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Abstract: The automated classification of cognitive workload tasks based on the analysis of multi-
channel EEG signals is vital for human–computer interface (HCI) applications. In this paper, we
propose a computerized approach for categorizing mental-arithmetic-based cognitive workload
tasks using multi-channel electroencephalogram (EEG) signals. The approach evaluates various
entropy features, such as the approximation entropy, sample entropy, permutation entropy, dispersion
entropy, and slope entropy, from each channel of the EEG signal. These features were fed to various
recurrent neural network (RNN) models, such as long-short term memory (LSTM), bidirectional
LSTM (BLSTM), and gated recurrent unit (GRU), for the automated classification of mental-arithmetic-
based cognitive workload tasks. Two cognitive workload classification strategies (bad mental
arithmetic calculation (BMAC) vs. good mental arithmetic calculation (GMAC); and before mental
arithmetic calculation (BFMAC) vs. during mental arithmetic calculation (DMAC)) are considered
in this work. The approach was evaluated using the publicly available mental arithmetic task-
based EEG database. The results reveal that our proposed approach obtained classification accuracy
values of 99.81%, 99.43%, and 99.81%, using the LSTM, BLSTM, and GRU-based RNN classifiers,
respectively for the BMAC vs. GMAC cognitive workload classification strategy using all entropy
features and a 10-fold cross-validation (CV) technique. The slope entropy features combined with
each RNN-based model obtained higher classification accuracy compared with other entropy features
for the classification of the BMAC vs. GMAC task. We obtained the average classification accuracy
values of 99.39%, 99.44%, and 99.63% for the classification of the BFMAC vs. DMAC tasks, using
the LSTM, BLSTM, and GRU classifiers with all entropy features and a hold-out CV scheme. Our
developed automated mental arithmetic task system is ready to be tested with more databases for
real-world applications.

Keywords: mental arithmetic task; multi-channel EEG; entropies; slope entropy; recurrent neural
networks; accuracy

1. Introduction

The amount of mental effort performed by each person in response to certain cog-
nitive tasks is called the cognitive workload [1]. The human brain produces different
responses to various cognitive tasks, and these responses can be further investigated by
analyzing the brain’s electrical activity [2]. The information regarding the brain’s electrical
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activity along both spatial and temporal directions can be visualized using multi-channel
electroencephalogram (EEG) signals [3].

Multi-channel EEG signals have been used for various cognitive neuroscience appli-
cations, such as emotion recognition [4], drug effect monitoring [5], the categorization of
sleep stages [6], sleep pathology detection [7], driver drowsiness detection [8], etc.

The mental arithmetic task classification is a type of cognitive workload categorization
task that involves decision making, sequencing, the use of memory, and fact retrieval [9].
Mental arithmetic tasks can be classified into "bad" or "good" quality based on the type of
mathematical calculations performed by the brain, and the responses can be observed in
multi-channel EEG signals [10]. Mental arithmetic task classification provides an alternative
method for the diagnosis of neurological ailments, such as autism spectrum disorder (ASD)
and attention deficit hyperactivity disorder (ADHD) [11,12].

The manual interpretation of this type of cognitive task based on the analysis of
multi-channel EEG signals is a tedious process. Hence, automated algorithms based on the
analysis of multi-channel EEG signals are required for the accurate classification of mental-
arithmetic-based cognitive tasks [9]. The automated classification of mental-arithmetic-
based cognitive workload tasks using various machine learning and deep learning-based
methods is an active and interesting research topic in human–computer interface (HCI)
and cognitive neuroscience.

Related Works In recent years, researchers have used various signal processing and
classifier-based machine learning techniques for the automated classification of mental-
arithmetic-based cognitive tasks. Fatimah et al. [13] extracted the L2 norm, mean, Shannon
entropy, and energy features from the rhythms of each EEG channel. They employed a
support vector machine (SVM) classifier for the classification of the cognitive workload
classes, such as the before mental arithmetic calculation (BFMAC) or rest state and during
mental arithmetic calculation (DMAC) or the active state.

From their study, an accuracy value of 95.80% was obtained using the decision tree-
based classification model. Similarly, in another study, the same authors considered the
Fourier decomposition method to evaluate sub-band signals from the EEG data [14]. They
extracted the variance, energy, and entropy features from the Fourier domain intrinsic
band functions of EEG data and used an SVM classifier to classify the mental arithmetic
tasks, such as BFMAC and DMAC, respectively, and reported an accuracy value of 98.60%.
The stacked long short-term memory (LSTM)-based model was used to classify mental
arithmetic tasks using spectral and instantaneous frequency features obtained from the
multi-channel EEG signals [15].

A classification accuracy of 91.67% was reported using a stacked LSTM classifier for
the BFMAC vs. DMAC classification task. Wang and Sourina [9] extracted features, such
as the power of each rhythm, fractal, auto-regressive model coefficients, and statistical
parameters, from different channels of EEG signals. They used principal component
analysis (PCA) for the dimension reduction of the feature vector and SVM model to classify
mental arithmetic tasks. The method based on multivariate autoregressive model-based
analysis of EEG signal and SVM was also used for mental-arithmetic-based cognitive
workload classification tasks [16].

The methods reported in [13–15] considered the classification schemes, such as BF-
MAC vs. DMAC, using only the statistical and spectral features from EEG signals. Similarly,
the method reported by [9] included a mental arithmetic task recognition framework using
EEG signal features. In [16], the authors considered a three-class classification task, such as
baseline vs. mental arithmetic vs. and mental letter, composed of EEG signal features.

The aforementioned works did not formulate the cognitive workload classification
tasks, such as bad mental arithmetic calculations (BMAC) vs. good mental arithmetic
calculations (GMAC), using the analysis of EEG signals. The above-reported methods
only considered the time-domain and frequency-domain features of EEG signals for the
mental arithmetic task classification. The state-space representation-based entropy features
quantify non-linearity and randomness using EEG signal processing [17], and these fea-
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tures have been used for various applications, such as the detection of generalized and
partial epileptic seizures [17–19], emotion recognition [20], and brain-computer interface
(BCI) [21] applications.

These non-linear entropy features, such as dispersion entropy [22], slope entropy [23],
and other entropy measures [24,25], have not been explored for the mental-arithmetic-based
cognitive task classification using EEG signals. Recently, deep learning approaches, such
as the convolutional neural network (CNN) and recurrent neural network (RNN), have
been extensively used for EEG signal processing applications [26]. A RNN is a deep neural
network model used for the analysis of sequential data in natural language processing
(NLP) and speech recognition applications [27].

This type of network explores the long-range dependencies for the modeling of time-
series data [28]. It considers the information from the previous state and input to evaluate
the output at the present time-step. The LSTM-based RNN model has been used for
mental arithmetic task classification using EEG signal features [15]. The RNN models can
exploit the correlations between the features of EEG signals in different time-steps for the
classification of mental arithmetic tasks.

Other RNN variants, such as bidirectional LSTM (BLSTM) and gated recurrent unit
(GRU) [29], have not been used for the categorization of mental arithmetic tasks, such as
BFMAC vs. DMAC and BMAC vs. GMAC, respectively, using EEG signal features. The
novelty of this work is to explore various state-space domain non-linear entropy features
and RNNs for mental-arithmetic-based cognitive workload task classification using EEG
signals. The major contributions of this work are highlighted as follows:

• The slope entropy, dispersion entropy, permutation entropy, sample entropy, and
approximation entropy measures were computed from each EEG channel.

• The LSTM, BLSTM, and GRU-based RNN models were used to classify mental arith-
metic tasks.

• The classification strategies, such as BMAC vs. GMAC and BFMAC vs. DMAC, are
considered in this work.

The remaining parts of this paper are organized as follows. In Section 2, a description
of the multi-channel EEG database for mental-arithmetic-based cognitive workload classifi-
cation is written. The proposed approach is explained in Section 3. In Section 4, the results
are evaluated using the proposed approach, and a discussion on the results is presented.
Finally, in Section 5, the conclusions of this paper are written.

2. Multi-Channel EEG Database for Mental Arithmetic Tasks

In this work, we used a public database (MIT Physionet EEG mental arithmetic task
dataset) to evaluate the proposed approach [30,31]. This database contains artifact-free
multi-channel EEG recordings from 36 subjects. The multi-channel EEG signals were
recorded using the neurocom monopolar 23 channel data acquisition system [30]. The
electrode setup to record the multi-channel EEG signals is depicted in Figure 1.

The standard international 10–20 system for electrode placement and Ag/Ag-cl elec-
trodes were used for the recording of EEG signals [30]. The electrodes were placed in the
frontal region (F7, F8, Fz, F3, and F4), parietal region (P3, P4, and Pz), occipital region (O1
and O2), central region (C3, C4, and Cz), temporal region (T5, T6, T3, and T4), and anterior
frontal (Fp1 and Fp2), respectively, during EEG recording [13,30]. Independent component
analysis (ICA) was used for the filtering of ocular, cardiac overlapping, and muscle artifacts
from the recorded multi-channel EEG signals.

The clinical protocols, such as no clinical manifestations of cognitive impairment,
no verbal and non-verbal learning disabilities, and normal vision were followed by the
subjects during the EEG recordings [30]. Those subjects who were drug or alcohol addicted,
and with psychiatric disorders were excluded during the recording of the EEG signals.
Each subject performed an arithmetic task such as the subtraction of two numbers. In
this database, multi-channel EEG recordings from each subject were comprised of 180-s



Electronics 2021, 10, 1079 4 of 22

resting-state EEG and 60-s mental arithmetic calculation-based cognitive state EEG data.
The sampling frequency of the multi-channel EEG recordings was 500 Hz.

Figure 1. Electrode setup to record multi-channel EEG data for mental arithmetic tasks.

The multi-channel EEG recordings were divided into two groups—good (G) and bad
(B)—based on the arithmetic calculations performed by each subject. The GMAC class is
interpreted as the subjects who performed good quality arithmetic calculations with the
number of calculations per four minutes as 21± 7.4. Similarly, the BMAC is termed as the
subjects who performed bad quality mental arithmetic calculations with the number of
calculations per four minutes as 7± 3.6.

The annotations or the count quality of each multi-channel EEG recording are given in
the database. The symbols ‘B’ and ‘G’ denote bad and good mental-arithmetic-based EEG
recordings based on the number of subtractions performed by the subject. The annotations
of the multi-channel EEG recordings for all subjects before performing any mental arith-
metic calculations (BFMAC or rest state) and during the mental arithmetic calculations
(DMAC or active state) are also given in the database. In this work, the cognitive task
classification strategies, such as BMAC vs. GMAC and BFMAC vs. DMAC, are studied.

3. Method

In this section, we describe the proposed method for the automated classification
of BFMAC vs. DMAC and BMAC vs. GMAC using multi-channel EEG signals. The
flowchart for the mental arithmetic calculation-based cognitive workload classification task
is depicted in Figure 2. The step-by-step procedure for the automated categorization of
mental arithmetic calculation-based cognitive workload classification tasks is as follows:

• Segmentation of multi-channel EEG recordings into multi-channel EEG frames.
• Evaluation of the state-space domain non-linear entropy features from each multi-

channel EEG frame.
• Classification of mental arithmetic tasks using RNN models.

We describe the detailed theory of each block of the flowchart in the following subsec-
tions.
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Multi-channel EEG Recording

Segmentation of multi-channel EEG
recording into frames

Slope entropy

features

Dispersion entropy

features

Permutation entropy

features

Sample entropy

features

Approximation entropy

features

Recurrent Neural Network (RNN)

(LSTM, BLSTM, GRU)

95-dimensional feature vector

Classification
Startegy 1

Classification
Startegy 2

BMAC GMAC BFMAC DMAC

Figure 2. Flowchart of the proposed approach for the automated classification of mental arithmetic tasks.

3.1. Segmentation of Multi-Channel EEG Recordings

In this study, we considered a non-overlapping window of 2 s duration (2× 500 = 1000
samples) for segmenting each multi-channel EEG recording. A total of 30 frames were
evaluated from each multi-channel EEG recordings. The total number of multi-channel
EEG frames considered in this work was 36× 30 = 1080. Figures 3 and 4 show the EEG
frames of the Fp1 and O1 channels for BMAC (Figure 3a,b)) and GMAC (Figure 3c,d) tasks
as well as DMAC (Figure 4a,b) and BFMAC (Figure 4c,d) tasks. We observed significant
differences in the amplitude values and temporal characteristics of EEG signals between
BMAC- and GMAC-, and between BFMAC- and DMAC-based cognitive tasks.

A study [32] reported that the positive level amplitude increased during mental
arithmetic tasks. The temporo-centro-parietal activity in multi-channel EEG signal in-
creased during the mental arithmetic calculation-based active state compared to the rest
state [32,33]. These physiological changes affect both the temporal and spatial characteris-
tics of multi-channel EEG signals. Therefore, the features evaluated from the EEG signals
can be used for the automated classification of mental-arithmetic-based cognitive tasks.
In the following subsection, the entropy features evaluated from the multi-channel EEG
frames are described.
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Figure 3. (a) Fp1 channel EEG signal corresponding to a BMAC task. (b) O1 channel EEG signal corresponding to a BMAC
task. (c) Fp1 channel EEG signal corresponding to a GMAC task. (d) O1 channel EEG signal corresponding to a GMAC task.
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Figure 4. (a) Fp1 channel EEG signal corresponding to a DMAC task. (b) O1 channel EEG signal corresponding to a
DMAC task. (c) Fp1 channel EEG signal corresponding to a BFMAC task. (d) O1 channel EEG signal corresponding to a
BFMAC task.

3.2. Non-Linear Entropy Features

In this study, we computed five entropy measures, viz. the slope entropy [23], dis-
persion entropy [22], permutation entropy [24], sample entropy [25], and approximation
entropy [34], from each EEG channel for the classification of mental-arithmetic-based
cognitive workload tasks. The slope entropy was evaluated using the difference between
the consecutive amplitude values of each embedded vector extracted from the signal [23].
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Here, we evaluated the slope entropy from each EEG channel. The step-by-step procedure
to evaluate the slope entropy for ith channel EEG signal was as follows [23]:

Step-1: The ith channel EEG signal is denoted as xi = [xi(n)]Nn=1. The jth embedded vector
extracted from the ith channel EEG signal is given by yi,L

j = [xi(j), xi(j + 1), . . . , xi(j + L− 1)]

where L is the embedded dimension. The factor, yi,L
j is termed as the jth embedded vector

and j = 1, 2,. . . , N − L + 1.
Step-2: The difference between the consecutive sample values of each embedded vector
of ith channel EEG signal is evaluated, and the slope signal for jth embedded vector is
evaluated as follows:

di,L
j (k) = yi,L

j (k + 1)− yi,L
j (k) (1)

where k = 1, 2. . . L− 1. In vector form, the slope signal jth embedded vector is denoted
as follows:

di,L
j = [di,L

j (1), di,L
j (2), . . . , di,L

j (L− 1)] (2)

Step-3: Each element of the slope signal for the jth embedded vector of ith channel is
mapped to negative and positive integer values, and this mapping is given as follows:

• If di,L
j (k) < −ζ, then assign di,L

j (k) = −2.

• If −ζ ≤ di,L
j (k) < −η, then assign di,L

j (k) = −1.

• If −η ≤ di,L
j (k) < η, then assign di,L

j (k) = 0.

• If η ≤ di,L
j (k) < ζ, then assign di,L

j (k) = 1.

• If di,L
j (k) > ζ, then assign di,L

j (k) = 2.

η and ζ are the slope entropy parameters, and ζ > η.

Step-4: For jth embedded vector of the ith channel, the mapped pattern containing the
positive and negative integer values for the EEG signal is evaluated and is denoted as πj.
Step-5: The mapped patterns for all embedded vectors are evaluated. The relative fre-
quency (RF) vector is computed using the pattern matching concept by considering all
patterns and is denoted as ri = [ri(1), ri(2), . . . , ri(T)], where T is the total number of
elements in the RF vector.
Step-6: The probability evaluated using the RF vector for ith channel is given as fol-
lows [23]:

Pi
t =

ri(t)

∑T
t=1 ri(t)

(3)

Thus, the slope entropy of ith channel EEG signal is evaluated as follows:

SlopeENi = −
T

∑
t=1

Pi
t log2Pi

t (4)

Similarly, the approximation entropy (AppEN), permutation entropy (PermEN), dis-
persion entropy (DisEn), and sample entropy (SampEN) features were also calculated from
each EEG channel, and for the ith EEG channel, these features are denoted as AppENi,
PermENi, DesENi, and SampENi, respectively. For more details on AppEN, PermEN,
DesEN, and SampEN, we encourage readers to refer to [22,24,25,34].

As five entropy features were computed from each EEG channel, a total of 95 di-
mensional feature vectors were obtained from each multi-channel EEG frame. This 95-
dimensional feature vector sequence, z(t) was used as the input to the RNN-based model
for classification.

4. Recurrent Neural Network (RNN)

In this study, we used three RNN variants—namely, LSTM, BLSTM, and GRU. The
block diagram of the mental arithmetic task classification using the LSTM, BLSTM, and GRU
classifiers is shown in Figure 5. The classification strategies, such as BMAC vs. GMAC and
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BFMAC vs. DMAC, were used in this work. The feature matrix is denoted as Z ∈ Rq×s where
q denotes the number of instances or time-steps and s = 95 denotes the number of features.
The training and the test instances for each type of RNN classifier were selected using both
hold-out and 10-fold cross-validation (CV) techniques [6,35].

For hold-out CV, we considered 60%, 10%, and 30% of the instances for training, valida-
tion, and testing, respectively, for the LSTM, BLSTM, and GRU models [35]. The numbers of
instances used for each class are shown in Table 1. From this table, for the BMAC vs. GMAC
classification task, there is a class imbalance problem. We considered random over-sampling
during the training of each type of RNN classifier to overcome the class imbalance prob-
lem [36]. The LSTM classifier is a type of RNN [37] and has been used in different biomedical
applications [28,38,39].

The LSTM layer mainly comprises of the cell, candidate value, input gate, forget
gate, and output gate. The cell is considered as a memory and is used to remember the
information at different time-intervals [37]. Similarly, the information flow from and to
the cell is performed using the gates. The architecture of the LSTM network is shown
in Figure 6. In LSTM, the output at the tth time-step was evaluated using the input z(t)
and the activation g(t− 1) from the (t− 1)th time-step [40]. Here, we denote different
parameters, such as memory cells as m(t), candidate values as m̃(t), forget gates as FG,
update gates as UG, output gates as OG, and outputs at the tth level step as g(t) [37].
The mathematical expressions of LSTM for the forget gate, update gate, candidate value,
memory cell, and output are given as follows: [37]:

FG(t) = f (WFG.[g(t− 1), z(t)] + bFG) (5)

UG(t) = f (WUG.[g(t− 1), z(t)] + bUG) (6)

m̃(t) = tanh(Wm.[g(t− 1), z(t)] + bm) (7)

m(t) = FG(t)⊗M(t− 1) + UG(t)⊗ m̃(t) (8)

OU(t) = f (WOU.[g(t− 1), z(t)] + bOU) (9)

g(t) = OU(t)⊗ tanh(m(t)) (10)

where WFG and bFG are the weight and bias values for forget gate. Similarly, WUG and the
bUG are termed as the weight and the bias values for update gate. Moreover, WOU and bOU
are the weight and bias values at the output gate. ‘ f ’ is denoted as the sigmoid activation
function. The operator ⊗ is termed as the Hadamard product [41].

Table 1. Number of multi-channel EEG instances used in this work.

Classes BFMAC DMAC BMAC GMAC

Number of instances 540 540 300 780

Input Feature vector as a sequence

LSTM/ BLSTM/GRU
Layer

(Number of hidden

neurons=nh)

Fully-connected

Layer

Softmax

Layer

Classification

Layer

Class 1
(BMAC/BFMAC)

Class 2
(GMAC/DMAC)

. . . .

Figure 5. Classification of mental arithmetic task using EEG feature vector sequence with different RNN variants.



Electronics 2021, 10, 1079 9 of 22

Figure 6. Block-diagram of a single LSTM cell.

BLSTM considers both past and future time-step information to model the current
time step for RNN model [42]. It consists of both forward and backward LSTM parts. The
forward LSTM mathematical expressions are same as in Equations (5)–(10). For backward
LSTM, however, the mathematical expressions of forget gate, update gate, candidate value,
memory cell and output gate are given as follows [42]:

FG(t) = f (WFG.[g(t + 1), z(t)] + bFG) (11)

UG(t) = f (WUG.[g(t + 1), z(t)] + bUG) (12)

m̃(t) = tanh(Wm.[g(t + 1), z(t)] + bm) (13)

m(t) = FG(t)⊗M(t + 1) + UG(t)⊗ m̃(t) (14)

OU(t) = f (WOU.[g(t + 1), z(t)] + bOU) (15)

g(t) = OU(t)⊗ tanh(m(t)) (16)

The GRU is the simplified version of LSTM, which consists of two gates—namely, the
update gate and the reset gate [43]. The GRU model architecture is shown in Figure 7. The
mathematical expressions for the reset gate (RG), update gate (UG), candidate value, m̃(t),
and memory cell m(t) at the tth time-step are given below [43]:

RG(t) = f (WRG.[m(t− 1), z(t)] + bRG) (17)

UG(t) = f (WUG.[m(t− 1), z(t)] + bUG) (18)

m̃(t) = tanh(Wm.[RG(t)⊗M(t− 1), z(t)] + bm) (19)

m(t) = (1−UG(t))⊗m(t− 1) + UG(t)⊗ m̃(t) (20)

In this study, the classification model shown in Figure 4 comprises the input layer,
RNN variant layer, fully-connected (FC) layer, softmax layer, and classification layer. The
input feature vector at the tth time-step is denoted as z(t). The LSTM/BLSTM/GRU layer
was used to process the input feature sequence. The number of hidden neurons considered
in this layer is denoted as nh. The output obtained in the LSTM/BLSTM layer is denoted as
g = [g(t)]Tt=1 where T is the total number of time-steps considered for the LSTM, BLSTM,
and GRU layers. For the GRU layer, the output is the same as the memory, m(t).

The FC layer was used to convert the LSTM/BLSTM/GRU layer activation to a
feature vector containing two features. This feature vector for the ith instance is denoted as
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FVi = [ f 1i, f 2i]. The softmax based activation function was used in the classification layer.
The kth output neuron activation for the tth time-step was evaluated as follows:

P̃i
k =

eFVi
k

∑K
k=1 eFVi

k
(21)

where K = 2 is the number of classes. The binary cross-entropy function was used as the
cost function for the LSTM, BLSTM, and GRU classifiers [35]. The training parameters used
for the LSTM, BLSTM, and GRU models are shown in Table 2. The Adam optimizer was
used for the evaluation of the weight and bias parameters. The performance of three RNN
variants for the classification of mental arithmetic calculation tasks was evaluated using
the accuracy, sensitivity, F1-score, and specificity measures [35].

z(t)

tanh

m(t)

UG(t)
1-UG(t)

UG

m(t-1)

RG

RG(t)

Figure 7. Block-diagram of a single GRU cell.

Table 2. Training parameters of LSTM-, BLSTM- and GRU-based classifiers for the automated classification of both BMAC
vs. GMAC and BFMAC vs. DMAC tasks.

Classifiers CV Hidden Neurons Epochs Mini-Batch Size L2-Regularization

LSTM hold-out 256 200 256 0.001
BLSTM hold-out 128 200 128 0.001

GRU hold-out 256 200 128 0.001
LSTM 10-fold 512 200 256 0.001

BLSTM 10-fold 512 200 256 0.001
GRU 10-fold 512 200 256 0.001

5. Results and Discussion

In this section, we discuss the statistical analysis of the selected entropy features
for BMAC vs. GMAC and BFMAC vs. DMAC classification tasks and the results of
classification using RNN-based models. Student’s t-test was used to evaluate the statistical
significance of the entropy features of the EEG signals for the BFMAC vs. DMAC and
BMAC vs. GMAC classification tasks [44]. The significant level for the t-test of the entropy
features of each channel for both classification tasks was considered as 0.05.

Box-plots showing the within-class variations for the Fp1-channel EEG signal disper-
sion entropy, F7-channel EEG signal slope entropy, C4-channel EEG signal approximation
entropy, O1-channel EEG signal sample entropy, and O1-channel EEG signal permutation
entropy features for the BFMAC vs. DMAC classification task are shown in Figure 8a–e,
respectively. From these plots, the median values of each entropy feature were different
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for the BFMAC and DMAC classes. Similarly, we show the mean and standard deviation
values of different entropy features for the Fp1, F7, C4, and O1-channel EEG signals in
Table 3.

For channel Fp1, the p-values of the approximation entropy, dispersion entropy,
sample entropy, and slope entropy features were less than 0.05. Significant differences in
the mean values of the Fp1 channel EEG signal entropy features in between the BFMAC
and DMAC classes were also observed. Moreover, for the F7-channel EEG signal, the
p-values of all entropy features were found to be less than 0.05.

For the C4-channel EEG signal, except for the dispersion entropy, other entropy
features showed p-values of less than 0.05, and these selected features were clinically
significant for the classification of BFMAC vs. DMAC tasks. For the O1-channel EEG signal,
higher differences in the mean values of the sample entropy and permutation entropy were
observed between the BFMAC and DMAC classes. Similarly, statistical variations were
also observed for the entropy features of other EEG channels.

Table 3. Statistical analysis of the entropy features obtained using the Fp1, F7, C4, and O1 channel
EEG signals for the automated classification of the BFMAC and DMAC classes.

Channel Entropy Class
(BFMAC)

Class
(DMAC) p-Value

Fp1

Approximate Entropy 0.075± 0.036 0.069± 0.032 0.0017
Dispersion Entropy 3.134± 0.613 2.916± 0.906 2.96× 10−6

Permutation Entropy 1.977± 0.382 1.994± 0.412 0.4607
Sample Entropy 0.067± 0.032 0.061± 0.028 0.0002
Slope Entropy 0.071± 0.031 0.077± 0.037 0.0081

F7

Approximate Entropy 0.071± 0.029 0.075± 0.030 0.0159
Dispersion Entropy 3.096± 0.545 2.979± 0.905 0.0092
Permutation Entropy 1.950± 0.376 2.011± 0.426 0.0109
Sample Entropy 0.063± 0.026 0.067± 0.026 0.0339
Slope Entropy 0.086± 0.027 0.078± 0.024 2.61× 10−7

C4

Approximate Entropy 3.300± 0.540 3.049± 0.881 1.37× 10−8

Dispersion Entropy 1.893± 0.388 1.896± 0.414 0.8871
Permutation Entropy 0.079± 0.024 0.074± 0.019 2.71× 10−5

Sample Entropy 0.085± 0.021 0.080± 0.020 7.35× 10−5

Slope Entropy 3.238± 0.493 3.008± 0.867 6.40× 10−8

O1

Approximate Entropy 1.864± 0.361 1.873± 0.408 0.7143
Dispersion Entropy 0.069± 0.019 0.067± 0.018 0.0337
Permutation Entropy 0.085± 0.020 0.076± 0.020 4.75× 10−15

Sample Entropy 3.247± 0.487 2.976± 0.859 1.3610−10

Slope Entropy 1.826± 0.365 1.847± 0.429 0.3873

Similarly, the box-plots of the Fp1-channel approximation entropy, Fp1-channel sam-
ple entropy, F7-channel dispersion entropy, C4-channel slope entropy, and O1-channel
permutation entropy features for the BMAC and GMAC classes are depicted in Figure 9a–e,
respectively. The statistical analysis of all entropy features of the Fp1, F7, C4, and O1-
channel EEG signals for the BMAC and GMAC classes are shown in Table 4. From the
table, the Fp1-channel approximation entropy, dispersion entropy, sample entropy, and
permutation entropy features had higher mean value differences between the BMAC and
GMAC classes when compared to the slope entropy features.

Similarly, the F7-channel dispersion entropy, permutation entropy, and slope en-
tropy features had p-values less than 0.05. For the C4-channel EEG signal, higher mean
value differences in the slope entropy, approximation entropy, permutation entropy, and
sample entropy features were observed. The p-values of these entropy features were
found to be less than 0.05 when compared to the dispersion entropy features. Similarly,
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for the O1-channel EEG signal, the dispersion entropy, permutation entropy, and slope
entropy features had p-values that were found to be less than 0.05 for the BMAC vs.
GMAC classification.

The p-values of the approximation entropy and slope entropy features of the O1-
channel EEG signals were more than 0.05 for the BMAC vs. GMAC classification task.
From the statistical analysis results, various entropy features computed from different
channel EEG signals effectively captured the diagnostic information for the automatic
classification of mental arithmetic cognitive tasks.
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Figure 8. (a) Box-plots of the Fp1-channel EEG signal dispersion entropy features obtained for the BFMAC and DMAC
classes. (b) Box-plots of the F7-channel EEG signal slope entropy features obtained for the BFMAC and DMAC classes.
(c) Box-plots of the C4-channel EEG signal approximation entropy features obtained for the BFMAC and DMAC classes.
(d) Box-plots of the O1-channel EEG signal sample entropy features obtained for the BFMAC and DMAC classes. (e) Box-
plots of the O1-channel EEG signal permutation entropy features obtained for the BFMAC and DMAC classes.

The classification performance of the GRU, LSTM, and BLSTM models for the BMAC
vs. GMAC classification tasks using hold-out CV is shown in Table 5. In this work, five
trial-based random hold-out CVs were used, and the mean and standard deviation values
of each performance measure were evaluated [45]. We observed from this table that all
RNN models obtained accuracy, sensitivity, precision, specificity, and F-score values of
more than 98% for the BMAC vs. GMAC classification task.

In Table 6, we show the performance of RNN classifiers using 10-fold CV-based multi-
channel EEG instance selection for the BMAC vs. GMAC classification task. For the GRU
model, the accuracy, sensitivity, specificity, precision, and F-score values were more than
98% for each fold. The average values of all performance measures were more than 98%
for each fold. The average values of all performance measures were more than 99% for the
GRU model. Similarly, for the BLSTM model, the accuracy, sensitivity, and F-score values
were higher than 98% in each fold. However, the specificity values for fold 3 and fold 4
were 96.77% and 97.00%, respectively.

For the GRU model, the specificity value at fold 1 was 96.43% and 100% for rest of the
folds using all entropy features. The classification performance obtained using the LSTM,
BLSTM, and GRU models with each entropy feature and all EEG channels is shown in
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Table 7. The slope entropy features combined with each type of RNN model obtained an
average accuracy value of more than 93% when compared to other entropy features. The
dispersion entropy features coupled with each RNN model also demonstrated average
accuracy values of more than 99% for the sensitivity, precision, and specificity, and the
F-score values of each type of RNN model were high using slope entropy features when
compared to other entropy features extracted from multi-channel EEG signals.

The classification performance of the LSTM, BLSTM, and GRU models was evaluated
using the entropy features of each EEG channel, and this is shown in Table 8. The entropy
features evaluated using the O2, Fz, Cz, and Pz channel EEG signals obtained average
accuracy values of more than 84% using each type of RNN model when compared to the
entropy features of other EEG channels. Therefore, the O2, Fz, Cz, and Pz EEG channels
were found to be significant for the classification of mental arithmetic tasks.

Table 4. Statistical analysis of the entropy features obtained for the Fp1, F7, C4, and O1-channel EEG
signals for the automated classification of the BMAC and GMAC classes.

Channel Entropy Class
(BMAC)

Class
(GMAC) p-Value

Fp1

Approximate Entropy 0.065± 0.030 0.076± 0.041 4.22× 10−5

Dispersion Entropy 2.707± 1.052 3.155± 0.660 4.30× 10−10

Permutation Entropy 1.937± 0.375 2.009± 0.393 0.0196
Sample Entropy 0.057± 0.027 0.068± 0.037 5.08× 10−5

Slope Entropy 0.071± 0.037 0.070± 0.035 0.7494

F7

Approximate Entropy 0.070± 0.030 0.074± 0.031 0.1079
Dispersion Entropy 2.758± 1.060 3.144± 0.564 2.36× 10−8

Permutation Entropy 1.930± 0.377 1.994± 0.397 0.0381
Sample Entropy 0.062± 0.026 0.066± 0.027 0.0805
Slope Entropy 0.083± 0.024 0.078± 0.029 0.0186

C4

Approximate Entropy 2.956± 1.101 3.237± 0.497 4.51× 10−5

Dispersion Entropy 1.853± 0.364 1.892± 0.390 0.1959
Permutation Entropy 0.078± 0.021 0.074± 0.020 0.0040
Sample Entropy 0.083± 0.021 0.078± 0.022 0.0098
Slope Entropy 2.888± 1.072 3.166± 0.481 3.52× 10−5

O1

Approximate Entropy 1.848± 0.357 1.867± 0.364 0.5031
Dispersion Entropy 0.069± 0.020 0.065± 0.018 0.0020
Permutation Entropy 0.083± 0.021 0.074± 0.020 3.37× 10−8

Sample Entropy 2.920± 1.080 3.116± 0.472 0.0037
Slope Entropy 1.821± 0.365 1.807± 0.373 0.6325
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Figure 9. (a) Box-plots of the Fp1-channel approximation entropy features obtained for the BMAC and GMAC classes.
(b) Box-plots of the Fp1-channel sample entropy features obtained for the BMAC and GMAC classes. (c) Box-plots of the
F7-channel dispersion entropy features obtained for the BMAC and GMAC classes. (d) Box-plots of the C4-channel slope
entropy features obtained for the BMAC and GMAC classes. (e) Box-plots of the O1-channel permutation entropy features
obtained for the BMAC and GMAC classes.

Table 5. The classification performance obtained using RNN-based classifiers with the hold-out CV approach for the
automated classification of the BMAC vs. GMAC task.

Model Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F-Score (%)

GRU 99.20± 0.47 98.22± 2.02 99.32± 0.77 99.57± 0.43 99.45± 0.32
LSTM 99.32± 0.51 98.00± 2.14 99.24± 0.80 99.83± 0.23 99.53± 0.35
BLSTM 99.69± 0.31 99.56± 0.61 99.83± 0.23 99.74± 0.38 99.79± 0.21

Table 6. The classification performance obtained using RNN classifiers with the 10-fold CV approach for the automated
classification of the BMAC vs. GMAC task.

Model Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average (µ ± σ)

GRU

Accuracy (%) 99.07 100.0 100.0 100.0 100.0 100.0 99.07 100.0 100.0 100.0 99.81± 0.39
Specificity (%) 96.43 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.64± 1.23
Precision (%) 98.77 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.88± 0.39
Sensitivity (%) 100.0 100.0 100.0 100.0 100.0 100.0 98.70 100.0 100.0 100.0 99.87± 0.41
F-score (%) 99.38 100.0 100.0 100.0 100.0 100.0 98.35 100.0 100.0 100.0 99.87± 0.27

LSTM

Accuracy (%) 100.0 99.07 100.0 100.0 100.0 100.0 100.0 99.07 100.0 100.0 99.81± 0.39
Specificity (%) 100.0 96.30 100.0 100.0 100.0 100.0 100.0 96.30 100.0 100.0 99.26± 1.56
Precision (%) 100.0 98.78 100.0 100.0 100.0 100.0 100.0 98.78 100.0 100.0 99.76± 0.51
Sensitivity (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 + 0.00
F-score (%) 100.0 99.39 100.0 100.0 100.0 100.0 100.0 99.39 100.0 100.0 99.88± 0.26
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Table 6. Cont.

Model Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average (µ ± σ)

BLSTM

Accuracy (%) 100.0 99.07 99.07 97.22 100.0 99.07 100.0 100.0 100.0 100.0 99.43± 0.90
Specificity (%) 100.0 100.0 96.77 97.00 100.0 96.00 100.0 100.0 100.0 100.0 98.98± 1.67
Precision (%) 100.0 100.0 98.72 96.30 100.0 98.81 100.0 100.0 100.0 100.0 99.38± 1.20
Sensitivity (%) 100.0 98.57 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.86± 0.45
F-score (%) 100.0 99.28 99.35 98.11 100.0 99.40 100.0 100.0 100.0 100.0 99.61± 0.61

Table 7. The classification performance obtained for RNN classifiers for selected entropy features using the hold out CV
approach for the BMAC vs. GMAC classification task.

Model Feature Selection Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F-Score (%)

GRU

Approximation entropy 83.40± 1.24 76.44± 4.67 90.51± 1.64 86.07± 1.62 88.22± 0.87
Sample entropy 90.74± 1.57 83.11± 4.40 93.54± 1.58 93.68± 1.40 93.60± 1.07
Permutation entropy 88.27± 1.85 82.22± 6.76 93.04± 2.46 90.60± 0.52 91.79± 1.19
Dispersion entropy 91.05± 0.90 84.00± 2.17 93084± 0.80 93.76± 0.78 93.80± 0.62
Slope entropy 93.83± 1.23 87.33± 4.55 95.22± 1.57 96.32± 1.97 95.75± 0.87

LSTM

Approximation entropy 84.88± 1.20 78.22± 5.70 91.33± 1.88 87.44± 2.94 89.29± 0.98
Sample entropy 88.02± 1.12 81.11± 3.93 92.61± 1.26 90.68± 2.27 91.62± 0.88
Permutation entropy 91.85± 1.08 86.44± 2.78 94.76± 1.19 93.93± 1.19 94.33± 0.75
Dispersion entropy 90.06± 1.37 81.78± 3.39 93.02± 1.24 93.25± 0.93 93.13± 0.93
Slope entropy 95.62± 0.74 93.33± 1.57 97.41± 0.60 96.50± 0.63 96.95± 0.51

BLSTM

Approximation entropy 84.69± 1.55 78.44± 4.56 91.35± 1.57 87.09± 2.68 89.14± 1.22
Sample entropy 88.15± 1.75 82.67± 2.30 93.13± 0.86 90.26± 2.37 91.66± 1.33
Permutation entropy 91.79± 1.21 84.22± 4.67 94.01± 1.67 94.70± 1.64 94.33± 0.83
Dispersion entropy 90.25± 1.85 83.11± 2.98 93.47± 1.11 92.99± 2.02 93.22± 1.33
Slope entropy 94.20± 0.96 91.78± 1.86 96.79± 0.68 95.13± 1.67 95.94± 0.70

Table 8. Summary of the performance (%) obtained using each EEG channel and RNN-based classifiers for the automated
classification of the BMAC vs. GMAC task.

EEG Channel Fp1 Fp2 F3 F4 F7 F8 T3 T4 C3 C4

GRU 62.22± 2.37 62.96± 10.72 55.31± 3.35 66.33± 3.28 64.51± 5.82 59.51± 7.53 59.51± 7.53 66.42± 5.87 67.10± 3.81 63.95± 2.96
LSTM 64.51± 2.41 65.86± 3.07 62.10± 5.73 63.95± 2.85 59.32± 3.19 65.31± 4.17 61.05± 4.56 66.67± 4.81 63.77± 5.73 57.84± 3.46
BLSTM 63.02± 3.10 67.10± 3.04 63.27± 3.78 64.69± 1.23 62.04± 2.89 68.15± 3.51 64.38± 4.90 64.63± 6.90 65.49± 1.06 62.10± 1.98

EEG Channel T5 T6 P3 P4 O1 O2 Fz Cz Pz

GRU 68.40± 4.04 62.96± 5.78 60.74± 9.47 60.49± 7.03 61.54± 3.09 85.74± 1.06 93.89± 1.14 89.51± 1.15 93.58± 0.86
LSTM 64.81± 5.59 69.81± 6.52 61.98± 5.79 61.23± 9.17 63.02± 5.31 86.48± 1.79 95.31± 0.51 89.94± 0.64 92.59± 1.18
BLSTM 64.88± 3.95 59.01± 9.40 61.05± 6.92 64.75± 4.76 62.16± 5.45 84.88± 2.07 94.14± 1.76 90.68± 1.22 92.22± 1.53

The plots of accuracy versus the number of iterations obtained using the LSTM,
BLSTM, and GRU classifiers for the automated classification of the BFMAC vs. DMAC
tasks are shown in Figures 10–12, respectively. Both the training and validation accuracy
values were 100% for the LSTM classifier. Similarly, for the BLSTM classifier, the training
and validation accuracy values obtained were 100% and 98.54% after 200 epochs. The
training and validation accuracy values were more than 100% using the GRU classifier for
the automated classification of the BFMAC vs. DMAC tasks.

Similar variations were also observed in plots of accuracy versus the number of
iterations obtained using the LSTM, BLSTM, and GRU classifiers for the automated classifi-
cation of the BMAC- vs. GMAC-based cognitive workload tasks. We also demonstrated
the confusion matrices obtained using the LSTM, BLSTM, and GRU classifiers with one
trial of hold-out CV for the automated classification of the BFMAC vs. DMAC and BMAC
vs. GMAC tasks. In Figure 13a–c, we show the confusion matrices obtained using the
LSTM, BLSTM, and GRU classifiers for the automated classification of the BFMAC vs.
DMAC tasks.

The confusion matrix plots obtained using the LSTM, BLSTM, and GRU classifiers
for the automated classification of both the BMAC vs. GMAC tasks are depicted in
Figure 13d–f, respectively. The true positive and true negative values were high for all
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three RNN classifiers for the BFMAC vs. DMAC classification tasks. The LSTM and BLSTM
classifiers yielded higher false-positive values compared with the GRU classifier for the
automated classification of the BMAC vs. GMAC tasks. We also evaluated the performance
of the LSTM, BLSTM, and GRU classifiers using subject-independent CV cases for the
automated classification of the BMAC vs. GMAC tasks.

The subject-wise accuracy values using the LSTM, BLSTM, and GRU classifiers from
multichannel EEG instances are shown in Figure 14a–c. From these figures, the average
accuracy values obtained using subject-independent CV for the LSTM, BLSTM, and GRU
classifiers were 58.70%, 55.74%, and 60.55%, respectively. The GRU classifier obtained
the highest classification accuracy with subject-independent CV over other types of RNN
classifiers for the classification of the BMAC vs. GMAC tasks.

Figure 10. Plots of accuracy versus the number of iterations obtained using the LSTM classifier with hold-out CV for the
automated classification of the BFMAC vs. DMAC tasks.

Figure 11. Plots of accuracy versus the number of iterations obtained using the BLSTM classifier with hold-out CV for the
automated classification of the BFMAC vs. DMAC tasks.
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Figure 12. Plots of accuracy versus number of iterations obtained using GRU classifier with hold-out CV for automated
classification of BFMAC vs. DMAC tasks.
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Figure 13. (a) Confusion matrix of the LSTM classifier for the BFMAC vs. DMAC classification task using one trial hold-out
CV, (b) Confusion matrix of the BLSTM classifier for the BFMAC vs. DMAC classification task using one trial hold-out
CV, (c) Confusion matrix of the GRU classifier for the BFMAC vs. DMAC classification task using one trial hold-out
CV, (d) Confusion matrix of the LSTM classifier for the GMAC vs. BMAC classification task using one trial hold-out CV,
(e) Confusion matrix of the BLSTM classifier for the GMAC vs. BMAC classification task using one trial hold-out CV,
(f) Confusion matrix of the GRU classifier for the GMAC vs. BMAC classification task using one trial hold-out CV.
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Figure 14. (a) Accuracy values obtained for the LSTM classifier using subject independent CV for the automated classification
of teh BMAC vs. GMAC task. (b) Accuracy values obtained for the BLSTM classifier using subject independent CV for the
automated classification of the BMAC vs. GMAC task. (c) Accuracy values obtained for the GRU classifier using subject
independent CV for the automated classification of the BMAC vs. GMAC task.

The classification results evaluated using each type of RNN model with all entropy
features of multi-channel EEG signals for the BFMAC vs. DMAC classification task with
hold-out CV are shown in Table 9. The LSTM, BLSTM, and GRU models obtained accuracy
values of more than 99% using all entropy features of the multi-channel EEG signals for
the BFMAC vs. DMAC classification task. The results obtained using various types of
RNN-based models with all entropy features of multi-channel EEG with 10-fold CV are
shown in Table 10.

From these results, the LSTM and BLSTM models obtained accuracy, sensitivity, and
specificity values of more than 97% for each fold. However, the specificity of the GRU
-based classifier was less than 97% for fold 3 and fold 6. The average accuracy of each
type of RNN classifier was more than 99% for the BFMAC- vs. DMAC-based cognitive
workload classification task. Therefore, the entropy features computed using multi-channel
EEG demonstrated higher classification performance for the classification of cognitive
workload tasks.

Table 9. The classification performance obtained using the RNN-based classifiers with the hold out CV approach for the
automated classification of the BFMAC vs. DMAC task.

Model Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F-Score (%)

GRU 99.63± 0.26 99.62± 0.34 99.63± 0.34 99.62± 0.33 99.63± 0.26
LSTM 99.38± 0.58 99.88± 1.88 98.91± 1.15 99.88± 0.28 99.39± 0.57
BLSTM 99.44± 0.46 99.62± 0.55 99.63± 0.54 99.26± 0.80 99.44± 0.46
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Table 10. The classification performance obtained using RNN-based classifiers with the 10-fold CV approach for the
automated classification of the BFMAC vs. DMAC task.

Model Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average (µ ± σ)

LSTM

Accuracy (%) 99.07 100 100 100 100 99.07 100 100 99.07 100 99.72± 0.44
Specificity (%) 100 100 100 100 100 98.08 100 100 100 100 99.80± 0.60
Precision (%) 100 100 100 100 100 98.25 100 100 100 100 99.82± 0.55
Sensitivity (%) 97.96 100 100 100 100 100 100 100 98.11 100 99.60± 0.82
F-score (%) 98.97 100 100 100 100 99.12 100 100 99.05 100 99.71± 0.46

BLSTM

Accuracy (%) 100 99.07 100 100 100 100 99.07 100 100 99.07 99.72± 0.44
Specificity (%) 100 100 100 100 100 100 98.11 100 100 100 99.81± 0.59
Precision (%) 100 100 100 100 100 100 98.21 100 100 100 99.82± 0.56
Sensitivity (%) 100 98.33 100 100 100 100 100 100 100 98.25 99.65± 0.72
F-score (%) 100 99.16 100.0 100.0 100.0 100.0 99.10 100 100 99.12 99.73± 0.42

GRU

Accuracy (%) 100 99.07 99.07 97.22 100 99.07 100 100 100 100 99.43± 0.90
Specificity (%) 100 100 96.77 97.00 100 96.00 100 100 100 100 98.98± 1.67
Precision (%) 100 100 98.72 96.30 100 98.81 100 100 100 100 99.38± 1.20
Sensitivity (%) 100 98.57 100 100 100 100 100 100 100 100 99.86± 0.45
F-score (%) 100 99.28 99.35 98.11 100 99.40 100 100 100 100 99.61± 0.61

We compared the classification results obtained using our approach with existing
methods to classify mental arithmetic calculation-based cognitive tasks using multi-channel
EEG signals obtained from the same database. The comparison results are shown in
Table 11. The existing methods used features, such as the mean amplitude, variance,
Shannon entropy, energy, other statistical features, and various supervised learning-based
classifiers, such as SVM, LSTM, and decision trees, for the BFMAC vs. DMAC based
cognitive task classification scheme.

The L2-norm, mean amplitude, energy, and Shannon entropy features combined with
the decision tree classifier obtained a classification accuracy of 95.80%. The statistical
features of multi-channel EEG signals coupled with the decision tree model achieved an
accuracy of 91.67%, which is less than the classification accuracy reported in [13]. Similarly,
the SVM classifier combined with the variance, energy, and Shannon entropy features
obtained an accuracy of 98.60% for the automated classification of the BFMAC vs. DMAC
task. The performance of the SVM classifier depended on the proper selection of the kernel
functions, kernel parameters, and number of iterations [46].

Similarly, the training parameters of the decision tree classifier were the depth of
the tree, the number of times the split occurred in the decision tree, and the split criteria
or information gain, respectively. The optimal training parameters of both the SVM and
decision tree classifiers were selected using a grid-search in the nested cross-validation
domain [4,47].

Each RNN-based classifier in the proposed approach yielded superior classification
performance compared with the existing methods for the automated classification of
BFMAC- vs. DMAC-based cognitive classification tasks using multi-channel EEG signals.
The LSTM, BLSTM, and GRU models successfully quantified the dependencies in the
entropy features of multi-channel EEG signals, which further helped to create a boundary
for the classification of BFMAC- and DMAC-based cognitive tasks. The advantages of this
mental-arithmetic-based cognitive classification task are given as follows:

• Various entropy features computed from various EEG channels were used for the
classification of mental arithmetic tasks.

• The entropy features from the O2, Fz, Cz, and Pz channel EEG signals demonstrated
higher classification accuracy using RNN-based classifiers.

• The slope entropy features combined with each type of RNN-based classifier obtained
higher classification accuracy over the other entropy features.

• The proposed approach obtained the highest classification accuracy at a 99% classifi-
cation accuracy for the BFMAC vs. DMAC and BMAC vs. GMAC cognitive workload
classification tasks.
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Table 11. Comparison with existing methods for the automated mental arithmetic cognitive task classification using
multi-channel EEG signals from the same database.

Features Used Classification Model Classification Task Accuracy (%)

Variance, energy, and Shannon en-
tropy features extracted from the
IBFs of multi-channel EEG sig-
nal [14]

SVM BFMAC vs. DMAC 98.60

Statistical features evaluated from
the multi-channel EEG signal [15]

LSTM BFMAC vs. DMAC 91.67

L2-norm, mean amplitude value,
Shannon entropy and energy
features extracted from EEG
signals [13]

Decision tree BFMAC vs. DMAC 95.80

Slope entropy, permutation entropy,
dispersion entropy, approximation
entropy and sample entropy features
extracted from multi-channel EEG
signals (Proposed work)

RNN (LSTM, BLSTM, and
GRU)

BFMAC vs. DMAC 99.38 (LSTM), 99.44 (BLSTM),
99.63 (GRU)

In this work, we used the multi-channel EEG signals from 36 subjects to evaluate
the proposed approach of automated classification of BMAC vs. GMAC and BFMAC
vs. DMAC arithmetic tasks. Multi-lead EEG signals from more subjects are needed to
develop accurate and robust automated classifications of mental-arithmetic-based cogni-
tive workload tasks. Other entropy features, such as the distribution entropy [48], and
bubble entropy [49] features obtained from multi-channel EEG signals, can be used for the
automated classification of mental-arithmetic-based cognitive tasks.

In this work, the RNN-based models were used for the classification. In the future,
we intend to use convolutional autoencoder [50], LSTM-autoencoder [51], convolutional
neural network (CNN) [35,52] and CNN-RNN [53]-based deep learning models for feature
extraction and classification tasks using a large database with multi-channel EEG signals.

6. Conclusions

An automated approach for the classification of mental arithmetic calculation-based
cognitive tasks using various entropy features obtained from multi-channel EEG signals
is proposed in this paper. The state-space domain entropy measures, such as the sample
entropy, approximation entropy, dispersion entropy, permutation entropy, and slope en-
tropy features, were computed from multi-channel EEG signals. We used recurrent neural
network (RNN)-based models, such as long short-term memory (LSTM), bidirectional
LSTM (BLSTM), and gated recurrent unit (GRU), as classifiers to perform cognitive task
classification schemes, such as bad mental arithmetic calculation (BMAC) vs. good mental
arithmetic calculation (GMAC), and before mental arithmetic calculation (BFMAC) vs.
during mental arithmetic calculation (DMAC), respectively.

We obtained classification accuracies of 99.88%, 99.43%, and 99.81% using LSTM,
BLSTM, and GRU-based RNN models for the automated classification of the BMAC vs.
GMAC classification task. Our proposed approach demonstrated a classification accuracy
of more than 99% using all RNN-based models for the automated classification of BFMAC
vs. DMAC tasks. The slope entropy features coupled with each type of RNN model
obtained the highest classification accuracy for both BMAC vs. GMAC and BFMAC vs.
DMAC automated cognitive classification tasks. In the future, our proposed approach can
be tested with multi-channel EEG signals to classify more types of mental-arithmetic-based
cognitive tasks for brain-computer interface (BCI) applications.
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