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Abstract: This research proposes an optimization technique for an integrated energy system that
includes an accurate prediction model and various energy storage forms to increase load forecast
accuracy and coordinated control of various energies in the current integrated energy system. An
artificial neural network is utilized to create an accurate short-term load forecasting model to effec-
tively predict user demand. The 0–1 mixed integer linear programming approach is used to analyze
the optimal control strategy for multiple energy systems with storage, cold energy, heat energy, and
electricity to solve the problem of optimal coordination. Simultaneously, a precise load forecasting
method and an optimal scheduling strategy for multienergy systems are proposed. The equipment
scheduling plan of the integrated energy system of gas, heat, cold, and electricity is proposed after
researching the operation characteristics and energy use process of the equipment in the combined
power supply system. A system economic operation model is created with profit maximization in
mind, while also taking into account energy coordination between energy and the power grid. The
rationality of the algorithm and model is verified by analyzing the real data of a distributed energy
station in Wuhan for two years.

Keywords: integrated energy system (IES); accurate prediction model; 0–1 mixed integer linear
programming; economic optimization operation; energy storage

1. Introduction

Energy scarcity is a major concern for the world today. The increasing use of fossil
energy contributes to a number of environmental issues, including global warming and
environmental devastation [1,2]. On the one hand, governments around the world are
actively researching new energy sources to replace fossil fuels [3]. On the other hand, as
science and technology advance, the number of different types of power facilities and the
share of renewable energy in the energy supply grows by the day, and the types of energy
supply in the power system diversify [4]. Due to the uncertainty of various forms of user
loads, the system must be adjusted, and energy generation and storage must be altered
in accordance with user needs. Multienergy complementarity can enable peak and valley
filling of energy supply while also providing the most economic gain. As a result, it is
critical to develop a integrated energy system. The randomness of the energy supply side
is increased and controllability is reduced as a result of the construction of a large number
of integrated energy systems [5]. As a result, it is vital to expand the demand analysis of
various energy sources and the schedule analysis of each piece of equipment, with the
creation of a regional integrated energy system being particularly important [6,7].

At the moment, integrated energy system research is mostly focused on system an-
alytic modeling and optimal scheduling. Many academics conducted extensive research
on integrated energy systems. In terms of the structure of an integrated energy system,
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literature [8] presents a system model that takes into account electrical and thermal load and
establishes a multiobjective operation optimization method with economic gain and com-
prehensive energy efficiency as the goal function. The literature [9] established a planning
model for an electric-hydrogen integrated energy system (EH-IES) and investigated the
system’s optimal scheduling. Literature [10,11] provides a multienergy complementarity-
based complete demand response strategy, although it is confined to combined thermo-
electric dispatching. Literature [12] investigates the grid-connected structural strategy of
a distributed photovoltaic energy storage system. In terms of optimal scheduling, the
literature [13] offered a two-stage optimal operating technique for the integrated energy
system, which includes cold, heat, and electricity. The literature [14] proposes a two-layer
optimal scheduling technique for community integrated energy systems (CIES) and elec-
tric vehicle charging stations (EVCS). The MILP algorithm is used in the literature [15] to
investigate the optimal scheduling strategy of an integrated energy system with CCHP
and wind power generation. The literature [16] proposed an optimization approach for
an integrated energy system that takes into account demand responsiveness and thermal
comfort, and it used the NSGA-II algorithm for this system’s optimization study.

Constructing an accurate prediction model is a critical component of developing an
integrated energy system. Peak load reducing and valley filling can be accomplished
by developing a accurate load prediction model [17]. It can not only fulfill peak energy
demand while lowering production costs, but it can also decrease system capacity [18].
Literature [19–21] investigates the optimization of a distributed integrated energy sys-
tem and chooses a typical day in different seasons to maximize the system results. The
literature [20] has explored the impact of energy storage on the operation of an integrated
energy system in various grid-connected modes, but only typical day load is addressed,
making usage in the actual system impractical. The author identified a typical summer
day as an appropriate regional scheduling scheme for optimal scheduling of multienergy
systems in reference [22]. The literature [23] outlines modern energy system modeling,
and current user-side prediction modeling mostly focuses on power prediction. Wind
power generation and solar power generation are forecasted in the literature [24–26] by
developing an accurate power prediction model.

The majority of the previous research focused on the optimal scheduling of integrated
energy systems. Typical daily data are utilized to anticipate loads for optimization, or
real-world data are used directly for analysis without an exact load prediction. At the
moment, the integrated energy system prediction research focus is on the power forecast
of new energy generation equipment and the power system user load prediction. Other
types of energy load prediction research are currently in short supply. At the same time,
the current integrated energy system makes use of a limited number of energy types and
energy storage forms [27].

Based on this, this work addresses both optimization scheduling and load prediction in
the integrated energy system, and incorporates various types of energy storage to increase
the economic optimization scheduling interval and provide more operation scenarios.
Based on short-term load forecasting, a day-to-day optimal scheduling method for a multi-
energy microgrid with energy storage is proposed. The user load of diverse energy types
can be properly predicted by developing an accurate load prediction model. The MILP
model of the integrated energy system was built with the optimization of comprehensive
income as the goal function, taking into account the interaction between diverse energy
sources and the power grid, multienergy coordination, and dynamic balance. Finally, using
a specific example, this research analyzes the actual situation and data of a park in Wuhan,
and confirms the feasibility and economy of the proposed model and optimization tech-
nique. Unlike traditional research, the algorithm model developed has practical application
value and can be immediately applied to the prediction and optimization of actual energy
stations [28].

The contributions of this paper are summarized as follows:
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(1) An accurate model of the user’s cooling, heating, and electrical load is established,
laying the groundwork for system optimization to follow.

(2) In the integrated energy system, consider additional types of energy, solve the
coupling problem of different types of energy, add more types of energy storage, and
broaden the optimization range.

(3) A comprehensive energy system optimization strategy based on precise load predic-
tion is proposed by merging prediction and control. This strategy improves the feasibility
of optimal scheduling results and can be used to practical projects when compared to
traditional typical daily optimization.

2. System Description

Figure 1 depicts a typical multienergy system, which includes both production equip-
ment and energy storage equipment. The main chemical energy into electricity and gas
energy input, energy conversion process equipment used primarily for two miniature gas
internal combustion engines, two flue gas type lithium bromide units, three sets of cen-
trifugal water chilling unit, lithium bromide unit including waste heat recovery equipment.
Because of the substantial difference in cooling and heating, the two modules are modeled
separately in the future modeling of the lithium bromide unit Figure 1.

Figure 1. System block diagram.

The scheduling techniques of determining electricity by heat and determining heat
by electricity, as well as the scheduling method of adding cold and heat storage, are all
considered in this study. Because of the addition of a cold and thermal energy storage tank,
storage can be done ahead of time in the scheduling process based on the user’s cold and
heat demand, reducing the start and stop or dispatching times of the internal combustion
engine and lithium bromide unit. Adding several energy storage devices can expand the
integrated energy system’s scheduling scope, changing the current situation where the
system can only be optimized by changing the production equipment’s output. This update
expands the scheduling options for the integrated energy system Figure 2.
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Figure 2. Energy flow diagram of system.

3. Methodology
3.1. Equipment Modeling Analysis

To tackle the integrated energy system optimization problem, it is important to model
the energy system’s production and storage equipment. The system scheduling is optimized
using the mathematical model. This study establishes the mathematical model of the
equipment and the revenue model of some equipment based on the equipment presented
in the previous section.

(1) Gas Internal Combustion Generator
The waste heat from an internal combustion engine is made up of three basic compo-

nents. The first component is cooling water for the cylinder liner, the second half is cooling
water for the lubricating oil, and the third part is smoke exhaust heat. The three parts of
energy that can be recovered by the recovery equipment are united to simplify the model.
As a result, a mathematical model of gas internal combustion engine energy conversion
can be created. The following is the model of a gas internal combustion generator:

EGE = ηGEGGEδGE (1)

Qexh = ηREGGEδGE (2)

In Formula (1), EGE denotes the electric energy created by the gas internal combustion
engine in kWh, and GGE denotes the natural gas heat flow rate in m3/h. ηGE denotes
the gas internal combustion generator’s electric energy conversion efficiency. The waste
heat recovery efficiency of an internal combustion generator is ηRE in Formula (2). The
available heat energy provided by a gas internal combustion generator, kJ, is represented
by Qexh. Qexh is divided into three parts. Waste heat recovery unit absorption portion,
absorption chiller absorption part, and unused escape component. This is where the δ
notion is presented. The logical variable δ denotes the equipment’s start and stop, while
δGE represents the gas internal combustion generator’s start and stop.

The economic model of internal combustion engine is established according to its
working conditions:

CGE = prepairEGE + p f (t)GGE (3)

where p f (t) represents the natural gas price at time t. prepair represents the unit maintenance
cost. CGE represents the operating cost of the internal combustion engine.

(2) Lithium Bromide Absorption Refrigeration Unit
In a combined power supply system, a waste heat absorption chiller is essential. It

is a critical piece of equipment for increasing the overall efficiency of energy use and the
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system’s overall performance. To carry out refrigeration, a lithium bromide refrigerator
collects high temperature exhaust from power producing equipment, but it must also
consume a certain quantity of electricity.

The following is the model of a lithium bromide absorption refrigerator:

QLB_C = ηLB_CQexh,1δLB_C (4)

CLB_C = pbuyE(t)ELB_C (5)

The refrigerating capacity of a lithium bromide absorption refrigerator is QLB_C, in kJ.
The part of the available heat energy provided by the gas internal combustion generator
that is absorbed by the lithium bromide absorption chiller, kJ, is represented by Qexh,1. The
conversion efficiency of the lithium bromide absorption chiller is represented by ηLB_C,
and the start and stop of the lithium bromide absorption refrigerator is indicated by δLB_C.
The purchase price of power at time t is represented by pbuyE(t). The cold operation cost
of the bromine mechanism is represented by CLB_C. The power consumption of a lithium
bromide absorption chiller is represented by ELB_C.

(3) Centrifugal Water-Cooling Unit
Large refrigerating capacity, small volume, small mass, steady operation, and no

oil compression are all properties of centrifugal refrigeration compressors, which are
commonly employed in large refrigeration air conditioning and heat pump systems. Refrig-
eration is achieved by centrifugal refrigerators using electric energy, and its mathematical
model is as follows:

QEC = ηECEECδEC (6)

CEC = pbuyE(t)EEC (7)

where QEC represents the centrifugal refrigerator’s refrigerating capacity in kJ, EEC rep-
resents the electrical energy consumed by the centrifugal refrigerator in kWh, and ηEC
represents the centrifugal refrigerator’s conversion efficiency in percent. The start and stop
times of the centrifuge are indicated by δEC. The cost of the centrifugal water-cooling unit
is represented by CLB_C.

(4) Waste Heat Recovery Device
Heat recovery by residual heat recovery of lithium bromide unit is primarily ac-

complished in this issue by absorption of heat emitted from the gas internal combustion
generator by the lithium bromide unit’s residual heat recovery unit. Because of the varied
refrigeration and heating models, the refrigeration and heating are modeled independently,
and the model of the residual heat recovery unit is as follows:

QLB_H = ηLB_HQexh,2δLB_H (8)

CLB_H = pbuyE(t)ELB_H (9)

The heat generated by the waste heat recovery device is represented by QLB_H . Qexh,2
denotes the amount of useful heat energy absorbed by the waste heat recovery mechanism
from the gas internal combustion generator. The energy recovery efficiency of the waste
heat recovery device is represented by ηLB_H . The start or stop of the waste heat recovery
equipment is indicated by δLB_H . The running cost of the waste heat recovery unit is
represented by CLB_H . The power consumption of the waste heat recovery device is
represented by ELB_H .

(5) Energy Storage Device
It is difficult to model energy storage technology. This study analyzes energy stor-

age equipment as an electrical/thermal/cooling load when linked to the comprehensive
energy system for charging to simplify the model and make it easier to understand. It
can be thought of as a distributed electricity/heat/cold source when releasing energy.
The generic energy model for charging and discharging energy storage equipment was
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established. The mathematical model of heat and cold storage equipment is described in
the following formula.

QC = QsC(0) + ∑
t∈Φin

QsC(t)ηC,in∆t− ∑
t∈Φout

QuC(t)ηC,out∆t−Q1∆t (10)

QH = QsH(0) + ∑
t∈Φin

QsH(t)ηH,in∆t− ∑
t∈Φout

QuH(t)ηH,out∆t−Q2∆t (11)

In Formula (10), QC denotes the energy stored by the current water tank’s cold energy
storage, kJ. QsC(t) and QuC(t) denote the energy stored and released by the energy storage
tank at time t, and kJ. ηC,in and ηC,out denote the efficiency of energy storage and energy
storage release, respectively. The time it takes to carry out or release the energy storage is
represented by ∆t. The energy dissipation rate of the storage tank, kJ, is represented by Q1.

The energy held by the current water tank’s cold energy storage is represented by QH
in Formula (11). The energy stored and released by the energy storage tank at time t are
represented by QsH(t) and QuH(t), respectively. The efficiency of energy storage and the
efficiency of energy storage release are represented by ηH,in and ηH,out, respectively. The
time it takes to carry out or release the energy storage is represented by ∆t. The energy
dissipation rate of the storage tank is represented by Q2.

3.2. System Optimization Analysis
3.2.1. The Objective Function

The maximum daily revenue is considered as the objective function of the integrated
energy system’s optimal operation under the assumption of contemplating the maximum
economic advantage. The daily cost is divided into three parts: the initial investment cost,
the cost of energy consumption, and the cost of energy supply revenue. The initial invest-
ment is estimated as a function of facility capacity for simplicity. The annual electricity and
gas energy costs, equipment start-up costs, monthly fixed costs, and operating time costs
comprise the energy cost, of which the annual and monthly expenses are proportionally
calculated to each day’s spending. The operating cost estimation must be based on the
system’s operation strategy.

Ctotal = Cr − Cz − cCc (12)

The daily revenue is denoted by Ctotal in the formula. The annual equivalent cost
of the initial equipment investment is denoted by Cc. The daily energy consumption
cost is denoted by Cz. The daily energy supply income is denoted by Cr. c denotes the
scaling factor.

Costs of daily energy usage are calculated as follows:

Cz = [
T

∑
t=1

CLB_C + CLB_H + CGE + CEC] + psRs + pmon/30 + p f unR f un (13)

ps denotes the device’s starting cost in RMB/time, Rs denotes the startup times; pmon
denotes the monthly fixed charge in RMB/month; p f un denotes the device’s running time
cost in yuan/h, R f un denotes the running time, h.

The daily revenue from energy supply can be calculated as follows:

Cr = [
T

∑
t=1

EGE pselE(t) + (QLB + QEC + QTC)pLoad(t)] (14)

The selling price of electricity is represented by pselE(t). The output of the bromine
machine, centrifuge, and energy storage tank are represented as QLB, QEC, and QTC,
respectively. The load selling price is represented by pLoad(t).

Because energy purchasing and selling prices may differ at the same time, the pur-
chasing, selling, and quantity are indicated individually. The daily energy consumption
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cost is a superposition of multiple time costs due to variances in natural gas and electricity
purchase and selling prices at different times.

3.2.2. Constraint Condition

(1)Energy Balance
As the planning model’s constraint conditions, the performance characteristics of

each component of the system, as well as the energy flow balance of the entire system, are
primarily examined to fulfill the load demand. The model’s decision variables are divided
into two parts: the device capacity parameter of system configuration and the variable
of operation policy. The exact operating characteristics of the equipment appear as real
variables in this model. The on-off policy is represented by binary variables that indicate
each component device’s load level and start-off state.

(1) Electric Balance Constraint

EGE(t) + Ebuy(t) = Esel(t) + ELB_H(t) + ELB_C(t) + EEC(t) + ELoad(t) (15)

where EGE(t) denotes the gas internal combustion engine’s power generation at time t.
The purchase of electricity from the grid and the sale of electricity to the grid at time t
are represented by Ebuy(t) and Esel(t), respectively. ELB_H(t) represents the power con-
sumption of the Lithium bromide unit during make heating in time t; ELB_C(t) and EEC(t)
reflect the power consumption of the endothermic chiller and centrifugal water-cooling
unit, respectively; ELoad(t) represents the power load of the user at time t.

(2) Thermal Equilibrium Constraints

QLB_H(t) + QuH(t) = QsH(t) + QLoad_H(t) (16)

The total heat energy generated by bromine mechanistic heat at time t is represented
by QLB_H(t). The heat load of the user at time t is represented by QLoad_H(t). The heat
stored and released by the heat storage equipment in unit time are represented by QsH(t)
and QuH(t), respectively.

(3) Cold Equilibrium Constraints

QLB_C(t)+QEC(t) + QuC(t) = QsC(t) + QLoad_C(t) (17)

The refrigerating capacity of a lithium bromide absorption refrigerator at time t is
represented as QLB_C(t). The refrigerating capacity of the centrifugal refrigerator at time t
is represented by QEC(t). The cooling storage capacity and cooling release capacity of the
cooling storage equipment in unit time are represented by QsC(t) and QuC(t), respectively.
The cooling load of the user at time t is represented by QLoad_C(t).

(4) Smoke Exhaust Equilibrium Constraints

α1 + α2 + α3 = 1 (18)

The gas internal combustion engine’s exhaust smoke amount is set to 1 in the operating
condition, and the exhaust smoke is separated into three portions depending on the use
circumstances. The efficiency of the waste heat recovery unit and the absorption chiller in
absorbing the high temperature exhaust gas and cylinder liner water of the gas internal
combustion generator set, respectively, are represented by α1 and α2, and the unused part
of the exhaust smoke escape is represented by α3. α1, α2, and α3 correlate to Qexh,1, Qexh,2,
and Qexh,1, respectively.

(2)Constraint Condition
There are various limitations to the unit’s operation, such as not permitting it to work

under conditions of too low or too high power, and the variable displaying the operational
power is limited between the highest and lowest load. At the same time, there are some
energy constraints in the energy transmission process. Because energy is conserved, there



Electronics 2022, 11, 22 8 of 21

are balance relations for all types of energy throughout the system, allowing the balance
constraints of all types of energy to be listed.

A total of six criteria and operating limitations are assessed for this project’s units and
equipment. Gas internal combustion generator, absorption refrigerator, centrifugal water
cooler, waste heat recovery unit, power grid, and energy storage are the components.

(1) Gas internal Combustion Generator

EGE_min ≤ EGE(t) ≤ EGE_max (19)

The lowest operating load is represented by EGE_min. The highest operating load is
EGE_max. The actual operational load of the gas internal combustion generator is represented
by EGE(t).

(2) Lithium Bromide Absorption Refrigeration Unit

QLB_C_min ≤ QLB_C(t) ≤ QLB_C_max (20)

The lowest operating load is represented by QLB_C_min. The highest operating load
is represented by QLB_C_max. The actual operational load of a lithium bromide absorption
chiller is represented by QLB_C(t).

(3) Centrifugal Water-Cooling Unit

QEC_min ≤ QEC(t) ≤ QEC_max (21)

The lowest operating load is represented by QEC_min. The highest operating load
is represented by QEC_max. The actual operational load of a lithium bromide absorption
chiller is represented by QEC(t).

(4) Waste Heat Recovery Device

QLB_H_min ≤ QLB_H(t) ≤ QLB_H_max (22)

The lowest operating load is represented by QLB_H_min. The highest operating load
is represented by QLB_H_max. The real heating situation of a waste heat recovery unit in
operation is represented by QLB_H(t).

(5) Grid
Egrid_min ≤ Ebuy ∧ Esel ≤ Egrid_max (23)

where Egrid_min is the minimum amount of power that can be purchased or sold from
the grid. Egrid_max is the maximum amount of power that can be purchased or sold from
the grid.

(6) Energy Storage Device 
0 ≤ QuH ∧QsH ≤

_

QH
QuH ∧QsH ≤ QspeedH

0 ≤ QuC ∧QsC ≤
_

QC
QuC ∧QsC ≤ QspeedC

(24)

There is a maximum energy storage constraint for the cold and thermal energy storage
tank, as well as a speed constraint for energy storage absorption and release. The upper

limit of heat and cold storage in the energy storage tank is represented by
_

QH and
_

QC,
respectively. The highest transmission rate that the pipe network system can accomplish is
represented by QspeedH and QspeedC, respectively.
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3.3. Algorithm Analysis
3.3.1. Load Forecasting

The current integrated energy system’s principal purpose is to maximize economic
benefits. As a result, anticipating user demand in an integrated energy system is crucial.
Based on prior data analysis, an artificial neural network model is built to forecast user
load over the next 24 h or week. Using the load forecast data, the daily scheduling of
various equipment and energy storage equipment is performed, and the output of each
equipment is displayed. As a result, the loss caused by dispatching equipment’s frequent
start and stop is decreased. The winter heating season and summer cooling season of
Wuhan Creative Park were used to produce a 24-h power cooling and heating demand
forecast. During the cooling and heating seasons, the BP neural network is used to forecast
cooling load (1st May to 31st October) and heating load (1st November to 31st March ). The
date, temperature, weather, and usage rate of the park in the previous two years are the
neural network input variables Table 1.

Table 1. Quantitative values of weather in different energy supply seasons.

Heating Season Quantitative Values Cooling Season Quantitative Values

Sunny 0.2 Sunny 1
Cloudy 0.3 Cloudy 0.8

Overcast 0.4 Overcast 0.6
Light rain 0.5 Light rain 0.4

Rain 0.6 Rain 0.2
Light snow 0.8

Snow 1

The cold, heat, and electrical demands of the park in a typical day were forecasted by
examining and training the park’s 24-h usage data over the first two years to analyze the
ideal economic scheduling. The test results of the artificial neural network training model
are shown in Figure 3. Two days in each of the cooling and heating seasons were chosen for
testing. Figure 4 depicts the cooling and heating season forecast results, and the equipment
output analysis in the following section is likewise based on this data.

3.3.2. Economic Operation Optimization

To solve the 0–1 mixed integer linear programming problem given for the integrated
energy system [29], the branch and bound method is used, and the solving flow chart is
illustrated in Figure 5. By removing the integer restriction, the branch and bound technique
converts the integer programming problem into a noninteger programming problem and
finds the best solution. For those subgroups whose boundaries exceed the known possible
solution value, no additional branching is done after each branching. Many subgroups of
the solution can be eliminated in this way, narrowing the search. This process is repeated
until a feasible solution is identified that has a value that is not greater than the boundaries
of any subset, yielding the optimal integer solution.
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(a) Cooling Season 1 (b) Cooling Season 2

(c) Heating Season 1 (d) Heating Season 2

Figure 3. Model testing for training.

(a) Heat/Electricity demand power forecast (b) Cold/Electricity demand power forecast

Figure 4. Load prediction results.
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Figure 5. Branch and bound algorithm flow chart.

In this paper, the scheduling method uses time as the scale to schedule the output of
each device in distinct time intervals. The scheduling method of the park is determined by
monitoring the production of each piece of equipment over the course of 24 h. Firstly, the
output of the equipment is examined and the output of the equipment is a real variable.
Because the device must operate within a specific power range—with maximum and
minimum power constraints—if only real variables are utilized to represent the capability
of the device, the output of the device will constantly lie between the lowest and greatest
power levels as a result. To put it another way, the device will never stop working. This is
in direct conflict with the actual production process’s equipment schedule. The method of
adding logical variables is used in this research, with a 0–1 logical variable representing
the start and stop states of the device. Real number variables are utilized to describe the
equipment’s operating power, and 0–1 variables are used to represent the start and stop
states of the equipment, which can thoroughly represent the running state of the equipment
in actual production, allowing for scheduling optimization [30].

The scheduling scenario, according to the study, is a predicted analysis of a single
equipment’s production throughout the course of 24 h. As a result, there is a real variable
representing the running power of the equipment and a 0–1 variable representing the
start and stop state of the equipment for the internal combustion engine, lithium bromine
refrigerator, centrifugal water cooler, and waste heat recovery device. There is a real
variable for cold and thermal energy storage equipment that represents the equipment’s
energy storage and emission, and each variable corresponds to 24 h, thus there are 24
values. The park equipment scheduling results are achieved by solving the values of real
and logical variables of various equipment.

4. Result and Discussion

The ideal economic dispatch is determined using the usual daily load demand of
Wuhan Creative World Park during the winter heating season and summer cooling season.
The operating scheduling is examined in light of the park’s equipment conditions. The
following are the equipment parameters Figure 6, Tables 2 and 3.
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Figure 6. Price of buying or selling electricity.

Table 2. Multiple energy price parameters.

Parameter name Value

Natural gas price 2.2 ¥/Nm3

Price of hot and cold energy 0.5557 ¥/kWh
Sell electricity prices 0.7661 ¥/kWh

Power purchase prices Time-sharing electricity

Table 3. System equipment parameters.

Equipment Value

Thermal efficiency of internal combustion engine 0.52
Refrigeration efficiency of lithium bromide refrigeration unit 0.75

Heating efficiency of lithium bromide refrigeration unit 0.91
Maximum power of gas internal combustion generator 4.044 MW

Maximum refrigeration power of lithium bromide refrigeration unit 3.37 MW
bromide refrigeration unit 3.7 MW

Maximum power of centrifugal refrigerator 3.37 MW
the reserves of tank 450 m3

Charge rate of cold storage tank 1.78 GJ/h
Energy release rate of cold storage tank 3.56 GJ/h

Charge rate of heat storage tank 7.2 GJ/h
Energy release rate of heat storage tank 7.2 GJ/h

4.1. Mistake Analysis of Neural Network Prediction Algorithm

People typically utilize the strategy of picking average days to anticipate load in an in-
tegrated energy system, which is relatively straightforward but has low prediction accuracy.
The article [31] Choose one day from the cooling and heating seasons as typical day data for
prediction analysis, and assess the entire energy supply season with single-day data, which
can only be used as a theoretical reference and cannot be used in real engineering. The
article [32] Choose a few typical days for an analysis of a specific energy supply season, and
the prediction findings are inaccurate. A suitable typical day technique [33] was chosen
for testing in this work, and a typical day was chosen for examination in each month
of the energy supply season. The difference between the calculated prediction results
and the actual data from the energy station is compared to the artificial neural network
technique employed in this study, demonstrating the accuracy and applicability of the



Electronics 2022, 11, 22 13 of 21

current technology. Data from various types of energy supply in various years were chosen
at random for analysis. The following Figure 7 shows the findings of the mistake analysis.

The two prediction methods’ prediction outcomes are contrasted and studied. The
traditional approach’s mistake varies between 15 and 80 percent, while the prediction
method used in this paper’s experiment varies between 10 and 20 percent. The conven-
tional method’s prediction mistake is substantially higher than the artificial neural network
prediction method’s, and the traditional method’s fluctuation is also higher. The funda-
mental reason for this is that the standard method uses average daily data as a baseline and
ignores the impact of weather, temperature, and user rate fluctuations on user load. When
there is a significant change in user load data over the course of a month, the forecast data
will deviate significantly. The forecast method used in this research takes into account the
effects of weather, temperature, and usage rate, resulting in a more consistent and accurate
prediction than the old method.

4.2. Economic Operation Optimization in Different Periods
4.2.1. Economic Operation Optimization in Heating Season

The heating season’s economic operation is changed based on time-sharing electricity
and natural gas prices. Because the price of natural gas is now low, the internal combustion
engine will be run at maximum power to maximize the economic benefits. To plan a lithium
bromide refrigeration unit, consider the time-of-use price. When the electricity price is
low, it will work from 0 to 7 a.m. and energy storage. The operation is reduced from 8 a.m.
to 12 a.m. when the electricity price is high. Bromine machine raises heating power and
performs storage from 12 a.m. to 4 p.m. due to increased load and low electricity price. It
employs stored thermal energy to provide between 4 and 8 p.m., when electricity prices
are at their highest.

Negative denotes the energy charging of the energy storage tank, and regular repre-
sents the energy releasing of the energy storage tank, as demonstrated in the image below
for the energy curve of the water tank. Using the grid to buy and sell electricity. Negative
indicates that you are purchasing electricity from the grid, while positive indicates that
you are selling electricity to the system. The current pattern of modifying power prices
based on load and electricity price was maintained. The thermal load need of customers
is assured first in the thermal determination mode, and the electricity load is delivered
according to the producing capacity that fulfills the thermal load demand. The surplus
electricity is connected to the grid, while the insufficient power is acquired from the grid
Figures 8 and 9.

Figure 7. Mistake analysis of prediction algorithm.



Electronics 2022, 11, 22 14 of 21

Figure 8. Equipment output (heating season, determining electricity by heat).

Figure 9. Equipment output (heating season, determining heat by electricity).

In the figure, TC represents the power of the water tank, positive represents output,
negative represents input; GE1 represents the power created by the first internal combustion
engine in a day on an hourly basis; GE2 represents the second internal combustion engine;
LB1 represents the first lithium bromide refrigerator’s cooling or heating power per hour
per day; LB2 represents the second one; EC1 represents the first centrifuge’s refrigeration
power per hour each day; EC2 represents the second one; EC3 represents the third one;
Grid represents the power of the grid,a positive value indicates that electricity is being sold
to the grid, while a negative value indicates that power is being purchased from the grid.

4.2.2. Economic Operation Optimization in Cooling Season

According to the park’s current circumstances, the cooling season’s scheduling was
enhanced, and three centrifugal chillers were added to meet the cooling demand caused
by the increased user load during the cooling season. The internal combustion engine
continues to product electricity, ensuring revenue, due to the low price of natural gas at the
time. In the method of determining electricity by heat and determining heat by electricity,
the output of the bromine machine and centrifugal water-cooling unit is regulated according
to the peak and valley prices of electricity. When the electricity price is low, the cooling
capacity is expanded and stored, and when the electricity price is high, the energy storage
is used to add cooling, resulting in the economic optimization of the equipment operation.
Figures 10 and 11 depicts the equipment’s output.
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Figure 10. Equipment output (cooling season, determining electricity by heat).

Figure 11. Equipment output (cooling season, determining heat by electricity).

Because of the higher user load during the cooling season, revenue is slightly higher
than during the heating season. Due to the park’s uniqueness, the sale price is higher in
both modalities of determining electricity by heat and determining heat by electricity. As
a result, selling generated electricity to the grid first might sometimes result in a better
economic return, but supplying electricity to users can result in a lower return.

At the same time, the determining electricity by heat mode can meet users’ cold and
heat load as well as their electrical load. Users’ demand for cold and hot loads is assured
first in this mode, and if power generation is insufficient, they purchase power from the
power grid to avoid a power deficit. If electricity is utilized to determine heat, however,
there may be insufficient cooling and heating supply, necessitating compensation for some
of the consumers lost. As a result, the revenue from determining heat by electricity mode is
slightly lower than the revenue from determining electricity by heat mode in this system.

4.3. Operation Optimization for Different Energy Prices

The buy or sale price of various energy, including the purchase price of natural gas
and the purchase price of electricity, is a major factor in the economic optimization of the
park’s varied equipment. Using the cooling season as an example, this research examines
the production of equipment when natural gas prices are low, high, and peak-valley power
prices are taken into account, as shown in Figure 12:
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Figure 12. Operation of equipment in cooling season (high gas price).

When gas prices are low, the park chooses full power generation to maximize economic
benefits, as seen in Figures 10 and 12. To guarantee that waste heat is recycled to the greatest
extent possible, a lithium bromide unit is employed to absorb refrigeration. Select a part of
internal combustion engines to work when natural gas prices are greater. Also, to reduce the
use of natural gas, try lowering the internal combustion engine’s operating power. As the
power of an internal combustion engine is lowered, so does the amount of high-temperature
exhaust smoke produced. When the cooling capacity of the lithium bromide refrigerator is
insufficient to suit the needs of the customers, the centrifugal water-cooling unit is activated.
A lithium bromide refrigerator and a centrifugal water-cooling unit provide the cooling
load. According to the aforesaid optimization approach, this study picks 16 days from
data from 2019 and 2020 for a comparison analysis of the optimal operating results and the
actual results of the plant, with half of the data from the cooling and another from heating
seasons. The Figure 13 depicts the real data and optimization results. At the end of the
article, there are detailed data analysis Table 4.

According to the above figure, the energy station’s major revenue comes from selling
electricity and cooling and heating loads, while the main cost comes from natural gas
use. As a result, too much generation during the 2019 cooling and heating seasons, when
gas prices are higher, could result in reduced income. On 30 January 2019, for example,
the user load was low, resulting in lower cooling and heat load revenue. Meanwhile, the
gas internal combustion engine was set to work at nearly full capacity, resulting in more
electrical generation and higher losses, ultimately ending in a day of a very low revenue.
The power of gas internal combustion engines can be enhanced correctly to increase revenue
due to the lower price of natural gas in the 2020 heating season. As indicated in the table,
the energy station’s revenue has climbed considerably this season. For the 2020 cooling
season, natural gas prices are continue to plummet. Electricity prices have declined, but at
a slower rate than natural gas prices. As a result, choosing natural gas to run at a greater
power level at this time would be more profitable, as evidenced by the comparison between
2 August and 13 August.
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Table 4. Results of actual running and optimization algorithm running.

Load Type Data * Power
Ratio

User Load
(MWh)

Gas Price
¥/m3

Selling Price
of Electricity

(¥/kWh)

Load Price
(¥/kWh)

Energy
Station

Income (¥)

* 1st
Strategy
Income

* 2st
Strategy
Income

Cooling
Load 19.1.11 12.98% 57.02 2.961 0.7076 0.678 18,471 24,847 22,830

Cooling
Load 19.1.17 45.44% 63.06 2.961 0.7076 0.678 17,099 28,974 25,508

Cooling
Load 19.1.29 94.98% 63.2 2.961 0.7076 0.678 16,648 27,922 25,046

Cooling
Load 19.1.30 97.58% 35.74 2.961 0.7076 0.678 6214 15,729 12,075

Cooling
Load 19.2.14 27.62% 110 2.961 0.7076 0.678 24,695 58,819 56,616

Cooling
Load 19.2.15 24.43% 104 2.961 0.7076 0.678 22,801 55,617 53,415

Cooling
Load 19.2.18 69.07% 105 2.961 0.7076 0.678 26,695 55,943 53,740

Cooling
Load 19.2.27 54.98% 88.74 2.961 0.7076 0.678 23,215 48,154 45,120

Heating
Load 19.6.11 78.76% 100 2.961 0.7076 0.678 23,871 55,504 46,672

Heating
Load 19.6.20 72.48% 94.62 2.961 0.7076 0.678 21,386 51,621 42,789

Heating
Load 19.6.28 43.49% 64.26 2.961 0.7076 0.678 15,157 32,217 25,408

Heating
Load 19.6.30 44.14% 69.38 2.961 0.7076 0.678 16,771 32,117 25,488

Heating
Load 19.8.12 45.68% 90 2.961 0.7076 0.678 33,027 49,979 47,222

Heating
Load 19.8.15 43.73% 85.28 2.961 0.7076 0.678 30,001 47,366 44,609

Heating
Load 19.8.27 37.02% 90.35 2.961 0.7076 0.678 30,069 50,172 47,416

Heating
Load 19.8.30 37.02% 66.91 2.961 0.7076 0.678 22,839 37,198 34,441

Cooling
Load 20.1.1 32.46% 47.6 2.713 0.7076 0.644 26,866 29,666 24,174

Cooling
Load 20.1.2 45.46% 65.52 2.713 0.7076 0.644 35,317 41,312 34,133

Cooling
Load 20.1.15 68.59% 93.14 2.713 0.7076 0.644 52,132 58,769 50,739

Cooling
Load 20.1.16 69.02% 90.75 2.713 0.7076 0.644 51,384 56,827 48,797

Cooling
Load 20.2.6 59.74% 96.48 2.713 0.7076 0.644 46,911 51,970 49,490

Cooling
Load 20.2.10 63.6 % 87.56 2.713 0.7076 0.644 37,776 46,939 44,459

Cooling
Load 20.2.19 56.9 % 78.45 2.713 0.7076 0.644 33,142 41,992 39,512

Cooling
Load 20.2.23 46.75% 59.66 2.713 0.7076 0.644 32,489 37,534 34,638

Heating
Load 20.7.3 92.23% 46.83 2.313 0.678 0.554 18,795 26,370 23,335

Heating
Load 20.7.9 91.79% 47 2.313 0.678 0.554 21,507 26,464 23,430

Heating
Load 20.7.22 78.8 % 66 2.313 0.678 0.554 26,297 36,975 33,941

Heating
Load 20.7.25 77.94% 74 2.313 0.678 0.554 30,517 41,402 38,368

Heating
Load 20.8.1 12.98% 54.42 2.313 0.678 0.554 22,547 29,958 26,647

Heating
Load 20.8.2 24.24% 47.88 2.313 0.678 0.554 19,413 26,057 22,745

Heating
Load 20.8.13 99.32% 115.48 2.313 0.678 0.554 52,843 61,896 59,693

Heating
Load 20.8.14 98.88% 114.59 2.313 0.678 0.554 52,511 61,352 59,149

* Power ratio: Actual generating capacity as a percentage of total generating capacity; * 1st strategy: determining
electricity by heat; * 2st strategy: determining heat by electricity.

The operation of the energy station is not totally suitable, according to historical data,
and at times, the comprehensive electricity price, natural gas price, and the greatest profit
that the user load can accomplish are not taken into account. As a result, the following
analysis results can be achieved by substituting the forecast data into the optimization
method for analysis. The optimization algorithm may generate larger economic income
under the same user load because it fully considers the price of various links and analyzes
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the demand of users. At the same time, as previously said, determining electricity by heat
mode can undoubtedly fulfill user demand for cooling and heating load, but determining
heat by electricity may not be able to meet user demand for cooling and heating load. As a
result, certain user losses must be compensated, and the determining heat by electricity
mode’s profit is lower than determining electricity by heat mode. This is also why the
revenue of the electricity-fixed heat mode in the chart for the cooling season of 2020 is
lower than the real operation condition. It is because the customer has a high-load demand
but less power generation, resulting in less high-temperature smoke and less refrigeration.
As a result, the user’s cooling load need cannot be supplied, and compensation is required.
When comparing the cooling seasons of 2020 and 2019, the proportion of economic ad-
vantages after the optimized operation in 2019 is higher, and both the optimization and
the real operation appear to have an amplitude of economic benefits. Because user load
and electricity generation have upper limits, it is hard to continuously improve economic
benefits. In 2019, when petrol prices are high, the park has a lot of space for improvement.
When natural gas prices were low in 2020, the park decided to run the internal combustion
engine at full capacity, which was consistent with optimization theory. As a result, there is
still opportunity for development in 2019.

(a) Cooling season 2019 (b) Cooling season 2020

(c) Heating season 2019 (d) Heating season 2020

Figure 13. Scheduling optimization results comparison.
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According to the results of the aforesaid data analysis, the optimized operation scheme
provided in this work has larger economic benefits and is better than the traditional schedul-
ing approach when compared to the actual operating condition. Two scheduling methods
are utilized in the system’s optimal scheduling strategy to determine the electricity by
heat and the heat by electricity. The two scheduling approaches have some improve-
ments when compared to the real operation of the system, with the control strategy based
on determining the electricity by heat being more lucrative and suitable for the park’s
actual operation.

5. Conclusions

This paper presents a day-ahead optimal scheduling method for integrated energy
systems that incorporates an accurate prediction model and multiple energy storage types
and analyzes it by incorporating an accurate prediction model and multiple energy storage
models into common economic operation strategies. The 0–1 mixed integer linear pro-
gramming issue was solved using the branch-and-bound method. Finally, an optimization
experiment was carried out using real data from a Wuhan park. The case study reveals that
establishing an accurate prediction model may enhance forecast accuracy by around 10%,
and the revenue optimization outcome is considerably better than the park’s real operation
revenue, which is at least 10.45% higher. Finally, when compared to that of the traditional
method, this method is more practical and feasible, and it can be implemented in a real
integrated energy system.
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Abbreviations
The following abbreviations are used in this manuscript:

IES Integrated Energy System
GE Gas Generator
LB Lithium Bromide Refrigerator
EC Centrifugal Water Cooler
Heat TC The hot water storage tank
Cold TC The cold water storage tank
Ele Load Electric load
TC The tank for storing energy
GE1 The power created by the first internal combustion engine in a day on an hourly basis
GE2 The power created by the second internal combustion engine in a day on an hourly basis
LB1 The first lithium bromide refrigerator’s cooling or heating power per hour per day
LB2 The second lithium bromide refrigerator’s cooling or heating power per hour per day
EC1 The first centrifuge’s refrigeration power per hour each day
EC2 The second centrifuge’s refrigeration power per hour each day
EC3 The third centrifuge’s refrigeration power per hour each day
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