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Abstract: In conventional adaptive variable step size (VSS) maximum power point tracking (MPPT)
algorithms, a scaling factor is utilized to determine the required perturbation step. However, the
performance of the adaptive VSS MPPT algorithm is essentially decided by the choice of scaling
factor. In this paper, a neural network assisted variable step size (VSS) incremental conductance
(IncCond) MPPT method is proposed. The proposed method utilizes a neural network to obtain an
optimal scaling factor that should be used in current irradiance level for the VSS IncCond MPPT
method. Only two operating points on the characteristic curve are needed to acquire the optimal
scaling factor. Hence, expensive irradiance and temperature sensors are not required. By adopting a
proper scaling factor, the performance of the conventional VSS IncCond method can be improved,
especially under rapid varying irradiance conditions. To validate the studied algorithm, a 400 W
prototyping circuit is built and experiments are carried out accordingly. Comparing with perturb and
observe (P&O), α-P&O, golden section and conventional VSS IncCond MPPT methods, the proposed
method can improve the tracking loss by 95.58%, 42.51%, 93.66%, and 66.14% under EN50530 testing
condition, respectively.

Keywords: neural network; variable step size; maximum power point tracking; incremental conduc-
tance method

1. Introduction

Solar power generation (SPG) has become one of the most valuable green energy
sources due to its advantages of cleanliness, safety, non-pollution, inexhaustibility, and
no need for rotating components in the process of assembly and operation. Moreover,
solar power generation systems (SPGSs) are also widely accepted and used in remote
areas because of their easy installation [1–3]. However, solar power generation systems are
expensive, and changes in irradiance level and ambient temperature will affect their power
output. Hence, many scholars have studied how to increase generation efficiency so that
these systems can output the maximum available power. Although numerous maximum
power point tracking (MPPT) methods have been proposed in the literature, the traditional
MPPT technologies, such as hill-climbing, the perturbation and observation method (P&O),
and the incremental conductance method (IncCond), are still the most easily implemented
and most widely used algorithms [4,5]. The main problem of the traditional MPPT methods
is the tradeoff of the perturbation step size (PSS) during the MPPT process because the PSS
has considerable effects on the tracking speed and steady-state oscillation of MPPT. If the
PSS is too small, the tracking speed will be too slow. On the other hand, if the PSS is too
large, the steady-state oscillation will be intensified.

In order to solve this problem, researchers have proposed many new MPPT algorithms
that can be applied in fast varying solar irradiance conditions and that have rapid tracking
speeds and low steady-state oscillation [6–27]. These methods can be divided into three
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categories as follows: (1) mathematical model based MPPT techniques, (2) two-stage MPPT
approaches, and (3) variable step size (VSS) MPPT methods. In the first category, Refs. [6,7]
estimates the maximum power point (MPP) location according to mathematical models,
Ref. [8] calculates MPP utilizing a fuzzy controller, Ref. [9] acquires MPP employing
extremum seeking control (ESC), Ref. [10] obtains MPP by using sliding mode control
(SMC), and Ref. [11] calculates MPP utilizing backstepping super-twisting sliding mode
control (BSTSMC). These techniques can achieve highly rapid tracking speed; however,
an accurate PV cell model and complex calculation are necessary. Regarding the second
category, mathematical analysis or numerical methods are utilized in the first stage to
move the operating point (OP) to the vicinity of real MPP; then a second stage is applied to
acquire the real MPP [12–14]. For these methods, Newton–Raphson method [12], the beta
method [13], and Lagrange interpolation formula [14] are employed in the first stage. In the
second stage, P&O [12,13], and particle swarm optimization (PSO) method [14] are adopted.
Similarly, complex calculations are needed for these methods. As for the third category,
MPPT methods use the distance between the current operating point (OP) and the MPP to
determine the PSS. Once OP is close to MPP, a small PSS is then applied, and vice versa.
VSS MPPT algorithms include the algorithms which uses many fixed steps according to
the operating points [15,16], and the adaptive variable step size algorithms [17–27] Among
these algorithms, the adaptive variable step size algorithm has received attention from
many researchers due to its advantages of simple calculation, easy implementation, and
easy integration with conventional methods such as P&O or IncCond. Among the adaptive
variable step size algorithms proposed in the literature, the PSS is determined by the ratio
of power to voltage (dP/dV) [17,19,22–24,27], the ratio of power to duty cycle (dP/dD) [18],
the ratio of power to current (dP/dI) [11], the ratio of current to duty cycle (dI/dD) [21], the
ratio of power to the difference between the voltage and the current (dP/(dV-dI)) [25], and
the power variation (dP) [26]. For these methods, the above variables must be multiplied by
scaling factors to obtain the PSS needed by the systems. In the literature mentioned above,
most of the scaling factors used are constants. However, suppose the same scaling factor is
used under all irradiance levels. In that case, the system performance will be optimal only
under a specific irradiance level and will be poor under other conditions and may cause
oscillation and/or slow tracking speed. Hence, in Ref. [24], (k1 − k2*P) was proposed to
adjust scaling factors automatically; however, the two constants of k1 and k2 must still be
determined in this method without ensuring the optimal values. In Ref. [26], two different
scaling factors were proposed for different irradiance levels (high level and low level). Still,
similarly, the system performance may be unable to be optimized under certain irradiance
levels if only two scaling factors are adopted. In conclusion, the scaling factor plays a
significant role in an adaptive VSS MPPT method; hence, it should be chosen carefully to
enhance the MPPT performance. However, it remains a challenging task to determine an
optimal scaling factor based on the operating conditions.

On the other hand, artificial neural network (ANN) has been widely applied to
estimate SPGS’s maximum power point [28–37]. The benefits of using ANN are that there
is no requirement for knowledge on accurate mathematical models, less computational
effort, and the capability of providing a compact solution for multivariable problems. ANN-
based MPPT techniques vary from several aspects, including (i) controller configuration,
(ii) required input signals, and (iii) output signals. In the controller configuration aspect,
Refs. [28,29] uses ANN as the controller to improve the performance of the conventional
PID controller; Refs. [30–37] utilizes ANN to estimate MPP. In the required input signals
aspect, most of the literature uses irradiance value and panel temperature as the ANN
input [30–34,37]. However, the measurement of irradiance and panel temperature requires
more expensive sensors, which may increase the system cost. Additionally, the accuracy
and robustness of these sensors are inferior. On the other hand, Ref. [30] uses open circuit
voltage (Voc) and short circuit current (Isc) as the ANN input, but the regular actions need to
be stopped when measuring Voc and Isc, which leads to power loss. Finally, Ref. [36] uses the
magnitude of a power variation (dP) and the magnitude of a voltage variation (dV) as the
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input. In the output signals aspect, common ANN output includes the corresponding duty
cycle value of the MPP (DMPP) [30], the corresponding current command value of the MPP
(IMPP) [31,33], the corresponding voltage command value of the MPP (VMPP) [32,33,35],
the power value of the maximum power point (PMPP) [34,37], and the tracking direction
command of the duty cycle [36]

In this study, an ANN-assisted MPPT method is proposed. The proposed method
utilizes a neural network to obtain an optimal scaling factor according to current irradiance
level using the measured voltage and current value of two consecutive perturbation points
as the ANN’s input. To the best of the authors’ knowledge, the proposed ANN architecture
has never been shown in the literature. Compared with the adaptive scaling factor method
proposed by [32], the proposed method does not require intensive simulations to gain
optimal scaling factor. It can also avoid the complicated calculation, which is required when
applying state estimation methods to calculate the irradiance level. The proposed method
has the advantages of easy implementation, simple calculation, and optimal performance
in a fast varying solar irradiance condition. The main novelty of the proposed MPPT
technique are listed below:

• An optimal scaling factor according to the operating conditions is applied in the
proposed VSS IncCond MPPT technique to obtain fast tracking response and reduced
steady-state oscillations

• It requires fewer voltage samples than other techniques to identify the optimal scaling
factor and hence enhances the tracking ability and dynamic efficiency.

• High-cost irradiance and temperature sensors are not needed comparing with other
ANN-based MPPT methods.

• The proposed method can be easily integrated into the conventional VSS IncCond
MPPT method, which improves its tracking performance

To verify the proposed MPPT method’s effectiveness, the proposed method is com-
pared with several MPPT methods suitable for fast-varying environments proposed in
other literature, including the VSS IncCond, α-P&O [33], and golden section [34] MPPT
methods. According to the simulation and experimental results, this proposed method has
the optimal tracking accuracy, and both tracking time and tracking loss are only preceded
by the golden section method in the uniform insolation conditions. When applied in the
varied insolation condition, the tracking time, tracking accuracy, and the overall tracking
loss of the proposed method are best among all the compared methods. When utilized
in the fast varying irradiation conditions, the proposed method is far superior to other
methods. As a result, to conclude from its overall performance, the proposed method has
great performance in different operating conditions.

2. Mathematical Modeling and Conventional Variable Step Size Incremental
Conductance MPPT Algorithm

In this section, the mathematical modeling of the solar cell will be presented first. Addi-
tionally, the description of conventional VSS IncCond MPPT method and some discussions
about the effect of the scaling factor on the MPPT performance will be provided.

2.1. Solar Cell Characteristics

This study uses the common single diode model to simulate the solar cell characteris-
tics; Figure 1 shows the solar cell model used by this study; through Figure 1, the relation
of output current and voltage can be expressed as below:

IT = Ig(S, T)− Is(T)
(

e
q(RS IT+VT )

KATN − 1
)
− RS IT + VT

RP
(1)

where q, K, T, and N are the electron charge (1.602 × 10−19 C), Boltzmann constant
(1.38065 × 10−23 J/K), panel temperature in Kelvin, and the number of cells connected in
series, respectively. Ig(S, T) is the photoelectric current for a certain solar irradiance level
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S (W/m2) and panel temperature T, and Is(T) is the reverse saturation current under a
specific panel temperature. A, RS, and RP are the diode ideality factor, equivalent series
resistance, and equivalent shunt resistances, respectively. Ig(S, T) and Is(T) can further be
expressed by

Ig(S, T) =
S

1000
× (ISC + αIsc · (T − T0)) (2)

IS(T) = C0 · T3 · e(−
Eg
KT ) (3)

where αIsc is the temperature coefficient of ISC, ISC stands for the short-circuit current
of the PV module, T0 is cell temperature under standard test condition (STC), C0 is the
temperature coefficient, Eg is the material bandgap. After formulating the relation of the
solar panel output voltage and current, the output power can be acquired by multiplying
the output voltage by the current. Figure 2 illustrates the characteristic curves of power
versus voltage and their absolute slope values under different irradiance levels of the solar
panels used in this study. In Figure 2, the slope of the P–V curve is defined as the derivative
of power to voltage (dP/dV).

Figure 1. Single diode equivalent circuit model of the solar cell.

Figure 2. Characteristic curves of the utilized JAM5(L)72-200/SI solar cell (a) P–V curves (b) absolute
slope of P–V curves.

2.2. Variable Step Size Incremental Conductance MPPT Algorithm

Conventional IncCond MPPT method uses fixed PSS to tack the MPP; however, al-
though larger PSS acquires faster tracking speed, the oscillation generated around MPP
decreases its tracking accuracy and increases the power loss. On the contrary, although
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smaller PSS can achieve higher tracking accuracy and lower power loss, it leads to slower
tracking speed. Therefore, how to make a tradeoff between tracking speed, tracking accu-
racy, and power loss is an essential problem in the conventional fixed PSS IncCond MPPT
method. Hence, the literature [9] proposed a VSS IncCond MPPT method to alleviate this
problem. In the VSS IncCond MPPT method, its PSS can be calculated through Equation (4).
It is generated by multiplying a scaling factor by a P–V curve slope value (dP/dV) of its
operating point (OP). As Figure 2 shows, the P–V curve slope value is larger when OP
is far from MPP; thus, a larger PSS can be taken to approach MPP. When OP approaches
MPP, the slope value becomes smaller. Moreover, when OP equals to MPP, the slope value
becomes 0. In this way, the steady-state oscillation can be minimized, thus achieving the
purpose of solving the tradeoff problem between tracking speed and tracking accuracy.

V(n+1) = V(n) ± M ·
∣∣∣∣ dP
dV

∣∣∣∣ (4)

In Equation (4), scaling factor M is usually a fixed value, and it can be further designed
in accordance with Equation (5). In Equation (5), |dP/dV|∆Vmax represents the maximum
slope when PSS is ∆Vmax under STC. However, as Figure 2 shows, the maximums of P–V
curve slopes are different under various irradiance levels; therefore, providing that in order
to reach the same ∆Vmax, the required optimal M values vary under different irradiance
level as well. When under high irradiance levels, a smaller M should be selected due
to the higher slope; when under low irradiance levels, a larger M should be picked. In
other words, a large value of M is beneficial for the tracking speed; however, it will result
in substantial oscillations around the MPP. In contrast, a small value of M can cause the
MPP tracking speed becomes slow. For different conditions, the required scaling factor is
different, which limits the universality of the method.

N < ∆Vmax/
∣∣∣∣ dP
dV

∣∣∣∣
∆Vmax

(5)

Therefore, to ensure the VSS IncCond MPPT method has the optimal tracking speed,
tracking accuracy, and power loss under each irradiance levels, this study proposed an
improved VSS IncCond MPPT method to select the most appropriate scaling factor for the
current operating environments. This study uses ANN to conduct the calculation of the
optimal scaling factor; the design and implementation of ANN will be explained in the
next section.

3. Description of the Proposed Method

The skill proposed by this study firstly uses ANN to estimate the optimal scaling
factor (OSF) that should be used in current irradiance levels, then using VSS IncCond
MPPT method to track the maximum power point. This section will first introduce the OSF
estimation method implemented by ANN and the way to conduct VSS IncCond MPPT by
using the estimated OSF.

3.1. Neural Network Design and Implementation

Neural network builds mathematical models by imitating the data processing of
biological neural network, using a neural network can simulate the system behaviors,
which are complicated and not easy to model, without the premise of precise mathematical
models; a typical artificial neural network mathematical model is composed of several
neurons, as Figure 3 illustrates. The relation between the neuron’s input and output is
shown in Equation (6); it is an output gained by multiplying the input by weight and sums
then converts through an activation function. The so-called neural network training means
to meet the expected output by modifying weights and bias. During training, ANN usually
generates initial weight values between +1 and −1 randomly. The weights function is
similar to the effect of synapsis; if the weights are larger, the connected neurons will be



Electronics 2022, 11, 43 6 of 20

activated easily, then the impact on the network becomes more evident; on the contrary,
there will be a smaller impact on the neural network when the weights are smaller.

Y = ∑ WiXi − b (6)

where X, W and b are input, weight and Bias, ∑ is summation, and f is activation function,
its objective is to map the Σ value to the corresponding output, Y is output, the users’
expected results, i should be in the range of [1, n], where n is the size of input data.

Figure 3. Concept of neurons.

This study uses a back-propagation neural network; its architecture can be divided
into Input Layer, Hidden Layer, and Output Layer. Input Layer is composed of single or
multiple neurons; the number of input neurons is related to the problems to be solved.
Hidden Layer is a single or multiple layer neurons between Input Layer and Output Layer;
its purpose is to represent the nonlinear relation between input and output. Hidden Layer’s
configuration should be decided based on the complexity of the problems; however, there
is currently no standard method to determine the configuration of Hidden Layer; a better
setting value is usually acquired through multiple tests. Output Layer is the ANN’s output;
likewise, the number of output neurons is related to the problems.

Figure 4 shows a schematic diagram of the proposed OSF estimation neural network
architecture, and is explained as follows. This study designed a four-layered neural network
architecture, which includes one Input Layer, two Hidden Layers, and one Output Layer,
respectively. The neural network input parameters used by this study are two solar cell
operating voltages V(t), V(t) + ∆V, and the power change ∆P measured by these two
consecutive perturbations; ∆P is defined as P(V(t) + ∆V)−P(V(t)); the output parameter
is the OSF; the two Hidden Layers contains 10 neurons respectively, and the activation
function is Tansig, as shown in Equation (7). Levenberg–Marquardt method is used as the
training method in this study.

y(n) =
en − e−n

en + e−n = Tansig(n) (7)
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Figure 4. ANN architecture for estimating OSF value proposed in this study.

The accuracy of the neural network is directly related to the completeness of the
training set. In the following, the method of generating the training set of the proposed
neural network will be described in detail. First, set the irradiance level as 100 W/m2; then
initialize the voltage as 0 V; after that, in every interval of ∆V, the voltage values of the
previous and current points, as well as the power difference between these two points, need
to be calculated as the neural network input; Matlab is then used to conduct the simulation
of IncCond method to find out the OSF value under this irradiance level, and the obtained
OSF is then utilized as the output parameter of the ANN. When the operating voltage
reaches the VOC under certain irradiance level, adds 100 W/m2 to the irradiance level and
sets the voltage to the initial value, 0 V. This procedure should be conducted repeatedly
until the irradiance level reaches 1000 W/m2. This study uses 0.1 V for ∆V; therefore, a
total of 16,691 training data can be obtained. Additionally, this study acquires a total of
2630 verification data under the simulated irradiance level of 210 W/m2, 510 W/m2, and
810 W/m2.

3.2. Flow Chart of Proposed ANN-Assisted VSS IncCond MPPT Algorithm

The conventional VSS IncCond MPPT algorithm has advantages in high tracking
speed, high accuracy, low tracking loss, etc. However, the fixed scaling factor makes its
performance significantly decrease when irradiance level changes; therefore, this study
proposed an ANN-assisted VSS IncCond MPPT algorithm. Figure 5 is the flow chart of the
proposed method, and the dashed line part in this figure is the conventional VSS IncCond
MPPT method. As Figure 5 implies, the proposed method will first generate the two
OPs—V(t), and V(t) + ∆V, then record its voltage and current information; next, input
V(t), V(t) + ∆V, and the power change ∆P to the trained ANN to obtain the OSF of current
irradiance level; then conduct the VSS IncCond MPPT method by using this scaling factor
value. When the irradiance level changes, the system should still operate the two OPs to
estimate the new OSF value. This study selects the OSF based on the trained ANN, which
can ease the scaling factors tradeoff problem. The proposed method has advantages in high
tracking speed, non-steady-state concussions, etc. under any circumstances.
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Figure 5. Flow chart of the proposed ANN-assisted VSS IncCond MPPT Algorithm.

4. Simulation and Experimental Results
4.1. Performance Index (PI)

To fairly evaluate and compare the test results of different tracking methods, a per-
formance index (PI) is defined in this study. Figure 6 is a typical MPP tracking response.
The criterion defined for each measured item illustrated in Figure 6 is described as follows:
(1) Tracking time (Tr): the time required for the tracking power increases to 95% of maxi-
mum power; (2) Steady-state tracking accuracy (Acc): dividing the Steady-state average
power by the specific MPP; (3) Tracking energy loss (Loss): the shaded area as shown in
Figure 6. It records the power for a pre-set duration and takes the absolute value of the
MPP value minus the tracked power value.

Figure 7 shows the block diagram of the proposed MPPT system; this study uses
MATLAB/SIMULINK to establish a simulation platform. To verify the superiority of the
proposed method, this method compared the tracking performance with four methods
proposed in the literature, including conventional perturb and observe (P&O) method, con-
ventional VSS IncCond approach [18], alpha-perturb and observe (α-P&O) techniques [38],
and golden section (GS) method [39]. In P&O, a small voltage perturbation changes the
solar panel’s power. Providing that the power variation is positive, voltage perturbation
remains in the same track. However, if power difference is negative, the perturbation
direction will be reversed. The concepts of α-P&O method and the conventional P&O
technique are similar, which continuously perturbs around the MPP. Unlike conventional
P&O, the perturbation step of α-P&O gradually decreases until it reaches the minimum
step allowed by the system. The golden section method converges to the MPP by interval
shrinking. In the beginning, two points are chosen from the search space with known
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boundaries, and the two points will be assessed. Then, a new point is generated accordingly.
At a given iteration, the algorithm has a new narrowed interval bounded by the new point
as well as one of the initial points based on the evaluation results. The algorithm keeps
iterating (interval shrinking) until the interval becomes small enough. The parameters
used by the simulation are shown in Tables 1 and 2; the simulation results are shown in
Figure 8 and Table 3. Figure 8 is the tracking waveforms of each compared method in a
total simulation time of 1 s under the irradiance level of 500 W/m2; Table 3 lists the tracking
performances of each different method in a total simulation time of 1 s under the irradiance
level of 100–1000 W/m2 (100 W/m2 in each interval, ten kinds in total). In Table 3, the light
red parts indicate the methods with the best PI under a single test condition; the methods
with the worst PI are marked in light green. As Figure 8 and Table 3 show, the P&O method
uses a larger PSS to attain a shorter dynamic tracking time, which results in a steady-state
oscillation, making its average tracking accuracy below 98%; tracking loss above 30 W. As
the conventional VSS IncCond method uses a constant M value that is suitable only to the
irradiance level of 1000 W/m2, it has a slower tracking speed under other irradiance levels.
Moreover, the tracking accuracy is even below 60% under 100 W/m2 because it did not
reach a steady state at the end of the test. The other three methods’ performances are close
to each other on the three performance indexes. Moreover, GS has the best performance in
the average tracking time; the proposed method and the α-P&O are the second, but the
differences are not evident. The proposed method has the best performance with 99.91%
in the average tracking accuracy; followed by 99.26% in GS and 98.97% in α-P&O. Lastly,
as GS can reach steady-state more rapidly, it has the best performance with 14.45 W in
its average tracking loss, followed by 21.97 W in the proposed method and 27.96 W in
α-P&O. Regarding to Table 3, the proposed method has the best performance of the tracking
accuracy under each irradiance level. As for tracking speed, the proposed method and GS
lead one another alternately. Moreover, the proposed method is inferior to GS in terms of
tracking loss.

Figure 6. Tracking response of the MPPT operation.
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Figure 7. Block diagram of the proposed MPPT system.

Table 1. Parameters of the utilized boost converter.

Parameters Boost Converter

Switching frequency 50 kHz
Sampling time 0.1 s
Input inductor 1.08 mH

Switches IPP65R110CFDA
Filter capacitor 100 µF

Table 2. Specification of the utilized PV Module.

Parameters Value

Maximum PV Power 400 W
Voltage at MPP 74.22 V
Current at MPP 5.39 A

Open circuit voltage, Voc 91.38 V
Short circuit current, Isc 5.69 A

Note: Irradiance 1000 W/m2 and module temperature 25 ◦C.

Figure 8. Simulated tracking waveforms of five compared MPPT methods (500 W/m2).
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Table 3. Simulated results of five compared MPPT methods under uniform insolation condition.

Irradiance P&O α-P&O GS VSS Proposed

100

Tr (s) 0.26 0.26 0.26 >1 (1.96) 0.26

Acc (%) 95.51 98.52 95.51 59.04
(99.33) 99.92

Loss (Ws) 4.9 4.07 2.35 22.18 2.99

200

Tr (s) 0.28 0.28 0.28 >1 (1.06) 0.28

Acc (%) 97.95 99.32 99.8 92.13
(99.18) 99.84

loss (Ws) 9.29 8.49 4.63 33.96 6.69

300

Tr (s) 0.28 0.28 0.26 0.78 0.28

Acc (%) 95.61 98.43 99.9 99.14 99.9

loss (Ws) 16.68 14.23 7.17 37.52 0.69

400

Tr (s) 0.28 0.28 0.24 0.62 0.28

Acc (%) 97.23 99.08 99.84 99.63 99.91

loss (Ws) 21.12 18.94 9.93 40.1 14.89

500

Tr (s) 0.28 0.28 0.3 0.48 0.28

Acc (%) 97.88 99.76 97.88 99.43 99.97

loss (W) 26.17 23.85 13.71 42.38 19.24

600

Tr (s) 0.28 0.28 0.28 0.44 0.28

Acc (%) 98.1 99.44 99.93 99.8 99.86

loss (Ws) 31.71 29.29 15.77 44.47 23.72

700

Tr (s) 0.3 0.3 0.3 0.4 0.3

Acc (%) 98.12 99.26 99.9 99.83 99.84

loss (Ws) 37.67 35.22 18.57 46.44 28.28

800

Tr (s) 0.3 0.3 0.3 0.34 0.3

Acc (%) 97.99 98.88 99.93 99.83 99.95

loss (Ws) 43.97 41.85 21.28 48.32 32.96

900

Tr (s) 0.3 0.3 0.3 0.32 0.3

Acc (%) 95.33 98.43 99.94 99.91 99.94

loss (Ws) 57.39 49.01 24.11 50.14 37.71

1000

Tr (s) 0.3 0.3 0.24 0.3 0.3

Acc (%) 96.10 98.6 99.94 99.89 99.94

loss (Ws) 62.22 54.65 27.02 53.34 42.53

Average
Tr (s) 0.29 0.29 0.28 0.46 0.29

Acc (%) 97.08 98.97 99.26 94.86 99.91

loss (Ws) 31.11 27.96 14.45 41.89 21.97
Note: the light red parts indicate the methods with the best PI under a single test condition; the methods with the
worst PI are marked in light green.

In this study, the optimal scaling factors for different irradiance level are obtained
via intensive simulations. To fairly evaluate and compare the acquired results of different
scaling factor values, tracking energy loss (Eloss) is utilized as performance index in this
study. Tracking energy loss is adopted because it can simultaneously take the tracking
time and steady-state tracking accuracy into account. Figure 2 shows a typical tracking
response of one MPP tracking curve under certain irradiance level and panel temperature.
The tracking energy loss in this study is defined as the area between the exact MPP and the
power tracking curve within a certain time interval, as shown in the shaded part of Figure 2.
To take both transient and steady-state responses into account, the total simulation time
was set as 10 s. This study simulated 10 possible operating conditions (10 irradiance levels
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(100–1000 W/m2) with the interval 100 W/m2 under constant panel temperature (25 ◦C)).
In this study, the range of tested scaling factor is 0.1–10.0. With the interval of 0.01, there
are 990 possible scaling factor values and the scaling factor with the best tracking energy
loss under 10 different operating conditions will be recorded. The parameters used for the
simulations are as detailed in Tables 1 and 2, the obtained optimal scaling factor values are
listed in Table 3.

Figure 8 and Table 3 summarize the test results under the uniform insolation condition;
however, a typical SPGS is often subjected to irradiance change. Therefore, this study
focuses on the irradiance change in Figure 9 next to conduct MPP tracking with these
five different MPPT methods mentioned previously and illustrate the acquired tracking
waveforms into the same figure for comparison. The calculated tracking time, tracking
accuracy, and tracking loss of each method in each section are listed in Table 4. In Figure 9,
the irradiance change is listed as following: 515 W/m2 from 0 to1 s; 1000 W/m2 from
1 to 2 s; 325 W/m2 from 2 to 3 s. As Figure 9 and Table 4 show, the P&O method’s steady-
state oscillation makes it perform the worst in tracking accuracy and tracking loss. Similarly,
as VSS does not utilize the optimal scaling factor value for each irradiance level, a longer
tracking time is observed in the first step, which results in higher tracking loss.

Figure 9. Simulated tracking waveforms of five compared MPPT methods under varying irradiation
condition.

Table 4. Simulated results of five compared MPPT methods under varying irradiation condition.

Irradiance P&O α-P&O Golden VSS Proposed

515
Tr (s) 0.28 0.28 0.29 0.48 0.28

Acc (%) 98.86 99.5 99.71 99.69 99.87

1000
Tr (s) 0.72 0.72 0.23 0.06 0.04

Acc (%) 95.97 99.13 97.45 99.8 99.94

325
Tr (s) 0.55 0.55 0.22 0.04 0.01

Acc (%) 99.17 99.59 99.8 99.9 99.91

Average Tr(s) 0.52 0.52 0.25 0.19 0.11

Average Acc(%) 98.00 99.41 98.99 99.80 99.91

Total Loss(Ws) 49.06 28.94 48.65 44.89 27.97
Note: the light red parts indicate the methods with the best PI under a single test condition; the methods with the
worst PI are marked in light green.
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It is notable that when the irradiance level varies, α-P&O needs to adjust the PSS
back to the maximum, and GS needs to restart tracking procedures. These facts result in
slower tracking speed and higher tracking loss. Particularly, as the variation of the voltage
command is large when GS restarts tracking process, the average tracking loss increases
significantly, only preceded by P&O. As Table 4 indicates, in comparison with P&O, the
proposed method improves tracking speed by 78.84%, tracking accuracy by 1.94%, and
tracking loss by 42.98% on average under the tested scenario. In comparison with α-P&O;
it improves the tracking speed by 78.84%, tracking accuracy by 0.5%, and tracking loss by
3.35%. In contrast with GS, it improves the tracking speed by 56%, tracking accuracy by
0.92%, and tracking loss by 42.5% on average. In comparison with VSS, it improves tracking
speed by 42.1%, tracking accuracy by 0.11%, and tracking loss by 37.69% on average.

Lastly, this study focuses on the tracking performance when there is fast change in
irradiation. Figure 10 shows the simulated results of the proposed method, and Table 5
indicates the total loss. In Figure 10, the simulated scenario are listed as following: the
irradiance level is 300 W/m2 from 0 to 3 s; the irradiance level increases by 100 W/m2 every
1 s from 3 to 9 s until it reaches 1000 W/m2; the irradiance level is fixed as 1000 W/m2 from
9 to 19 s; the irradiance level decreases by 100 W/m2 every 1 s to 300 W/m2 from 19 to
25 s; the irradiance is set as 300 W/m2 from 25 to 35 s; this is the testing condition with the
fastest irradiance change in EN 50530:2010 standard [35]. As Table 5 shows, the steady-state
oscillation of P&O makes its tracking loss greater than 331 W as the worst of all; GS needs
to restart tracking procedure due to irradiance change; therefore, its tracking loss reached
247 W. These two values are much higher than those of the other three compared methods.
As Table 5 implies, in the tracking loss aspect, compared with P&O, α-P&O, GS, and VSS,
the proposed method can improve by 95.46%, 41.73%, 93.92%, and 67.56%, respectively.

Figure 10. Tracking waveforms of the proposed method under EN50530 test condition.

Table 5. Simulated results of five compared MPPT methods under varying irradiation conditions.

P&O α-P&O Golden VSS Proposed

Total loss (Ws) 331.34 25.78 247.37 46.31 15.02
Note: the light red parts indicate the methods with the best PI under a single test condition; the methods with the
worst PI are marked in light green.
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4.2. Experimental Result

To further verify the correctness of the proposed method, this study also carries out
experiments on these five MPPT method mentioned above. In this paper, a 400 W prototyp-
ing circuit is implemented from which experiments are carried out accordingly. Figure 11
shows a photo of the proposed system. In Figure 11, a low-cost DSP TMS320F280049 from
Texas Instruments (Dallas, TX, USA). is used to realize the MPPT algorithms mentioned
above.

Figure 11. Experimental setup and the testing environment.

The experiments are performed with an AMETEK TerraSAS DCS80-15 solar array
simulator(San Diego, CA, USA) in SAS mode as a power source. The parameter used in the
experiment is identical to the ones used in the simulation. Figure 12 and Table 6 illustrates
the tracking performance of these five MPPT methods under the uniform insolation condi-
tion; Figure 13 and Table 7 shows the tracking performance of these five MPPT methods
under varying irradiation condition; Figure 14 shows the tracking waveform of the pro-
posed method under the EN50530 testing condition, and Table 8 summarizes the tracking
performance of each method in the EN50530 testing condition. As Figures 12–14 show, the
obtained experimental results is similar to the ones acquired from the simulation, proving
the accuracy of the simulated results. As Table 6 shows, similarly, P&O possesses the worst
average tracking accuracy and tracking loss under the uniform insolation conditions. Since
conventional VSS IncCond MPPT method does not adopt OSF according to irradiance
levels, it has a slow tracking speed and poor tracking accuracy in the low irradiance levels.
The other three methods’ performances are close to each other on the three performance
indexes; likewise, GS has the best performances in terms of average tracking time and
average tracking loss; the proposed method outperforms others in the average tracking
accuracy aspect. As Table 7 indicates, in the tested irradiance change environments, in
comparison with P&O; the proposed method improves tracking speed by 78.84%, tracking
accuracy by 1.58%, and tracking loss by 45.59% on average; compared with α-P&O; it
enhances the tracking speed by 78.84%, tracking accuracy by 0.9%, and tracking loss by
6.67% on average; in contrast with GS, it improves the tracking speed by 56%, tracking
accuracy by 0.53%, and tracking loss by 45.3% on average; in comparison with VSS, it
enhances tracking speed by 42.1%, tracking accuracy by 0.01%, and tracking loss by 34.49%
on average. As Figure 8 illustrates, in the tracking loss aspect under the EN50530 testing
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condition, compared with P&O, α-P&O, GS, and VSS, the proposed method can improve
by 95.58%, 42.51%, 93.66%, and 66.14%, respectively.

Figure 12. Experimental tracking waveforms of five compared MPPT methods (500 W/m2).

Figure 13. Experimental tracking waveforms of five compared MPPT methods under varying
irradiation condition.
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Table 6. Experimental results of five compared MPPT methods under uniform insolation condition.

Irradiance P&O α-P&O GS VSS Proposed

100

Tr (s) 0.26 0.26 0.27 >1 (2.13) 0.26

Acc (%) 96.41 97.57 95.98 58.66
(96.89) 97.66

Loss (Ws) 4.84 3.98 2.27 20.66 2.79

200

Tr (s) 0.29 0.29 0.28 >1 (1.18) 0.29

Acc (%) 96.72 97.03 97.57 91.67
(97.15) 97.60

loss (Ws) 8.45 7.81 4.59 32.40 6.37

300

Tr (s) 0.28 0.28 0.26 0.74 0.28

Acc (%) 95.43 96.62 97.21 97.00 97.38

loss (Ws) 15.47 13.12 6.64 34.22 9.28

400

Tr (s) 0.28 0.28 0.24 0.62 0.28

Acc (%) 96.40 98.60 97.16 98.76 99.14

Loss (Ws) 19.72 17.57 9.55 38.86 14.50

500

Tr (s) 0.26 0.26 0.3 0.46 0.26

Acc (%) 97.74 99.5 98.7 99.7 99.7

loss (Ws) 25.01 22.86 12.88 42.37 18.67

600

Tr (s) 0.27 0.27 0.27 0.42 0.27

Acc (%) 96.88 98.42 97.66 98.93 99.37

Loss (Ws) 31.00 28.66 14.41 44.03 22.38

700

Tr (s) 0.29 0.29 0.31 0.40 0.29

Acc (%) 97.03 97.83 98.92 99.18 99.21

loss (Ws) 35.26 33.10 17.69 45.04 27.14

800

Tr (s) 0.30 0.30 0.31 0.33 0.30

Acc (%) 97.22 97.68 98.10 98.35 99.30

loss (Ws) 40.42 41.95 20.42 47.13 31.02

900

Tr (s) 0.31 0.31 0.30 0.33 0.31

Acc (%) 95.91 97.25 98.60 99.06 99.41

loss (Ws) 53.95 45.32 22.37 49.86 36.80

1000

Tr (s) 0.31 0.31 0.23 0.31 0.31

Acc (%) 95.86 98.44 98.79 99.26 99.48

Loss (Ws) 57.75 54.29 24.72 49.66 39.62
Note: the light red parts indicate the methods with the best PI under a single test condition; the methods with the
worst PI are marked in light green.

Table 7. Experimental results of five compared MPPT methods under varying irradiation condition.

Irradiance P&O α-P&O Golden VSS Proposed

515
Tr (s) 0.28 0.28 0.29 0.48 0.28

Acc (%) 98.16 98.82 99.7 99.95 99.95

1000
Tr (s) 0.73 0.73 0.23 0.06 0.04

Acc 98.72 99.22 99.90 99.97 99.98

325
Tr (s) 0.55 0.55 0.22 0.04 0.01

Acc 98.41 99.07 99.44 99.97 99.97

Average Tr(s) 0.52 0.52 0.25 0.19 0.11

Average Acc(%) 98.41 99.07 99.44 99.96 99.97
Note: the light red parts indicate the methods with the best PI under a single test condition; the methods with the
worst PI are marked in light green.
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Figure 14. Experimental tracking waveforms of the proposed method under EN50530 test condition.

Table 8. Experimental results of five compared MPPT methods under EN50530 test condition.

P&O α-P&O Golden VSS Proposed

Total loss (Ws) 376.45 28.93 262.65 49.12 16.63
Note: the light red parts indicate the methods with the best PI under a single test condition; the methods with the
worst PI are marked in light green.

4.3. Discussion

Table 9 shows the average performance indices rankings of the simulation and exper-
imental data of the five methods compared in this study under the three test scenarios.
From Table 9, it can be observed that except for the ranking of the tracking accuracy of the
GS method drops slightly, which is because the simulation platform adopts the floating
point format while the experimental platform adopts the fixed point format, the rankings
of the data acquired in the simulation and experiment of the other methods are the same on
the performance indices. From the comprehensive ranking of the data in Table 9, it can be
known that for uniform insolation condition, since the GS method adopts the segmented
search method, it can rapidly track to the vicinity of the MPP with larger PSS. Therefore,
its tracking speed and tracking loss are the best among the five methods. In contrast, con-
ventional VSS IncCond MPPT ranks last on all of the performance indices since it cannot
adopt the optimal scaling factor according to the current irradiance level, leading to a long
tracking time under low irradiance circumstances. On the other hand, the method proposed
in this study ranks first in tracking accuracy and ranks second in both tracking speed and
tracking loss. Therefore, the GS method and the proposed method can be regarded as the
most applicable of the five compared methods under uniform insolation conditions. On the
contrary, conventional VSS IncCond MPPT is less applicable among the five methods. In
terms of the varying irradiation condition and EN50530 test condition, since GS must restart
the tracking mechanism when the irradiance varies, its tracking accuracy and tracking
loss become worse; also, this phenomenon becomes more obvious when the irradiance
varies more frequently. On the other hand, the conventional P&O method has the worst
performance in tracking accuracy and tracking loss among the five methods since it adopts
larger PSS, which leads to an obvious steady state oscillation phenomenon. Relatively, the
proposed method ranks first in each performance index since it can effectively converge
to MPP due to the VSS method. Additionally, it employs ANN to calculate the optimal
scaling factor according to the irradiance level. In summary, the proposed method can be
regarded as the most suitable method among the five methods under the varying irradiance
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circumstances. On the contrary, the GS and conventional P&O methods are less suitable
among the five methods.

Table 9. Rank of the performance indices of the simulated and experimental results for the five
compared methods.

Insolation
Condition

Simulated Results (Rank) Experimental Results (Rank)

P&O α-P&O Golden VSS Proposed P&O α-P&O Golden VSS Proposed

Uniform

Tr 2 2 1 5 2 2 2 1 5 2

Acc 4 3 2 5 1 4 2 3 5 1

loss 4 3 1 5 2 4 3 1 5 2

Varying
Tr 4 4 3 2 1 4 4 3 2 1

Acc 5 3 4 2 1 5 4 3 2 1

Total
loss 5 2 4 3 1 5 2 4 3 1

EN50530 Total
loss 5 2 4 3 1 5 2 4 3 1

Note: the light red parts indicate the methods with the best PI under a single test condition; the methods with the
worst PI are marked in light green.

5. Conclusions

A neural network assisted VSS IncCond MPPT method with adaptive scaling factor
for rapidly irradiance changing conditions is proposed in this study. Using any two oper-
ating points on the characteristic curves, an optimal scaling factor cam be acquired using
the proposed neural network to enhance the performance of conventional VSS IncCond
MPPT technique. Experimental results show that the proposed method performs well
both under varying irradiance condition and EN50530 testing conditions. Comparing with
P&O, α-P&O, golden section and conventional VSS IncCond MPPT methods, the aver-
aged tracking time/total tracking loss can be improved by 78.84%/45.59%, 78.84%/6.67%,
56.00%/45.30%, and 42.10%/39.49% under the tested varying irradiance condition. In addi-
tion, the proposed method can achieve the highest averaged tracking accuracy. Moreover,
the tracking loss can be reduced by 95.58%, 42.51%, 93.66%, and 66.14% under EN50530
testing condition. The significant contribution of this study is that fast and accurate tracking
can be accomplished without the demand for extra expensive irradiance and temperature
sensors. The proposed method is uncomplicated; it can be integrated effortlessly into
conventional VSS IncCond MPPT algorithms, allowing the developed MPPT solution to be
more applicable for solar generation system applications.
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