebral disc that we want to choose
in series, as shown in Table 1.

Table 1. The selection criteria of the lumbar disc axial view T2 image.

No. (x) Disc Name Frame Number to Be Selected

1 L51 3x + 2(x− 1) = 3 ∗ 1 + 2(1− 1) = 3
2 L45 3x + 2(x− 1) = 3 ∗ 2 + 2(2− 1) = 8
3 L34 3x + 2(x− 1) = 3 ∗ 3 + 2(3− 1) = 13
4 L23 3x + 2(x− 1) = 3 ∗ 4 + 2(4− 1) = 18
5 L12 3x + 2(x− 1) = 3 ∗ 5 + 2(5− 1) = 23

This method saves us a lot of time and effort in the process of selecting important
images that are used in the classification process, compared with the manual method
performed by radiologists, where the images are selected automatically and quickly if this
method is applied to the images taken by the magnetic resonance devices to describe the
lumbar spine problem.

After we completed the data collection process, we performed the process of naming
the data. All data relating to the patient were stored in one folder. We called this folder the
name of the identifier taken from the PACS server (IdDevice), as shown in Table 2. After
that, we had 181 folders, in each folder 8 images, and the result was 1448 images.

Table 2. The process of naming data taken from the PACS server.

No. Images to Be Named Item’s Name

1 Two images for myelography IdDevice_1
2 IdDevice_2
3 Sagittial view T2 for Lumbar spine IdDevice_3
4 Lumbar spine disc L12 IdDevice_12
5 Lumbar spine disc L23 IdDevice_23
6 Lumbar spine disc L34 IdDevice_34
7 Lumbar spine disc L45 IdDevice_45
8 Lumbar spine disc L51 IdDevice_51

3.1.3. Labeling the Data with the FaLa Program

The classification system was built for the data to be labeled by the radiologist. Because
data without a label is useless, these data were classified by the Department of Radiology
at Fallujah Hospital.

The classification was conducted by using the Fatima Label (FaLa) program. We cre-
ated the FaLa program to help radiologists perform the labeling process with the help
of RadiAnt [40] PACS DICOM viewer. Finally, the patient’s images are displayed on
computers (see Figure 2).



Electronics 2022, 11, 85 8 of 27

Figure 2. RadiAnt DICOM viewer.

As we note in Figure 2, there are several lumbar spine MRI series for each patient,
such as survey, Mylo, sagittal T1, sagittal T2, axial T1, axial T2, and so forth. For each series,
there are many images, for example, in Axial T2, we have 30 images. So, we are likely to
receive 115 DICOMs per patient. In the diagnostic process, radiologists are interested in
three series: myelography, axial T2, and sagittal T2.

For each disc level in the lumbar spine, the classification program stores the state of
the disc and whether it is herniated or not. In this case, we have four types of the disc:
normal, degenerated, bulged, and herniated. In the case that the disc was herniated, there
are four types: none, normal, migration, and sequestration. Moreover, the classification
program saves the “Spinal Canal Stenosis (SCS), Right Foraminal Stenosis (RFS), and Left
Foraminal Stenosis (LFS)” kinds. There are four cases for each stenosis: normal, mild,
moderate, and severe.

To store the results of the classification process efficiently, we have graded the data. We
have a specific grade for each of the possible states. So, for example, the grade is zero if the
lumbar spine disc state is normal, grade one if the lumbar spine disc state is degenerating,
grade two if lumbar spine disc state is a bulge, and grade three if lumbar spine disc state is
herniated. See Table 3 to see how we graded the dataset for the lumbar spine MRI. Table 4
illustrates the numerical data from classified discs for one patient.

Table 3. The selection criteria of the lumbar disc axial view T2 image.

Grade Lumbar Spine Disc State Disc Herniation State SCS RFS LFS

0 Normal None Normal Normal Normal
1 Degeneration Normal Mild Mild Mild
2 Bulge Migration Moderate Moderate Moderate
3 Herniation Sequestration Severe Severe Severe

Table 4. An example of the process of the grading data taken from the PACS server.

Disc Name Disc State Type Disc Herniation SCS RFS LFS

L12 0 0 0 0 0
L23 0 0 0 0 0
L34 0 0 0 0 0
L45 2 0 2 0 0
L51 3 2 3 3 3
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3.2. Analysis of Collected Dataset

After completing the process of collecting and classifying the data, we had 1448 MRI
images of the lumbar spine, of which 905 images belonged to the axial T2, 181 belonged to
sagittal T2, and 362 belonged to myelography, as shown in Figure 3.

Lumbar Spine MRI Images

MyelographyAxial T2 Sagittal T2

905 Image 181 Image 362 Image

1448 Image

Figure 3. Number of MRI images in our dataset.

The process of diagnosing lumbar spinal disc state and stenosis depends mainly on
axial T2 images. In disc type classification, we had 545 normal, 50 degeneration, 298 bulge,
and 12 herniation. These classes can be grouped into two main classes: normal and
abnormal. In the normal class we had 545 images, but in the abnormal class (degeneration,
bulge, and herniation) we had 360 images, as shown in Figures 4 and 5. Table 5 states the
number of discs for each class in disc state.

Disc State

Normal Degeneration HerniationBulge

Normal Abnormal

905 Image 

545 50 298 12

545 360
Figure 4. Number of axial T2 images in disc state for each class.
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Figure 5. Number of axial T2 images for each lumbar disc.

Table 5. Number of disc for each class in disc state.

Disc Name Normal Degeneration Bulge Herniation

L12 163 13 5 0
L23 149 12 20 0
L34 113 9 59 0
L45 38 6 129 8
L51 82 10 85 4

Total 545 50 298 12

In the case of spinal cord stenosis, we had three classifications: SCS, RFS, and LFS.
For SCS, we had 606 normal images, 155 mild images, 85 moderate images, and 59 severe
images. For RFS, we had 627 normal images, 140 mild images, 81 moderate images, and
57 severe images. For LFS, we had 628 normal images, 133 mild images, 84 moderate
images, and 60 severe images.

3.3. The Proposed ROI

The process of analyzing medical images is very complex and often the parts in
the image overlap with the object to be diagnosed. For example, in the process of diag-
nosing images of lumbar spine discs, there are many shapes in the image such as the
image of the intervertebral disc; the same is true in the diagnosis of spinal cord steno-
sis. Therefore, we proposed the ROI technique, which splits the image into many blocks,
and we were able to identify the most important blocks. We divided the image with size
(1061 width * 752 height) into 104 blocks and then selected 20 blocks with ROI, each of
which has a size (82 * 94). Finally, we chose 20 blocks based on Equation (3).

Z = {30 + (13 ∗ x) + y : x ∈ {0, 1, 2, 3, 4}, y ∈ {1, 2, 3, 4}} (3)

where Z represents the block number to be selected. After completing this process, we
obtained images that contain only the area of interest (see Figure 6). In Figure 7, we illustrate
the steps to create ROI images.
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Figure 6. Twenty blocks from an image, each one with size (82 * 94) used to create ROI.

Input Image

Divide Image to 
 104 Blocks

Block 31 Block 32 Block 33 Block 34

Block 44 Block 45 Block 46 Block 47

Block 57 Block 58 Block 59 Block 60

Block 70 Block 71 Block 72 Block 73

Block 83 Block 84 Block 85 Block 86

Select ROI blocks

Collect ROI blocks  
to create final image 

Figure 7. Steps to create ROI images.
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3.4. Datasets Used in This Work

This section explains the datasets that were used in the proposed model. We used
three datasets of MRI medical images. One of them represented the final database, with
label data on which the classification process will be carried out. The second described
an unlabeled dataset that was used from scratch in the training process. Finally, the third
dataset was compiled from several public datasets labeling on brain tumors. Each one is
explained below.

• Dataset A: In this dataset, we collected brain tumor MRI images from six public
datasets from the Kaggle website, and each database contained a set of labeled images.
The first dataset contained 253 MRI images classified into two parts: 98 images
without tumors and 155 images with a tumor [41]. The second database included 3264
labeled images divided into four parts. The first part contained 926 images of glioma
tumors, the second part contained 937 meningioma tumors, the third part contained
500 images of no tumor, and the last part contained 901 images of pituitary tumors [42].
The third database contained 3060 brain MRI images categorized into three categories:
1500 images containing a tumor, 1500 images without a tumor, and 60 unlabeled
images for testing purposes [43]. The fourth database included 7023 labeled images
also divided into four categories. The first part contained 1621 images of glioma
tumors, the second part contained 1645 meningioma tumors, and the third part
contained 2000 images without a tumor, and the last part contained 1757 images of
pituitary tumors [44]. The next database included 400 MRI labeled images classified
into two categories: 170 normal images (without a tumor) and 230 images with a
tumor [45]. The latest database of brain MRI images contained 2501 images classified
into two categories: 1551 normal images and 950 images containing stroke [46]. In the
end, we grouped these datasets into two classes: normal and abnormal. In the normal
class, we had 5819 images, and in the abnormal class, we had 10,622 images. So, in
total, we had 16,441 MRI images of brain tumors in this dataset.

• Dataset B: In this dataset, we collected unlabeled MRI images from the PACS server
at the Fallujah Teaching Hospital. This dataset had, in total, 209,083 MRI images of the
lumbar spine and brain.

• DataSet C: This was our target dataset, built with 181 Lumbar spine patients and
containing 1448 images chosen from 21,470 MRI images by applying the novel selec-
tion method.

3.5. Hyperparameters

Hyperparameters are essential things that must be determined before starting the
training of any model because they control the learning process and are the main pillar
on which the model depends. There are some hyperparameter optimization tools, such as
Autokeras, that can be used. The following hyperparameters gave us the best results when
applied to our dataset.

1. The train split ratio: There are many methods to determine the criteria. There is a
way that MRI images are divided into training and testing only, and another way
is that the MRI images are divided into three sets: training, validation, and testing
(as shown in Figure 8). In general, we use a ratio of 75% for the training set and 15%
for the validation set, and 10% for the testing set for disc state as shown in Figure 9.

2. Batch size : In a single forward and backward pass, batch size is the number of
training samples counted. The larger the batch size, the more memory space is
required. So, the batch size could be 8, 16, 32, 64, 128, and so on. According to our
computer hardware memory, we set 64 for batch size.

3. Epoch size: One epoch equals one forward and one backward trip through all of the
training images. When we apply transfer learning, we set epoch to 50, and when we
train from scratch, we set epoch to 100. For instance, if you have 5120 images and a
batch size of 64, it will take 80 iterations to finish one epoch.
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4. Dropout: The essential task of Dropout probability is to prevent overfitting. It enables
the model to learn more strong characteristics that can be used with various random
subsets of other neurons. We set 0.2 to Dropout.

5. The learning rate: The value must be balanced between the very small and the very
large value. The small value leads to a slow and incomplete training process. As for
the high value, it leads to the instability of the training process. So, when we train any
model from scratch, we set 1e−5 for learning rate and we set 1e−3 for learning rate
when we use weights in transfer learning.

Split Data

Method 1 Method 2

Validation Set Test SetTraining Set Training Set Test Set

Figure 8. Methods of split data.

Disc State MRI Images T2

Validation Set Test SetTraining Set

AbnormalNormal AbnormalNormal AbnormalNormal

905 Image

75% 15% 10%

135 image 679 image 91 image 

55 36409 270 5481

Figure 9. Split data of disc state into three groups: training, validation, and test set.

3.6. The Proposed Methods

Having enough labeled images to train a deep learning model for medical image
classification is a complicated task. Because of the lack of this data and the presence of
several complications, some laws in some countries prevent data from being obtained
without the person’s consent or allow it to be obtained at a cost.

The goals of the following procedures are to solve the problem of lack of training
data for lumbar spine classification, to determine the source of the images applied to TL
affected in classification task in disc type, and how we can improve the classification task
by using proposed techniques, such as ROI. We used four datasets, three as sources applied
in TL (ImageNet, Dataset A, and Dataset B) and one as a target (Dataset C). Moreover,
we applied various training procedures to the many models (as shown in Figure 10).
Our experiments were implemented on Python and the deep learning library Keras using
the TensorFlow with PC setup (Intel(R) Core(TM) i9-9900K CPU 3.60 GHz, 32 GB RAM
and NVIDIA GeForce RTX 2080 Ti 11GB GPU). Moreover, we proposed three training
procedures as follows:
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Axial T2 MRI 

Image Scaling 

Image labeling

Split data Data agumentation
& nomalizationTraining Data

Validation Data

Testing Data

Train Model

Test Model

Image
Visualization 

Evaluation
Metrics

Novel Image
Selection

ROI

Pre-processing Stage 

Figure 10. General workflow of the proposed models.

3.6.1. Procedure 1

The first procedure applied transfer learning on images from ImageNet (as in Figure 11).
We applied four Keras deep learning models (VGG16, VGG19, ResNet50, MobileNet v2)
to classify disc state. Finally, we checked the effect of using the proposed ROI on lumbar
spine MRI images (as shown in Figure 12).

1. Apply transfer learning from ImageNet using four Keras deep learning models with-
out fine-tuning or applying the proposed ROI process.

2. Apply transfer learning from ImageNet using four Keras deep learning models with
fine-tuning and without applying the proposed ROI process.

3. Apply transfer learning from ImageNet using four Keras deep learning models with-
out fine-tuning and with the proposed ROI process.

4. Apply transfer learning from ImageNet using four Keras deep learning models with
fine-tuning and with the proposed ROI process.
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Figure 11. Transfer learning from ImageNet.
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Figure 12. Transfer learning disc state classification with proposed ROI.
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3.6.2. Procedure 2

Two Keras deep learning models (VGG16, VGG19) were trained from scratch with
Dataset A, and transfer learning was applied to classify disc states in Dataset C with
and without fine-tuning (as shown in Figure 13). The key points of the proposed train-
ing processes for VGG16 and VGG19 from scratch with Dataset A can be summarized
as follows:

1. Split Dataset A into two groups ( 85% for training and 15% for validation).
2. Choose the hyperparameters’ initial values (eg: learning rate 1e−5, batch size = 64,

number of epochs = 100).
3. To train the model, use the initial values from step 2.
4. Use the validation set to evaluate network performance throughout the learning phase.
5. For 100 epochs, iterate on steps 3 and 4.
6. Choose the model with the lowest error rate on the validation set as the best-trained model.

DataSet A

Tumor 

No Tumor

Convolution Layers Full connection layers Predicted labels

 Dataset  C

Transfer Learning

Convolution Layers Full connection layers

Normal  
Abnormal

Predicted labels

Figure 13. Transfer learning from the training model from scratch with Dataset A (labeled brain
tumor MRI datasets).

After training, the VGG16 and VGG19 models from scratch are performed with Dataset
A. Then, we transfer learning these weights and use them for training models for disc
state classification without fine-tuning. Figure 14 shows transfer learning for disc state
classification from label Dataset A. The following steps show the process:

1. Split Dataset C into three groups (75% for training, 15% for validation, and 10%
for testing).

2. Applying the augmentation process (e.g., brightness [0.1, 0.7], horizontal flip, and
vertical flip).

3. Freeze the pre-trained layers and train only the classifier ( the fully connected layer).
4. Choose the hyperparameters’ initial values (e.g., learning rate 1e−3 , batch size = 64,

number of epochs = 50).
5. To train the model, use the initial values from step 4.
6. Use the validation set to evaluate network performance throughout the learning phase.
7. For 50 epochs, iterate on steps 5 and 6.
8. Choose the model with the lowest error rate on the validation set as the best-trained model.
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9. Apply evaluation metrics, such as accuracy, precision, recall, and F1-Score, on the
testing set.

Image Scalling 

Label data 

Image Labelling

Data Augmentation and
Normalization

Normal 

Abnormal

Deep learning model
(VGG16 ,VGG19, Resnet50

and MoileNetV2) 

Train Fully Connected
Layers 

Early Sropping  
and Loss Function 

Image Visualiztion 

Evaluation Metrics 
Accuracy

Recall

Precision

F1-Score

LR: 1e-3

LR: 1e-5

DataSet C

Pre-trained model

Fine Tuning 

Early Sropping  
and Loss Function 

without Fine Tuning

Applying the
proposed ROI

Disc State

Image Labelling

Data Augmentation and
Normalization

Normal 

Abnormal

Deep learning model
(VGG16 ,VGG19) 

Train Fully Connected
Layers 

Early Sropping  
and Loss Function 

Image Visualiztion 

Evaluation Metrics 
Accuracy

Recall

Precision

F1-Score

LR: 1e-3

LR: 1e-5

Dataset A

Pre-trained model

Fine Tuning 

Early Sropping  
and Loss Function 

without Fine Tuning

Train models  
From Scratch 

Tumor Brain

Figure 14. Transfer learning for disc state classification from labelled Dataset A.

With fine-tuning, we performed the same steps above, except in step 3. We did not
freeze all pre-trained layers. Instead, we made some layers trainable with two, and we set
learning rate 1e−5 in step 4.

3.6.3. Procedure 3

This procedure involved training two deep learning models (VGG16, VGG19) from
scratch with Dataset B and applying transfer learning to classify disc states in Dataset C
with and without fine-tuning (as Figure 15 indicates). We used the same steps in Procedure
2, expect we used Dataset B for training from scratch. Figure 16 illustrates transfer learning
for disc state classification from unlabeled Dataset B.
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Figure 15. Transfer learning of training model from scratch with Dataset B (unlabeled MRI datasets).
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Figure 16. Transfer learning for disc state classification from unlabeled Dataset B.
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4. Results

This section will demonstrate the results of applying the three suggested procedures
according to the following evaluation metrics.

4.1. Evaluation Metrics

Evaluating the performance or accuracy of any classifier is important as the classifier
can perform better against certain metrics; however, it has poor results in others. There
are many metrics, and it is important to choose the metrics for the purpose of evaluating
the performance of the classifier [47]. Evaluation metrics are mainly used to evaluate the
classifier during the training and testing stages. Below are the most popular evaluation
metrics. We selected the four types of evaluation metrics that are the most popular, which
will be explained below [48].

1. Accuracy: The proportion of correct results to the total number of cases tested. It is
calculated according to Equation (4):

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(4)

2. Recall: Utilized to calculate whether the proportion of actual positives were correctly
classified (Equation (5)).

Recall =
TP

(TP + FN)
(5)

3. Precision: Used to calculate whether the proportion of positives that were correctly
predicted is truly positive (Equation (6)).

Precision =
TP

(TP + FP)
(6)

4. F1-Score: Harmonic mean between recall and precision; the value of the F1-Score is a
number between 0 and 1 (Equation (7)).

F1Score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(7)

where, FP = False Positive, TP = True Positive, FN = False Negative, and TN= True Negative.
All results in tables are calculated in the percentage units by multiplying each value by 100
to display the results more clearly.

4.2. Results of Procedure 1

In this experiment, we stated the effect of using the proposed ROI on disc state
classification. At first, we applied transfer learning from the ImageNet dataset on four deep
learning models to classify lumbar spine discs on our data (Dataset C) without applying
the proposed method of ROI. When we trained only the fully connected layer without
fine-tuning the four models (VGG16, VGG19, ResNet50, and MobileNetV2), we obtained
the results in Table 6, which prompted us to fine-tune and see how much these results
had improved.

Table 6. Models with transfer learning from ImageNet for disc state classification without ROI
or fine-tuning.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

VGG19 82.97 80.47 94.50 86.92
ResNet50 77.47 82.69 78.90 80.75

MobileNetV2 79.67 86.73 77.98 82.13
VGG16 78.57 88.89 73.39 80.40
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After fine-tuning the four models, we noted that the results had not improved signifi-
cantly as shown in Table 7, and some results have decreased in value as well as in ResNet50.
This is due to two reasons. The first is that the models have been trained on data from
the ImageNet dataset, and these data are not similar to lumbar spine images. The second
reason is that there is a lot of noise in the background, as large parts of the objects in it are
similar to the shape of discs.

Table 7. Models with transfer learning from ImageNet for disc state classification without ROI and
with fine-tuning.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

VGG19 84.07 85.09 88.99 87.00
ResNet50 73.63 76.52 80.73 78.57

MobileNetV2 78.57 77.78 89.91 83.40
VGG16 82.42 86.67 83.49 85.05

To improve these results, we applied the proposed ROI method. After its application,
we noticed that the results improved significantly. The main objective of this method is to
reduce background noise and make the classification process more accurate. The results of
this step are shown in Table 8.

Table 8. Models with transfer learning from ImageNet for disc state classification with ROI and
without fine-tuning.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

VGG19 86.81 92.16 85.45 88.68
ResNet50 83.52 85.71 87.27 86.49

MobileNetV2 81.32 85.19 83.64 84.40
VGG16 84.62 85.96 89.09 87.50

After fine-tuning, we obtained the results in Table 9, which show the importance
of applying this method and how it improved results. The application of this method
improved the disc state classification results in VGG19 2%, ResNet50 16%, MobileNetV2 5%,
and VGG16 2%, as shown in Table 10. This rate was measured by the following equation:

Y =
x2 − x1

|x1|
× 100% (8)

where x1 is old value and x2 is new value.

Table 9. Models with transfer learning from ImageNet for disc state classification with ROI and
fine-tuning.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

VGG19 86.81 93.88 83.64 88.46
ResNet50 89.01 89.47 92.73 91.07

MobileNetV2 84.62 83.61 92.73 87.93
VGG16 84.62 88.68 85.45 87.04

Table 10. Improvement rate after applying the proposed ROI to disc state.

Models F1-Score before ROI
(%)

F1-Score after ROI
(%)

Improvement Rate
(%)

VGG19 87.46 88.46 2
ResNet50 78.57 91.07 16

MobileNetV2 83.4 87.93 5
VGG16 85.05 87.04 2
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4.3. Results of Procedure 2

To improve classification results and solve the problem of no significant correlation
between images in ImageNet with images of the lumbar spine, we trained two deep
learning models (VGG16 and VGG19) from scratch using medical images classified in
(Dataset A) that are similar to the images of the lumbar spine. Then, we used transfer
learning from (Dataset A) to classify disc state. When training only fully connected layers,
we obtained the following results: accuracy 78.02%, 73.97% precision, 98.18% recall, and an
F1-Score of 84.38% in the VGG16 model; 80.42% accuracy, 84.21% precision, 87.27% recall,
and an F1-Score of 85.71% in the VGG19 model. After fine-tuning, we obtained 87.91%
accuracy, 89.29% precision, 90.91% recall, and an F1-Score of 90.09% in the VGG16 model;
87.91% accuracy, 87.93% precision, 92.73% recall, and an F1-Score of 90.27% in the VGG19
model, as shown in Table 11.

Table 11. Models with transfer learning from Dataset A (labeled brain tumors) for disc state classification.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

VGG16
Without Fine-Tuning 78.02 73.97 98.18 84.38

With Fine-Tuning 87.91 89.29 90.91 90.09
VGG19

Without Fine-Tuning 80.42 84.21 87.27 85.71
With Fine-Tuning 87.91 87.93 92.73 90.27

As we note in Table 12, the results improved in VGG16 4% and in VGG19 6%, compared
with transfers from ImageNet. This is because the images in Dataset A are closer to lumbar
spine MRI than the images from ImageNet.

Table 12. Improvement rate after transfer learning from labeled data (Dataset A).

Models F1-Score for TL from
ImageNet (%)

F1-Score for TL from
Dataset A (%)

Improvement Rate
(%)

VGG16 87.00 90.09 4
VGG19 85.05 90.27 6

4.4. Results of Procedure 3

The hardest part of building a deep learning model for medical image classification is
having enough labeled images to train the model. However, in most cases, these data are
not available. Therefore, through this hypothesis, we show the usefulness of training deep
learning models on unlabeled data. The goal of this procedure was to train the existing
filters in the convolution layers that are responsible for extracting features from images.
We trained two deep learning models (VGG16 and VGG19) from scratch using unlabeled
medical images in Dataset B, which were similar to the images of the lumbar spine. Then,
we used transfer learning from Dataset B to classify disc state in Dataset C. When training
only fully connected layers, we obtained the following results: 80.22% accuracy, 77.61%
precision, 97.55% recall, and an F1-Score of 85.25% in the VGG16 model; 85.71% accuracy,
85.00% precision, 92.73% recall, and an F1-Score of 88.70% in the VGG19 model. After we
used fine-tuning, we obtained 89.01% accuracy, 90.91% precision, 90.91% recall, and an
F1-Score of 90.91% in the VGG16 model; 87.91% accuracy, 90.74% precision, 89.09% recall,
and an F1-Score of 89.91% in the VGG19 model, as shown in Table 13.
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Table 13. Models with transfer learning from Dataset B (unlabeled data) for disc state classification.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

VGG16
Without Fine-Tuning 80.22 77.61 97.55 85.25

With Fine-Tuning 89.01 90.91 90.91 90.91
VGG19

Without Fine-Tuning 85.71 85.00 92.73 88.70
With Fine-Tuning 87.91 90.74 89.09 89.91

As we noticed in Table 14, the results improved in VGG16 4% and in VGG19 6%,
compared with TL from ImageNet. This is because the images in Dataset B are closer to
lumbar spine MRI than the images from ImageNet.

Table 14. Improvement rate after transfer learning from unlabeled data (Dataset B).

Models F1-Score for
TL from ImageNet (%)

F1-Score for
TL from Dataset B (%)

Improvement
Rate (%)

VGG16 87.00 90.91 4
VGG19 85.05 89.91 6

In some cases, the performance and F1-Score degraded, such as ResNet50 (in
Tables 6 and 7) and VGG19 (in Tables 8 and 9), because the target dataset (dataset C)
is dissimilar to the ImageNet dataset.

In Tables 11 and 12, VGG16 improved, but VGG19 improved little because VGG19
has more parameters than VGG16. So, it required more data than VGG16 to train these
large parameters.

In all tables, we depend on the F1-Score rather than accuracy as in Table 13; the
accuracy of VGG19 is quite higher than that of VGG16 without pretraining (80.22 and
85.71). However, the accuracy of VGG19 is even lower than that of VGG16 (89.01 and 87.91),
but we depend on F1-Score improvement because we have unbalanced classes.

5. Discussion

Deep learning algorithms have become one of the most popular methods and forms
of algorithms used to diagnose the LPB in the lumbar spine.

Our approach applies various training procedures to the many models (VGG16 and
VGG19) to classify the disc state. Most of the research for disc state classification used CNN
models. It is known that CNN models require large amounts of data for training. The most
critical challenge facing these models is the lack of data to train them. Collecting a large
amount of labeled data is very difficult, especially medical data. TL on many datasets used
to solve the lack of training data for lumbar spine classification.

We also used the Grad-CAM [49] visualization technique on deep learning models
(VGG16 and VGG19) for disc state classification to make these models more explainable.
In Grad-CAM, the last convolutional layer in the model is used to create heat maps.
The heat map for the last convolutional layer should show the model’s best accurate
visual description of the object. Figure 17 shows Grad-CAM using VGG16 for disc state
classification TL from ImageNet, Dataset A (labeled data), and Dataset B (unlabeled data).
As we note, there were some important differences when VGG16 TL is applied from
each dataset; the most significant regions in the image predicted better VGG16 TL from
unlabeled data than ImageNet. Moreover, in Figure 18, the most important regions in the
image predicted better VGG19 TL from unlabeled data than ImageNet.
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Figure 17. Grad-CAM visualization of features using VGG16 for disc state classification TL from
(a) ImageNet, (b) labeled data (Dataset A), (c) unlabeled data (Dataset B).
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Figure 18. Grad-CAM visualization of features using VGG19 for disc state classification TL from
(a) ImageNet, (b) labeled data (Dataset A), (c) unlabeled data(Dataset B).

6. Conclusions

This paper proposed a lumber spine disc classification approach using transfer learn-
ing. This approach can be highlighted into the following stages: (i) The application of
the novel selection method saved us a lot of time, as the selection process was performed
manually in the past. Now, this process is performed automatically, which accelerates the



Electronics 2022, 11, 85 25 of 27

process of building the dataset on the subject of the lumbar spine. (ii) The selected images
will be used in the classification process using the constructed FaLa. The expert used the
FaLa to classify the disc state. The FaLa made the classification process easier for experts.
Furthermore, FaLa enabled us to efficiently obtain the data in a digital form to complete the
classification process. (iii) Regarding the pre-processing stage, the proposed ROI applied
on images achieved better results when we applied it in disc state classification. In the
process of diagnosing images of lumbar spine discs, there were many shapes in the image
overlapping with the thing to be analyzed, such as the image of the intervertebral disc in
the case spinal cord stenosis diagnosis. (iv) Applying the proposed ROI method improved
the disc state classification results in VGG19 2%, ResNet50 16%, MobileNetV2 5%, and
VGG16 2%. (v) Three procedures and from-scratch training models were applied using two
datasets: Dataset A (16,441 labeled MRI images of brain tumors) and Dataset B (209,083
unlabeled MRI images of the lumbar spine and brain), and applied transfer learning from
ImageNet, Dataset A, and Dataset B increased the efficiency of the classification process
in Dataset C. (vi) The closer the data to be classified to the data that the system is trained
on, the better the results. (vii) If classified data are available in large numbers, it is better
than unclassified data. However, this is difficult to obtain, especially for medical images.
(viii) The results improved in VGG16 4% and in VGG19 6%, compared with transfers from
ImageNet. This is because the images in Datasets A and B were more similar to lumbar
spine MRI than the images from ImageNet.
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