
����������
�������

Citation: Salim, M.Z.; Abboud, A.J.;

Yildirim, R. A Visual

Cryptography-Based Watermarking

Approach for the Detection and

Localization of Image Forgery.

Electronics 2022, 11, 136. https://

doi.org/10.3390/electronics11010136

Academic Editor: Hung-Yu Chien

Received: 20 December 2021

Accepted: 30 December 2021

Published: 2 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Visual Cryptography-Based Watermarking Approach for the
Detection and Localization of Image Forgery
Moataz Z. Salim 1, Ali J. Abboud 2,* and Remzi Yildirim 1

1 School of Natural and Applied Sciences, Ankara Yildirim Beyazit University, Ankara 06010, Turkey;
mzshaa7@gmail.com (M.Z.S.); ryildirim@ybu.edu.tr (R.Y.)

2 Department of Computer Engineering, College of Engineering, University of Diyala, Diyala 00964, Iraq
* Correspondence: ali.j.abboud@gmail.com

Abstract: The usage of images in different fields has increased dramatically, especially in medical
image analysis and social media. Many risks can threaten the integrity and confidentiality of digital
images transmitted through the internet. As such, the preservation of the contents of these images is
of the utmost importance for sensitive healthcare systems. In this paper, the researchers propose a
block-based approach to protect the integrity of digital images by detecting and localizing forgeries.
It employs a visual cryptography-based watermarking approach to provide the capabilities of forgery
detection and localization. In this watermarking scheme, features and key and secret shares are
generated. The feature share is constructed by extracting features from equal-sized blocks of the
image by using a Walsh transform, a local binary pattern and a discrete wavelet transform. Then,
the key share is generated randomly from each image block, and the secret share is constructed by
applying the XOR operation between the watermark, feature share and key share. The CASIA V 1.0
and SIPI datasets were used to check the performance and robustness of the proposed method. The
experimental results from these datasets revealed that the percentages of the precision, recall and F1
score classification indicators were approximately 97% for these indicators, while the percentages
of the TAF and NC image quality indicators were approximately 97% and 96% after applying
several known image processing and geometric attacks. Furthermore, the comparative experimental
results with the state-of-art approaches proved the robustness and noticeable improvement in the
proposed approach for the detection and localization of image forgeries in terms of classification and
quality measures.

Keywords: image forgery detection; image forgery localization; Walsh Hadmard transform; visual
cryptography; watermarking

1. Introduction

Nowadays, millions of images and videos are processed and transmitted by people
over the internet. Images have been used heavily as evidence in law enforcement, the
courts, science and medical healthcare [1]. The availability of editing software tools makes
it very easy to insert, delete, edit and modify any part of the images. Hence, it is very
necessary and imperative to develop forgery detection tools to identify different kinds of
malicious modifications of images [2]. Resampling, image retouching, image copy paste
and splicing are the main known modifications of digital images [3]. Hence, image integrity
authentication, digital signatures, hash codes, watermarking and cryptography are the
basic tools which are used to detect and localize the forgeries in the digital images [4]. There
are two types of image authentication techniques: active [5] and passive [6]. The active
techniques use the watermarks embedded inside the image to check the integrity [7–11],
while the passive techniques do not use any prior knowledge about the image to detect
forgery [12–16].
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Digital Watermarking has been used widely, whether in its visible or blind form.
Indeed, the watermark has information on the source, destination, possession, copy man-
agement, and bargain controlling, etc. [17]. Watermarking can deliver various services, for
example intellectual property protection, bargain tracking, copy handling, ownership veri-
fication, certification, forensic investigation, playback chaining, estate system improvement
and database connection, and biometric protection, etc. [18–20]. Copyright protection is
defined as the function of confirming the possession rights to a court against the illegitimate
manipulation and usage of digital data. It can enclose data about the possessor of the
thing, which can be utilized to solve disputes. Each digital thing has a unique watermark
specifying the holder of the thing, which requires a very high level of strength for tracking
so that holders can be detected. For copyright services, the hidden watermark is supposed
to be robust to various kinds of intentional and non-intentional attacks, such that the
affected content is still valid in terms of visual quality [21]. The watermarking schemes are
classified either as spatial domain or transform domain techniques. In the spatial domain,
the watermark is hidden by changing the pixel values of the main image. For example, the
least significant bit (LSB) method is one of the well-known techniques in the spatial domain.
In the transform domain, the watermark is hidden by changing the frequency coefficients
of the converted image. The most frequently used methods in the transform domain are
discrete cosine transform (DCT) and discrete wavelet transform (DWT), etc. [22].

Many watermarking schemes have been proposed in the last few years. In these
approaches, the watermark is hidden in the image at the sender side, and then it is extracted
at the receiver side to check the integrity of the image. However, such watermarking
techniques produce lower-quality images, and their performance is lowered by several
known attacks. Hence, visual cryptography (VC)-based watermarking techniques are
proposed as an alternative to the classical watermarking approaches [23,24]. In VC-based
approaches, several shares are generated to produce the secret share that is saved into the
third authority party to solve any conflicts which arise in the future. This means that there
are no watermarks embedded inside the host image; instead, the watermarks are used only
in the construction of the secret share at the sender side, and then they are reconstructed at
the receiver side for integrity verification purposes. Hence, the VC-based watermarking
schemes are regarded as a promising viable solution for image quality and robustness
problems [25,26].

VC-based watermarking approaches have been used by researchers in the past few
years to protect the copyright of a single image or multiple images [23–26]. Two types of
VC watermarking schemes exist. An example on the first kind is the research in [27], in
which the VC is used to generate two meaningless shares of the watermark: One share is
embedded in the cover image, and the other share is saved into the trusted authority (TA)
in order to be used later to recover the original watermark. This kind of watermarking
scheme suffers from a lack of robustness, and the watermark embedding process produces
a low-quality cover image. On other hand, the examples of the second kind of VC-based
watermarking schemes are the research works in [28–30]. In these schemes, a share is
generated from the cover image—it is called a master share—and another share is called
the ownership share; the latter is composed by superimposing the master share and the
watermark. Furthermore, the researchers in [25] used VC to hide some bits of the watermark
in the blocks of the edge image. The main flaw of this approach is the degradation in
the quality of the cover image after the embedding of the watermark. Another piece of
research [23] hid the watermark inside the cover image without modifying it. However,
this approach suffers from the limitation that the size of watermark is restrained by the size
of the cover image. In another piece of research, the authors [28] utilized discrete wavelet
transform (DWT) and VC to design a watermarking scheme to secure the copyright of
the image, but this approach is also restricted by the size of the image. The researchers
in [30] proposed a new watermarking scheme using DWT, VC and a secret key. The
authors employ the secret key to derive the feature vectors from wavelet subands, and
then the secret share is constructed by superimposing the feature share and watermark.
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This approach can resist several known attacks, but it is insecure according to [29]. In [26],
the authors developed a watermarking approach based on singular value decomposition
(SVD), DWT and VC. The feature vectors are extracted by using DWT and SVD, which are
then classified using clustering algorithms. The master share is composed using the output
of the clustering outcomes, and the ownership share is designed using a master share
and a watermark using VC. Ali and Fardin [31] used visual cryptography and a support
vector machine (SVM) classifier to develop an image watermarking scheme to protect the
copyright of digital images. The VC is used to construct the master and owner shares of an
image, while SVM is used to classify the image blocks into two main classes. In addition,
Rani et al. [32] proposed an image forgery detection approach based on enhanced SURF and
template matching. They achieved good detection results on the CASIA dataset. Kumar el
al. [33] developed an approach using an optimization algorithm and visual cryptography
to protect the authenticity and integrity of digital videos by embedding robust watermarks
inside them.

All of the approaches mentioned above have their limitations and problems, as follows:
(1) the size of the watermark is limited by the size of the cover image; (2) some approaches
fail to resist some known attacks, such as noise, median filtering, sharping, scaling or/and
rotation; (3) the insecure sending of side information, such as the key or key points, causing
the receipt of side cause security problems; (4) decreasing or destroying the quality of the
cover image as a result of embedding; and (5) some approaches cause a pixel expansion
problem in the constructed shares. In addition to all of the earlier limitations, the main
purpose of all of the above approaches is to protect the copyright of single or multiple
images, while the objective of our proposed approach is to detect and localize forgeries
in the digital images in an accurate and efficient manner. Hence, in this research article,
the researchers investigate the hypothesis that we can overcome the above limitations and
problems of the state-of-art approaches by developing novel watermarking approaches
using visual cryptography and famous feature extraction algorithms. Furthermore, we
investigate whether or not these proposed VC-based approaches can detect different shapes
and sizes of forgeries in the images. The contributions of this research based on visual
cryptography watermarking approaches can be summarized as follows:

1. This is a novel approach to detect and localize forgeries in the digital images-based on
visual cryptography-based watermarking schemes and feature extraction algorithms.

2. This approach has the ability to detect and localize forgeries of different sizes and
shapes in the digital images even at the pixel level.

3. The proposed approach can be used for image copyright in addition to its main
purpose of detecting and localizing forgeries in images. To the best of our knowledge,
this is the first time a VC-based watermarking scheme has been used for the purpose
of image forgery detection and localization.

4. The proposed approach overcomes the limitations of the watermark size, resistance
to attacks, pixel expansion, distorted cover image quality and the sending of side
information that exist in the previous approaches.

The rest of the paper is arranged as follows: the materials and methods are presented
in Section 2, the experimental results and analysis are presented in Section 3, a discussion
is presented in Section 4, and finally, Section 5 is devoted to the conclusions, limitations
and future work.

2. Materials and Methods

This section sheds light on the main tools that we have used to create the proposed
approach, and then we explain thoroughly our proposed method.

2.1. Visual Cryptography

The Visual Cryptography (VC) concept was originally invented by Naor and Shamir
in 1994 [34]. They developed a totally modern and safe method for sharing information
and secret sharing. Based on this concept, an image can be divided into n shares in the
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encryption phase, and in the decryption phase a participant must have all n shares to
recover the secret image. The source problem of the VC is the certain instance of a 2-out-of-
2 visual secret sharing problem, which is the most regularly used, as shown in Figure 1. In
this technique, the private image is spilt into two shares of arbitrary dots. For each pixel P
of the private image, two blocks of 1 × 2 pixels are constructed in the intended location
for each share. Hence, the constructed shares have a size of 1 s × 2 s if the source private
image is of size 1 s × 1 s.
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In the decryption phase, the two shares are superimposed together. For a black pixel P,
the outcome is a block with two black subpixels. However, for a white pixel, the outcome
is a block with one black subpixel and one white subpixel. For the participant’s eyes, the
block with black and white subpixels will be seen as a white pixel, and the block with
two black subpixels will be seen as a black pixel. Hence, the secret data is observed when
these shares are superimposed together. In fact, what made this technique very practical
was that any shares that are not completely combined will not be able to reveal the secret
image. The VC was also applied to grayscale and color images, and resulted in many useful
applications [35,36].

2.2. Walsh Hadmard Transform (WHT)

WHT is a category of size 2 discrete Fourier transform (DFT). It separates the input
signal into a composition of Walsh functions, and can be defined as follows [37]:

X (u, v) =
1

N2

N−1

∑
i=0

N−1

∑
j=0

I (i, j)
[
(−1)ψ (u,v,i,j)

]
(1)

where I represents the image to be transformed, and ψ (u, v, i, j) is a kernel function that
can be defined as follows:

ψ(s, t, u, v) =
k−1

∑
m=0

bm(u)bm(s) + bm(v)bm(t) (2)

where bm is the mth bit in the binary sequence, and k is the total number of the bits. In order
to extract directional features, the Hadmard diagonal, horizontal and vertical orientations
must be calculated. Three wedge masks are utilized for the purpose of extracting these
features—Fd, Fh and Fv—from the Hadmard coefficients, as follows:

Fv(s, t) =
1
2
+

1
2
|t− sα/50|
t− sα/50

(3)

Fh = FT
v (4)
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Fd = 1− (Fv + Fh) (5)

F = [var(WT ·Fv), var(WT ·Fh), var(WT ·Fd)] (6)

2.3. Local Binary Patterns (LBP)

LBP is a powerful image texture descriptor which was proposed by Ojala et al. in
1994 [38]. It is used in many applications of image and computer vision. It uses a kernel
(or window) of (3 × 3) centered at the desired pixel, as shown in Figure 2, and its code is
obtained by applying the block kernel according to a mathematical formula, as follows [39]:

LBP =
P−1

∑
i=0

S(ni − Gc)
2i

(7)

S (x) =
{

1 i f x > 0
0 otherwise

where P represents the count of neighboring pixels, ni represents the ith neighboring pixel,
and Gc is the center pixel.
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2.4. Discrete Wavelet Transform (DWT)

DWT is a mathematical tool which is used to decompose the input signal, image, audio
or video into a number of decomposition levels (or sets) of coefficients into both spatial
and frequency domains simultaneously [41]. The number of decomposition levels depends
on the size of the analyzed signal or image, and the extent to which we want to obtain
information about the input signal, as shown in Figure 3. There are many applications for
DWT, and there are also different types of this useful tool. The interesting properties of
DWT are the multiscale, localization and lossless properties. The mathematical equations
of 2D DWT are given below:

W∅(j0, m, n) =
1√
MN

M−1

∑
m=0

N−1

∑
n=0

f (m, n) ∅j0,m,n (m, n) (8)

Wi
ψ(j0, m, n) =

1√
MN

M−1

∑
m=0

N−1

∑
n=0

f (m, n) ψi
j0,m,n (m, n) , i = {H, V, D} (9)
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The inverse 2D DWT is given by the following equations:

f (m, n) =
1√
MN

M−1

∑
m=0

N−1

∑
n=0

W∅(j0, m, n) ∅j0,m,n (m, n) +
1√
MN

∑
i=H,V,D

∞

∑
j=j0

∑
m

∑
n

Wi
ψ (j, m, n, k) ψi

j,m,n (m, n) (10)

2.5. Proposed Method

This section describes the proposed method employed for image forgery detection
and localization using a VC-based watermarking scheme. Our proposed method consists
of the Shares Construction Phase and Image Forgery Verification Phase, as shown below
in the Figure 4. These phases are described below.
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2.5.1. Shares Construction Phase

In this section, we explain the process of generating or constructing the features, key
shares and secret shares. The features share is constructed for all of the image blocks using
WHT, LBP and DWT. The pseudo code for this phase is described below, in Algorithm 1.

WHT is used to extract directional features from each image block to assure the
robustness of our proposed approach against geometrical attacks [37]. Then, LBP is used to
extract the texture feature representation of image blocks that are robust to false positives
and geometrical attacks [33]. Lastly, DWT is used to extract multiscale features from image
blocks that represent the important features of each block at the different scales [41]. These
features are combined together to form the block features, and then all of these block
features are combined together to obtain the final feature share. The key share is generated
randomly using a pseudo-random generator, and it is given secretly to the original image
owner. Now, the secret share is constructed by applying the XOR operation between the
original watermark, feature share and key share, as in the following equation:

SS = W ⊕ Fs ⊕ Ks (11)

where SS, W, Fs and Ks represent the secret share, watermark, feature share and key share.
Here, the key share is generated randomly for each tested image. Then, the secret share is
constructed by exclusive OR among the watermark, feature share and key share.
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Algorithm 1: Shares Construction Phase

Input: Original Colour Image (I) of size (256 × 256) and Watermark (W) of size (256 × 256)
Output: Features share Fs, Key Share Ks and Secret Share SS
Initialization: No. of Blocks = 16; Block Size = 16 × 16 pixels
1: Divide image (I) into (16 × 16 = 256) blocks
2: For i = 1 into No. of Blocks
3: For j = 1 into No. of Blocks
4: Extract multi-directional features for block (i, j) using WHT → FWHT vector
5: Extract texture features for block (i, j) using LBP → FLBP vector
6: Extract multiscale features for block (i, j) using DWT → FDWT vector
7: Concatenate these features vector into single vector FBlock = [FWHT FLBP FDWT]
8: Reshape FBlock vector into features block FBlock (i, j) of size (16 × 16)
9: end

10:
Add features block at location (i, j) into the feature share of size (256 × 256)
at location (i, j) Fs ← FBlock (i, j)

11: end
12: Generate key share Ks of size (256 × 256) using pseduo random number generator
13: Compute secret share SS = W ⊕ Fs ⊕ Ks
14: Keep secret share SS secretly with the trusted authority (TA) for future use
15: Key share (i.e., key image) Ks is given secretly to the image owner
16: Publish watermarked image (I) and the waterark (W)

2.5.2. Image Forgery Verification Phase

This section sheds light on the process of watermark extraction and forgery detection,
and the localization process. In this phase, the forged image is first divided into 256 non-
overlapped blocks, and then we compute the feature share in the same way described
earlier in the shares construction phase (Section 2.5.1). After that, the secret share is
recovered from the trusted authority (TA) and the key share is received from the owner
of the original digital image. The recovered watermark is computed by exclusive OR
among the feature, secret and key shares. The forgery verification is started by dividing the
original and recovered watermarks into 256 blocks of size (16 × 16), and then exclusive
OR between these blocks. Depending on the results of the matching between the blocks
of two watermarks, we can specify whether the block is authentic or forged. Hence, if the
result of exclusive OR between them is 0, then there is no forgery and the block is authentic;
otherwise, if the result is 1, then this block is forged. After we specified the authentic and
forged blocks, these blocks were marked as authentic or not by setting the pixels in the
forged image to 1 or 0. The pseudo-code of the image forgery verification is illustrated in
Algorithm 2.
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Algorithm 2: Image Forgery Verification Phase

Input: Forged Colour Image (FI) , Secret Share (SS) , Key share (Ks)
and the original watermark (W) all of size (256 × 256).
Output: Forged Regions Matrix FRM of size (16 × 16)
Initialization: No. of Blocks = 16; Block Size = 16 × 16 pixels
1: Divide Image FI into (16 × 16 = 256) blocks
2: For i = 1 into No. of Blocks
3: For j = 1 into No. of Blocks
4: Extract multi-directional features for block (i, j) using WHT → FWHT vector
5: Extract texture features for block (i, j) using LBP → FLBP vector
6: Extract multiscale features for block (i, j) using DWT → FDWT vector
7: Concatenate these features vector into sin gle vector FBlock = [FWHT FLBP FDWT]
8: Reshape FBlock vector into features block FBlock (i, j) of size (16 × 16)
9: end

10:
Add features block at location (i, j) into the secret share of size (256 × 256)
at location (i, j) Fs ← FBlock (i, j)

11: end
12: Obtain key share Ks of size (256 × 256) from Image Owner
13: Recover SS From the trusted authority (TA) to compute watermark
14: Compute Extracted Watermark W = SS ⊕ Fs ⊕ Ks
15: Divide Watermark W and W into (16 × 16 = 256) blocks
16: Verify if there exist forgery in each block of the image as follows:
17: For i = 1 into No. of Blocks
18: For j = 1 into No. of Blocks
19: Veri f y Block = W(i, j)⊕W (i, j)
20: IF (Veri f y Block == 0) Then

21:
W(i, j) equal to W (i, j) and the block (i, j) is Authentic

Set block (i, j) = 0 in FRM matrix
22: Else

23:
W(i, j) unequal to W (i, j) and the block (i, j) is forged

Set block (i, j) = 1 in FRM matrix
24: end
25: end
26: end
27: Remove Outlier Blocks
28: If all blocks of the image (FI) equal zero Then
29: Image (FI) is Authentic and there is no forgery in the image
30: Else
31: Image (FI) is forged image and the forged blocks in matrix FRM
32: End
33: End

3. Experimental Results and Analysis

The researchers conducted many experiments to prove the validity, robustness, effec-
tiveness, efficiency and high performance of the proposed approach. Matlab 2018 software
was used to do perform the experiments on an Intel (R) Core (TM) i7 CPU @ 2.30 GHz
processor, 8.00 GB RAM laptop. The employed image forgery dataset, performance metrics
and results are elaborated in the following subsections.

3.1. Benchmarking Image Datasets

The CASIA tampering image dataset was used in our experiments to evaluate our
proposed approach. CASIA V 1.0 and CASIA V 2.0 are the two versions of this dataset,
and in these experiments only the first version (V 1.0) was used in the implementation
of our experiments. There are 1725 color images of 384 × 256 pixels in the V 1.0 dataset,
all of which are in the JPEG format. In this version of the benchmarking dataset, there
are two groups of images: authentic and tampered. In the authentic group there are
921 images, while in the tampered group there are 800 images. The images in this dataset
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are categorized into eight classes based on the image contents. The images are manipulated
by different kinds of copy- paste tampering operation with different sizes of forgery (i.e.,
small, medium, and large). Furthermore, the source of tampering could be from the same
or a different image.

In addition, the shapes of the paste- forged regions are circular, rectangular, triangular,
and of an arbitrary boundary. the paste- forged regions are circular, rectangular, triangular,
and of an arbitrary boundary. Figure 5, below, shows examples of the CASIA V 1.0 forged
image dataset, and also the four standard images of the SIPI dataset (Lake, Lena, Mandrill,
Peppers). In this figure, there are images from the animal, architecture, character and plant
categories that represent the most apparent texture classes within the CASIA V 1.0 dataset.
Hence, they are presented here in this figure. For the SIPI dataset, four different images
are used in the experiments described in the next subsections of this research article. The
images in these datasets were taken by professional people within real environments that
simulate the practical applications for real-time systems.
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3.2. Performance Metrics

This section is devoted to the illustration of the performance metrics employed in
our experiments to measure the system performance objectively. Furthermore, we give a
subjective evaluation of our approach in Figure 6 using several examples of forged images.
The performance metrics are elaborated below.

3.2.1. Peak-to-Signal-Noise-Ratio Measure (PSNR)

PSNR is a well-known measure to assess quantitatively the quality of a recovered image
after processing, either by compression or encryption. It quantifies the difference between the
original and recovered image pixels. The mathematical equations of this metric are

PSNR = 10× log
(

2552

MSE

)
(12)
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MSE =
1

MN

M−1

∑
i=0

N−1

∑
j=0

[I(i, j)− K(i, j)]2 (13)

where the mean square error (MSE) quantifies the error difference between the original
image I (i, j) and the recovered image K (i, j). Furthermore, the variables M and N represent
the dimensions of the images I and K, and (i, j) represents the indices of these images.
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3.2.2. Structural Similarity Index (SSIM)

The SSIM index is a popular metric to quantify the analogy between the original
image and the recovered image using the concepts of the human visual system (HSV) [42].
It measures the quality of a recovered image by quantifying the difference in contrast,
luminance and structure. The mathematical equation of this metric is:

SSIM (x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (14)

where x and y are windows of images X and Y, and the explanation of the statistical
parameters of this model can be found in several references.

MISSIM (X, Y) =
1
n

n

∑
i=1

SSIM (xi, yi) (15)

The mean SSIM is between two images, X and Y, over (n) windows.

NC =
1

hw × ww

hw

∑
m=1

ww

∑
n=1

(W(m, n)⊕W∗(m, n)) (16)
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TAF =
1

hw × ww

hw

∑
m=1

ww

∑
n=1

W(m, n)·W∗(m, n) (17)

BER =
X

hw × ww
(18)

NC is the normalized correlation coefficient, and (hw×ww) is the size of the watermark.
TAF is the tampering assessment function and W(m, n) and W∗(m, n) are the original and
extracted watermarks. BER is the bit error rate, X represents the number of bits that
changed because of noise, ⊕ is the exulsive OR operation, and (·) is the AND operation.

3.2.3. Classification Measures

The image forgery problem corresponds to the binary classification in which either the
block is forged (True class) or authentic (False Class). Hence, the false positive rate FP, true
positive rate TP, false negative rate FN, and true negative rate TN are the main measures
of forgery classification accuracy that are utilized in our experiments. The efficiency and
robustness of the proposed approach can be quantified using the F1 score, precision and
recall, as follows:

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

F1 Score = 2× Precision × Recall
Precision + Recall

(21)

3.3. Results

Extensive experiments were conducted to prove the validity, robustness and effective-
ness of the proposed image forgery detection and localization approach. The CASIA V
1.0 image forgery dataset was used in our experiments to test the forgery detection and
localization capability of the proposed approach. In addition, a group of standard images
from the SIPI image dataset of TIFF format of size (512× 512) were also used to compare the
performance of the proposed approach with the state-of-the-art approaches. Three groups
of experiments were performed, which were named as follows: (1) images with forgery
only, (2) images with combined effects (i.e., forgery + another attack), and (3) comparative
analysis. Tables 1–7 are presented in the following subsections to show the results from the
CASIA V 1.0 and SIPI datasets.

Table 1. Forgery classification and image quality measure values for the first group of experiments.

Measure/
Category

Forgery Classification Measures Image Quality Measures

Precision Recall F1 Score NC TAF BER PSNR SSIM

Animal 0.98 0.96 0.97 0.95 0.95 0.05 13.51 0.68
Architecture 0.96 0.97 0.96 0.97 0.97 0.03 14.77 0.72

Plant 0.98 0.97 0.97 0.96 0.96 0.04 13.83 0.68
Texture 0.99 0.96 0.98 0.96 0.96 0.04 13.60 0.68
Nature 0.98 0.99 0.99 0.96 0.96 0.04 14.00 0.69

Character 0.94 0.99 0.96 0.97 0.97 0.03 15.10 0.72
Scene 0.98 0.93 0.95 0.97 0.97 0.03 14.84 0.71

AVERAGE 0.97 0.97 0.97 0.96 0.96 0.04 14.24 0.70
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Table 2. Forgery classification and image quality measure values for the second group of experiments
(Compression attack).

Compression
Quality/Measure

Forgery Classification Measures Image Quality Measures

Precision Recall F1 Score NC TAF BER PSNR SSIM

20 0.95 0.95 0.95 0.93 0.93 0.07 11.62 0.61
40 0.96 0.95 0.95 0.94 0.94 0.06 12.10 0.63
60 0.96 0.96 0.96 0.94 0.94 0.06 12.54 0.65
80 0.98 0.98 0.98 0.95 0.95 0.05 12.75 0.65

100 0.98 0.99 0.98 0.95 0.95 0.05 13.37 0.68
AVERAGE 0.97 0.97 0.97 0.94 0.94 0.06 12.48 0.64

Table 3. Forgery classification and image quality measure values for the second group of experiments
(Noise attack).

Noise Level/
Measure

Forgery Classification Measures Image Quality Measures

Precision Recall F1 Score NC TAF BER PSNR SSIM

0.01 0.98 0.97 0.98 0.95 0.95 0.05 12.84 0.65
0.02 0.97 0.94 0.96 0.94 0.94 0.06 12.43 0.63
0.03 0.95 0.94 0.94 0.94 0.94 0.06 12.03 0.61
0.04 0.94 0.94 0.94 0.93 0.93 0.07 11.74 0.60
0.05 0.94 0.94 0.94 0.93 0.93 0.07 11.45 0.58

AVERAGE 0.96 0.95 0.95 0.94 0.94 0.06 12.10 0.61

Table 4. Forgery classification and image quality measure values for the second group of experiments
(Scaling attack).

Scaling Factor/
Measure

Forgery Classification Measures Image Quality Measures

Precision Recall F1 Score NC TAF BER PSNR SSIM

1.005 0.98 0.98 0.98 0.94 0.94 0.06 12.03 0.61
1.010 0.95 0.98 0.96 0.92 0.92 0.08 11.30 0.58
1.015 0.92 0.95 0.94 0.92 0.92 0.08 10.87 0.56
1.020 0.91 0.92 0.91 0.91 0.91 0.09 10.57 0.55
1.025 0.91 0.92 0.91 0.91 0.91 0.09 10.33 0.55

AVERAGE 0.93 0.95 0.94 0.92 0.92 0.08 11.02 0.57

Table 5. Forgery classification and image quality measure values for the second group of experiments
(Rotation attack).

Rotation Angle/
Measure

Forgery Classification Measures Image Quality Measures

Precision Recall F1 Score NC TAF BER PSNR SSIM

1.0 0.98 0.98 0.98 0.93 0.93 0.07 11.57 0.59
1.5 0.95 0.97 0.96 0.92 0.92 0.08 11.09 0.57
2.0 0.93 0.97 0.95 0.91 0.91 0.09 10.71 0.55
2.5 0.93 0.93 0.93 0.91 0.91 0.09 10.42 0.54
3.0 0.93 0.92 0.92 0.90 0.90 0.10 10.16 0.53

AVERAGE 0.94 0.95 0.95 0.92 0.92 0.08 10.79 0.56
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Table 6. Qualitative comparison of the proposed approach with the state-of-the-art approaches.

Method Image
or video

Meaningful
Shares Recovery

Sides
Informa-

tion

Copyright
Protection

Forgery
Detection and
Localization

Extraction Robustness

Liu
2011 Image No Yes No Yes No Superimposition

JPEG
Compression
sharpening

blurring
cropping
distortion

noising

Amiri 2015 Image No No Yes Yes No XOR
Superimposition

JPEG
Compression
sharpening

blurring
resizing
rotation

cropping
noising

distortion

Kukreja
2020 Image Yes No No Yes No XOR

Superimposition

JPEG
Compression
sharpening

blurring
resizing
rotation

cropping
noising

distortion

Kumar
2013 Video Yes No No Yes No XOR

Superimposition

Unsharp
Salt&pepper

Median
Rotate
Crop

Kumar
2016 Video Yes No No Yes No XOR

Superimposition

Unsharp
Gaussian

Salt&pepper
Median
Rotate
Crop

Proposed
2021 Image Yes Yes No Yes Yes XOR

Superimposition

JPEG
Compression
sharpening

blurring
resizing
rotation

cropping
noising

distortion

3.3.1. First Group of Experiments (Images with Forgery only)

In this group of experiments, the CASIA dataset was used to evaluate the robustness
of the proposed approach. Table 1, below, shows the classification performance of the
forgery detection approach using precision, recall and F1 score measures, and NC, TAF,
BER, PSNR and SSIM image quality measures.

The first column in Table 1 represents the category of forged images in the following
manner: anim (animal category), arch (architecture), pla (plants), txt (text), nat (nature),
cha (character), and sec (scene). It is evident from the experimental results shown in this
table that the different categories have different forgery detection results, with an average
detection accuracy of 97%. This can be attributed to the varying nature and texture of the
images within each class. It can also be noticed that the text category obtained the highest
classification accuracy (99%) among all of the CASIA classes. Furthermore, the NC, TAF,
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BER, PSNR and SSIM measures are presented to quantify the quality of the reconstructed
watermark in comparison with the original watermark. Hence, the values of these metrics
in this table reveal the fact that the different classes have different detection results, but
with average accuracy (NC = 96% and TAF = 96%). For BER, it can be noticed that the
range of values is between 0.03 and 0.05. These values are within the acceptable range of
errors in the bits for the images which contain a forgery of variable size, shape and texture.
In addition, we obtained the average values of the PSNR (14.24%) and SSIM (0.7%) quality
measures, because there are different amounts of forgeries in the processed digital images.
To sum up, the overall results in this table indicate the good performance of the proposed
image forgery detection approach, and Figure 6 is presented below to show some of these
detection results.

3.3.2. Second Group of Experiments (Images with Combined Attacks)

The aim of this group of experiments is to analyze the effects of several attacks on the
performance of the proposed image forgery detection approach. In these experiments, a
combination of attacks is applied to the images. For example, a combination of (forgery
+ compression), (forgery + noise), (forgery + scaling) or (forgery + rotation) is used to
simulate the real attacks on the digital images, as shown below in Figure 7.
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Figure 7. Examples of forged images attacked by some known attacks. Figure 7. Examples of forged images attacked by some known attacks.

It is also worth mentioning that, in this figure, the original watermark is inserted
along with the attacked forged images to show the effects of forgery and attacks on the
original watermark. Tables 2–5 show the results of the application of image processing and
geometrical attacks to the forged images in the CASIA V1.0 dataset. The compression, noise,
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rotation and scaling attacks are the most important attacks that can confront the digital
image during the acquisition, processing or/and transmission. Table 2, below, shows the
results in terms of precision, recall and F1 score classification measures, and NC, TAF, BER,
PSNR and SSIM image quality measures after the attacking of the forged images by the
compression attack.

The results in Table 2 show that the precision, recall and F1 score values of the forgery
classification measures increased ascendingly with the increasing value of the compression
quality factor (i.e., the increase in the quality of the forged image) with average metric values
of 97%, 97% and 97%, respectively. This is an expected result, as the increase in the quality
of the compression produces high-quality images that lead ultimately to good classification
results. The results in this table also show that the NC, TAF, PSNR and SSIM metric values
increase gradually with the increasing value of the compression quality factor, with average
metric values of 97%, 94%, 12.48% and 64%, respectively. Such behavior can be also attributed
to the production of high-quality images after high-quality compression. For BER, we noticed
that the error rates decreased with the increased compression quality of the forged image,
which eventually implies good classification and reconstruction performance results.

The noise in the acquisition sensor or during the data transmission has a non-trivial
influence on the performance of the image forgery detection system. We observed from the
experimental results in Table 3 that the precision, recall and F1 score classification measure
values started to decrease gradually with the increasing noise level, with average values
of 95% for all of the forgery classification metrics. Such behavior is expected, as noise
decreases the quality of the forged images, which eventually affects the quality of the image
features and texture. Then, the classification performance of the proposed approach will
be affected by such a decrease in the quality of the features. We found the same trend in
the NC (94%), TAF (94%), PSNR (12.10%) and SSIM (61%) image quality measures, i.e., the
values of these measures decreased gradually with the increased noise level. However, the
values of all of the explained measures were still good enough to resist the noise attack.
Lastly, the error rates (BER) increased gradually with the increasing noise level, with an
average error rate of 6%.

For the scaling geometrical attack, the average values of the precision, recall and F1
score measure values were 93%, 95% and 94%, respectively, as shown in Table 4. From
these results, we can notice that the scaling attack has a non-trivial influence on the forgery
classification performance of the proposed approach, especially with the increasing value
of the scaling factor. Furthermore, the values of the NC, TAF, PSNR and SSIM watermark
image quality measures decreased gradually with the increasing value of the scaling factor,
with average values of 92%, 92%, 11.02% and 57% for these metrics, respectively. The cause
of such a trend or behavior of the results is attributed to the change in the geometry of
the texture and features of the forged images, which eventually lead to the decrease in the
classification performance to some extent. For BER, the error rates increased gradually with
the increasing value of the scaling factor, with average value of 8%. Finally, we have to
mention that the performance of the forgery detection approach under this attack, with the
values in Table 4, can be regarded as sufficiently good and competitive. They refer to the
resistance of the proposed approach for such a kind of challenging attack.

Table 5 presents the results of the application of a rotation geometrical attack to the
forged images. The results show that the trend of precision, recall and F1 score classi-
fication metrics monotonically decreases with the increasing of the rotation angle, with
average values of 94%, 95% and 94% for these metrics, respectively. Such behavior in
the classification measure values is attributed to the influential effects of rotation on the
texture and features of the forged images, which lead to difficulty in the classification of the
forged blocks. Now, if we look at the watermark image quality measures, the trend of these
measures is similar to the trend of the forgery classification metrics. In other words, their
values decrease with increase of the rotation angle, with average values of NC (92%), TAF
(92%), PSNR (10.79%) and SSIM (56%). Finally, the error rates represented by BER increase
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gradually with the increasing value of the rotation angle, and such behavior is expected for
the reasons mentioned earlier in this paragraph.

3.3.3. Third Group of Experiments (Comparative Analysis)

In this group of experiments, the proposed approach was compared with state-of-the-
art approaches. More recent related works in the literature are used in our comparison, as
shown in Figure 8: (1) Liu et al. [43], (2) Amiri et al. [44], and (3) Kukreja et al. [45]. The NC
and TAF metrics are used to evaluate the performance of the compared approaches. The
experimental results, shown in Figure 8, show that the proposed approach outperforms
other approaches in terms of the average values of the TAF measure. However, our
proposed approach obtained approximately the same or better performance than the other
approaches in terms of the average NC measure results, as shown below in Figure 8. This
indicates the superiority of our proposed forgery detection approach in comparison with
other recent research works in the literature.
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Table 6, below, shows the qualitative comparison of our proposed approach with
state-of-the-art approaches: (1) Liu et al. [43], (2) Amiri et al. [44], (3) Kukreja et al. [45], (4)
Kumar and Hensman [46], and (5) Kumar et al. [47]. The results of this table indicate that
the proposed approach has more cons (or positive characteristics) than the other compared
approaches. These cons are: (1) it is the only approach among them that can detect and
locate forgery in digital images; (2) it does not need to send side information; (3) it can be
used for image copyright protection, like the other compared methods; (4) it has robustness
against known attacks. Hence, the proposed approach in this research paper outperforms
the other compared state-of-the-art approaches according to the results in this table and
Figure 8.

Table 7. Quantitative comparison of the proposed approach with the state-of-the-art approaches.

Roy et al.
[48]

Mural et al.
[49]

Ernawanet
al. [50]

Hurrah et al.
[51]

Thanki et al.
[52]

Kukreja et al.
[45] Proposed

JPEG Compression
Lena - 0.8500 - - - 0.9876 0.9900
Lake - 0.8700 - - - 0.9829 0.9892
Mandrill - 0.8200 - - - 0.9877 0.9943
Peppers 0.8916 - 0.5876 - 0.9837 0.9889 0.9910

Rotation
Lena - 0.7900 - - - 0.9728 0.9190
Lake 0.7800 - - - - 0.9629 0.8848
Mandrill 0.7900 - - - - 0.9753 0.9256
Peppers 0.8617 0.5864 - - - 0.9876 0.8974

Median Filtering
Lena - 0.9500 - - - 0.9523 0.9515
Lake - 0.8700 - - - 0.8889 0.9370
Mandrill - 0.8900 - - - 0.8941 0.9269
Peppers 0.8055 - - - - 0.8196 0.9544

Sharping
Lena - 0.8700 - 0.9750 - 0.9629 0.9686
Lake - 0.9200 - - - 0.9723 0.9534
Mandrill - 0.8300 - - - 0.9507 0.9654
Peppers 0.9645 - - - - 0.9352 0.9653

Gaussian Noise
Lena - 0.8900 - - - 0.9629 0.9386
Lake - 0.8300 - - - 0.9753 0.9301
Mandrill - 0.9000 - - - 0.9722 0.9446
Peppers 0.6412 - - - - 0.9506 0.9333

Salt & Peppers Noise
Lena - 0.8900 - 0.9600 - 0.9753 0.9958
Lake - 0.9100 - - - 0.9858 0.9940
Mandrill - 0.8100 - - - 0.9877 0.9955
Peppers 0.5852 - - - - 0.9784 0.9959

Speckle Noise
Lena - - - 0.9700 - 0.9890 0.9571
Lake - - - - - - 0.9536
Mandrill - - - - - - 0.9611
Peppers - - - - - - 0.9548

Poisson Noise
Lena - - - 0.9600 - 0.9612 0.9410
Lake - - - - - - 0.9374
Mandrill - - - - - - 0.9471
Peppers - - - - - - 0.9409

Secondly, the SIPI dataset was used in this group of experiments; more specifically,
four standard images were used from this dataset for comparison purposes, as shown in
Table 7. These images are Lena, Lake, Mandrill, and Peppers. The experimental results
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in Table 7 revealed that our proposed approach outperforms the other six approaches in
the JPEG compression attack, with an obtained average value of 99%. Furthermore, it
exceeds the other approaches for the median filtering attack, with an average value of
94%. The same improvement occurred in the proposed approach for Gaussian and salt
and pepper noises attacks, with average values of 96% and 99%. For the rotation, Gaussian
noise, speckle noise and Poisson noise, the proposed approach achieved comparable results.
Hence, it can be said that the proposed approach, on average, is better than the compared
state-of-the-art approaches after the exposure of the images to different kinds of attacks.

4. Discussion

Recently, several researchers proposed VC-based watermarking schemes for image
copyright protection [43–45]. Liu and Wu [43] utilized a VC algorithm, DWT, error correc-
tion codes and noise-removing techniques to develop a watermarking approach to protect
the copyright of multiple images and multiple users. Their approach is robust against
several attacks. However, it cannot resist geometrical attacks including scaling and rotation,
and the size of watermark is restrained by the size of the cover image. In the same direction,
Amiri and Moghaddam [44] proposed a novel watermarking scheme to create feature
shares from cover images by using VC, SVD, DWT and scale invariant feature transform
(SIFT). Then, these feature shares were used with watermarks and private keys to compose
the secret share. In case of any conflict, the watermark is recovered by stacking the feature
shares, secret share and private key. This approach was proven to be robust against attacks,
especially rotation and scaling. However, this approach provides copyright protection
for single-user-only (not multiple users) and multiple images. Furthermore, it needs to
send extra information (selected SIFT features) in an insecure channel to the receiver in
order to create the master share. Hence, this approach is regarded as being too insecure
to protect the copyright of the images. Kukreja et al. [45] proposed a novel watermarking
scheme to protect the copyright of multiple users and multiple images by using VC, LBP,
k-means clustering and speeded-up robust features (SURF). In this approach, the master
share is constructed by LBP, SURF and a clustering algorithm. Then, this share is used
with a watermark to create ownership shares that are used later to create the key share. In
case of any dispute, the key share, master share and ownership share are used together
to recreate the watermark to confirm the possession of the images. The key difference
between this approach and the earlier approaches is that it needs only a subset of qualified
owners to recover the watermark, and not all of them, like the other approaches, to assure
the copyright of multiple images and multiple users. To sum up, all of these approaches
have their own limitations and drawbacks in the protection of the copyright of a single
image (or multiple images) or a single user (or multiple users), which can be summarized
as follows:

• The size of the watermark is restrained by the size of the image [43].
• They cannot resist rotation and scale attacks [43].
• The approach is limited only for a single user and multiple images [44].
• Side information should be sent to the other side [44].
• The main aim of these approaches is to protect the copyright of multiple users and

multiple images only [43–45].

Based on the above discussion, the proposed VC-based watermarking scheme can
remedy all of the above limitations, and can be used solely to detect and localize forgeries
in the digital images. In addition, we can use this approach to provide protection for the
copyright of single or multiple digital images. To the best of researchers’ knowledge, this
first approach uses VC-based watermarking to detect and localize image forgeries. Finally,
we have to mention that the described experimental results are based on standard images
collected by the research community under real scenarios, and that they mimic the actual
operational environments. Therefore, we can say that there are no internal or external
threats that may change the validity of these results, but as a future work we are planning
to implement these algorithms in the real environments.
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5. Conclusions, Limitations and Future Work

In this paper, we proposed an approach to detect and localize forgeries in images-
based on a visual cryptography watermarking scheme. The CASIA V 1.0 and SIPI datasets
were used to test the robustness and efficacy of this approach. Several known attacks,
including compression, salt and pepper noise, Gaussian noise, Poisson noise, speckle noise,
sharping, median filtering, rotation and scaling were applied to the digitally forged images
in these datasets. Many experiments were conducted with the aim to evaluate the forgery
detection and localization capability of the mentioned approach. We concluded that our
scheme has good robustness against the aforementioned attacks, and it outperformed the
compared state-of-art approaches. Furthermore, one characteristic that was recognized in
the proposed approach is that all of the recent related works are used for image copyright
protection only, but our approach is the first one proposed to detect and localize forgeries
using a visual cryptography-based watermarking scheme. Hence, it provides a good
alternative approach for image forgery detection and localization, and it can be used for
image copyright protection. The limitations of the proposed approach can be listed as
follows: (1) because our proposed approach is a block-based approach, there is a probability
of the inclusion of some of the pixels of neighboring blocks with the forged blocks; (2)
the proposed approach works fine with geometrical attacks to some extent; however, it
begins to suffer whenever the scaling factor and rotation increase in large amounts. As a
future work, the researchers plan to improve the proposed approach by using segmentation
instead of block division for images, and also to use other available tools to increase the
robustness of the proposed approach.
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