# Integral Sliding Mode Anti-Disturbance Control for Markovian Jump Systems with Mismatched Disturbances

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. System Description

**Assumption**

**1.**

**Assumption**

**2.**

## 3. Design of Disturbance Observer

**Theorem**

**1.**

**Proof**

**of**

**Theorem 1.**

## 4. Design of ISS and ISM Controller

**Assumption**

**A3.**

**Theorem**

**2.**

**Proof**

**of**

**Theorem 2.**

**Remark**

**1.**

## 5. Dynamical Performance Analysis

**Theorem**

**3.**

**Proof**

**of**

**Theorem 3.**

**Theorem**

**4.**

**Proof**

**of**

**Theorem 4.**

**Remark**

**2.**

**Remark**

**3.**

## 6. An Simulation Example

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Costa, O.L.V.; Fragoso, M.D.; Todorow, M.G. Continuous-Time Markov Jump Linear System; Springer: London, UK, 2013. [Google Scholar]
- Kawka, P.A.; Alleyne, A.G. Robust wireless servo control using a discrete-time uncertain Markovian jump linear model. IEEE Trans. Autom. Control
**2019**, 17, 733–742. [Google Scholar] [CrossRef] - Zhu, J.; Wang, L.P.; Spiryagin, M. Control and decision strategy for a class of Markovian jump systems in failure prone manufacturing process. IET Control Theory Appl.
**2012**, 6, 1803–1811. [Google Scholar] [CrossRef] - Al-Azzawi, W.; Al-Akaidi, M. Robust stability of solar-power wireless network control system with stochastic time delays based on H
_{∞}norm. Int. J. Syst. Sci.**2015**, 46, 896–907. [Google Scholar] [CrossRef] - Ding, D.R.; Wang, Z.D.; Han, Q.L. Neural-network-based output-feedback control with stochastic communication protocols. Automatica
**2019**, 106, 221–229. [Google Scholar] [CrossRef] - Wu, L.G.; Shi, P.; Gao, H.J. State estimation and sliding-mode control of Markovian jump singular systems. IEEE Trans. Autom. Control
**2010**, 55, 1213–1219. [Google Scholar] - Nogueira, S.L.; Siqueira, A.A.G.; Inoue, R.S.; Terra, M.H. Markov jump linear systems-based position estimation for lower limb exoskeletons. Sensors
**2014**, 14, 1835–1849. [Google Scholar] [CrossRef] [Green Version] - Shi, P.; Liu, M.; Zhang, L.X. Fault-tolerant sliding-mode-observer synthesis of Markovian jump systems using quantized measurements. IEEE Trans. Ind. Electron.
**2015**, 62, 5910–5918. [Google Scholar] [CrossRef] [Green Version] - Qi, W.H.; Zong, G.D.; Karimi, H.R. Sliding mode control for nonlinear stochastic singular semi-Markov jump systems. IEEE Trans. Autom. Control
**2020**, 65, 361–368. [Google Scholar] [CrossRef] - Wu, Z.G.; Dong, S.L.; Shi, P.; Su, H.Y.; Huang, T.W. Reliable filtering of nonlinear Markovian jump systems: The continuous-time case. IEEE Trans. Syst. Man Cybern. Syst.
**2019**, 49, 386–394. [Google Scholar] [CrossRef] - Aberkane, S. Bounded real lemma for nonhomogeneous Markovian jump linear systems. IEEE Trans. Autom. Control
**2013**, 58, 797–801. [Google Scholar] [CrossRef] - Shen, H.; Men, Y.Z.; Wu, Z.G.; Park, J.H. Nonfragile H
_{∞}control for fuzzy markovian jump systems under fast sampling singular perturbation. IEEE Trans. Fuzzy Syst.**2018**, 48, 2058–2069. [Google Scholar] - Shen, M.Q.; Ma, Y.S.; Park, J.H.; Wang, Q.G. Fuzzy tracking control for Markov jump systems with mismatched faults by iterative proportional-integral observers. IEEE Trans. Fuzzy Syst.
**2020**. [Google Scholar] [CrossRef] - Wang, Y.Y.; Xia, Y.Q.; Shen, H.; Zhou, P.F. SMC design for robust stabilization of nonlinear Markovian jump singular systems. IEEE Trans. Autom. Control
**2018**, 63, 219–224. [Google Scholar] [CrossRef] - Guo., L.; Cao, S.Y. Anti-Disturbance Control for Systems with Multiple Disturbances; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Zhang, Y.L.; Zhu, M.; Li, D.; Wang, J.M. ADRC dynamic stabilizabtion of an unstable heat equation. IEEE Trans. Autom. Control
**2020**, 65, 4424–4429. [Google Scholar] [CrossRef] - Xia, Y.Q.; Pu, F.; Li, S.F.; Gao, Y. Lateral path tracking control of autonomous land vehicle based on ADRC and differential flatness. IEEE Trans. Ind. Electron.
**2016**, 63, 3091–3099. [Google Scholar] [CrossRef] - Yu, P.; Liu, K.Z.; Wu, M.; She, J. Improved equivalent-inputbdisturbance approach based on H
_{∞}control. IEEE Trans. Ind. Electron.**2020**, 67, 8670–8679. [Google Scholar] [CrossRef] - Chen, W.H. Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mech.
**2020**, 9, 706–710. [Google Scholar] [CrossRef] [Green Version] - Sun, H.B.; Guo, L. Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances. IEEE Trans. Neural Netw. Learn. Syst.
**2017**, 28, 482–489. [Google Scholar] [CrossRef] - Chen, W.H.; Ballanceand, D.J.; Gawthrop, P.J. A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Elect.
**2000**, 47, 932–938. [Google Scholar] [CrossRef] [Green Version] - Sun, L.; Huo, W.; Jiao, Z.X. Disturbance-observer-based robust relative pose control for spacecraft rendezvous and proximity operations under input saturation. IEEE Trans. Aerosp. Electron. Syst.
**2018**, 54, 1605–1617. [Google Scholar] [CrossRef] - Liu, Y.; Fu, Y.; He, W.; Hui, Q. Modeling and observer-based vibration control of a flexible spacecraft with external disturbances. IEEE Trans. Ind. Electron.
**2019**, 66, 8648–8658. [Google Scholar] [CrossRef] - Zhang, X.G.; Li, Z.X. Sliding-mode observer-based mechanical parameter estimation for permanent magnet synchronous motor. IEEE Trans. Power Electron.
**2016**, 31, 5732–5745. [Google Scholar] [CrossRef] - Yang, J.; Cui, H.Y.; Li, S.H.; Zolotas, A. Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer. IEEE Trans. Circuits Syst. I Reg. Pap.
**2018**, 65, 832–841. [Google Scholar] [CrossRef] [Green Version] - Yi, Y.; Zheng, W.X.; Sun, C.Y.; Guo, L. DOB fuzzy controller design for non-Gaussian stochastic distribution systems using two-step fuzzy identification. IEEE Trans. Fuzzy Syst.
**2016**, 24, 401–418. [Google Scholar] [CrossRef] - Yi, Y.; Zheng, W.X.; Liu, B. Adaptive anti-disturbance control for systems with saturating input via dynamic neural network disturbance modeling. IEEE Trans. Cybern.
**2020**. [Google Scholar] [CrossRef] - Kim, K.S.; Rew, K.H.; Kim, S. Disturbance observer for estimating higher order disturbances in time series expansion. IEEE Trans. Autom. Control
**2010**, 55, 1905–1911. [Google Scholar] - Yao, X.M.; Park, J.H.; Wu, L.G.; Guo, L. Disturbance-observer-based composite hierarchical anti-disturbance control for singular Markovian jump systems. IEEE Trans. Autom. Control
**2019**, 64, 2875–2882. [Google Scholar] [CrossRef] - Freidovich, L.B.; Khalil, H.K. Performance recovery of feedback-linearization-based designs. IEEE Trans. Autom. Control
**2008**, 53, 2324–2334. [Google Scholar] [CrossRef] - Chowdhury, D.; Khalil, H.K. Practical synchronization in networks of nonlinear heterogeneous agents with application to power systems. IEEE Trans. Autom. Control
**2020**, 66, 184–198. [Google Scholar] [CrossRef] - Utkin, V. Variable structure systems with sliding modes. IEEE Trans. Autom. Control
**1977**, 22, 212–222. [Google Scholar] [CrossRef] - Edwards, C.; Spurgeon, S. Sliding Mode Control: Theory and Application; Taylor and Francis: London, UK, 1998. [Google Scholar]
- Ding, S.H.; Mei, K.Q.; Li, S.H. A new second-order sliding mode and its application to nonlinear constrained systems. IEEE Trans. Autom. Control
**2019**, 64, 2545–2552. [Google Scholar] [CrossRef] - Zhang, Q.; Zhao, X.; Liu, L.; Dai, T. Adaptive sliding mode neural network control and flexible vibration suppression of a flexible spatial parallel robot. Electronics
**2021**, 10, 212. [Google Scholar] [CrossRef] - Huynh, V.V.; Minh, B.L.N.; Amaefule, E.N.; Tran, A.T.; Tran, P.T. Highly robust observer sliding mode based frequency control for multi area power systems with renewable power plants. Electronics
**2021**, 10, 274. [Google Scholar] [CrossRef] - Xu, S.S.; Chen, C.; Wu, Z. Study of nonsingular fast terminal sliding-mode fault-tolerant control. IEEE Trans. Ind. Electron.
**2015**, 62, 3906–3913. [Google Scholar] [CrossRef] - Wang, J.H.; Xu, Y.L.; Xu., Y.; Yang, D.D. Time-varying formation for high-order multi-agent systems with external disturbances by event-triggered integral sliding mode control. Appl. Math. Comput.
**2019**, 359, 333–343. [Google Scholar] [CrossRef] - Wang, Y.Y.; Shen, H.; Karimi, H.R.; Duan, D. Dissipativity-based fuzzy integral sliding mode control of continuous-time T-S fuzzy systems. IEEE Trans. Fuzzy Syst.
**2018**, 26, 1164–1176. [Google Scholar] [CrossRef] - Lee, J.; Chang, P.H.; Jin, M. Adaptive integral sliding mode control with time-delay estimation for robot manipulators. IEEE Trans. Ind. Electron.
**2017**, 64, 6796–6804. [Google Scholar] [CrossRef] - Yang, C.Y.; Che, Z.Y.; Fu, J.; Zhou, L.N. Passivity-based integral sliding mode control and ε-bound estimation for uncertain singularly perturbed systems with disturbances. IEEE Trans. Circuits Syst. II Exp. Briefs
**2019**, 66, 3906–3913. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Shen, H.; Zhang, X.; Yi, Y.
Integral Sliding Mode Anti-Disturbance Control for Markovian Jump Systems with Mismatched Disturbances. *Electronics* **2021**, *10*, 1075.
https://doi.org/10.3390/electronics10091075

**AMA Style**

Shen H, Zhang X, Yi Y.
Integral Sliding Mode Anti-Disturbance Control for Markovian Jump Systems with Mismatched Disturbances. *Electronics*. 2021; 10(9):1075.
https://doi.org/10.3390/electronics10091075

**Chicago/Turabian Style**

Shen, Hong, Xiaoli Zhang, and Yang Yi.
2021. "Integral Sliding Mode Anti-Disturbance Control for Markovian Jump Systems with Mismatched Disturbances" *Electronics* 10, no. 9: 1075.
https://doi.org/10.3390/electronics10091075