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Abstract: Antenna element mutual coupling degrades the performance of Direction of Arrival (DoA)
estimation significantly. In this paper, a novel machine learning-based method via Neural Tangent
Kernel (NTK) is employed to address the DoA estimation problem under the effect of electromagnetic
mutual coupling. NTK originates from Deep Neural Network (DNN) considerations, based on
the limiting case of an infinite number of neurons in each layer, which ultimately leads to very
efficient estimators. With the help of the Polynomial Root Finding (PRF) technique, an advanced
method, NTK-PRF, is proposed. The method adapts well to multiple-signal scenarios when sources
are far apart. Numerical simulations are carried out to demonstrate that this NTK-PRF approach
can handle, accurately and very efficiently, multiple-signal DoA estimation problems with realistic
mutual coupling.

Keywords: direction of arrival; mutual coupling; neural tangent kernel; polynomial root finding

1. Introduction

Direction of arrival estimation has been at the forefront of research activity for several
decades in a variety of areas including radar, sonar, wireless communications, and radio
astronomy [1]. DoA estimation is a long-lasting research topic in array signal processing
and various methods have been proposed, such as the conventional beamforming (CBF)
method [2], multiple signal classification (MUSIC) method [3], estimating signal parameters
via rotational invariant techniques (ESPRIT) [4], maximum likelihood (ML) method [5] and
compressive sensing (CS)-based method [6,7]. CS is a promising technique that uses the
output of received sensors to determine the DoAs directly, thus the computation of the
covariance matrix is avoided [8]. However, the application of these traditional methods
to real systems has been very limited, since they critically rely on exact knowledge of the
array manifold. The array manifold is often affected by various perturbations in practical
applications, which seriously degrade the performance of high-resolution DoA estimations.

Mutual coupling among the elements of an array is inevitable for real antennas.
In the presence of mutual coupling, the performance of DoA estimation may degrade
substantially without array manifold calibration. Taking account of this issue, Friedlander
proposes an approximate representation of the coupling via a simple Mutual Coupling
Matrix (MCM) in the form of a banded symmetric Toeplitz matrix [9]. In the model, the
mutual coupling coefficients between sensors are inversely related to their distance. This
direction-independent model has been used by many investigators [10–14]. However,
the exact electromagnetic coupling is more complicated than the model captured by a
Toeplitz matrix. Direction-dependent mutual coupling is taken into account [15–18], where
the mutual coupling effect will vary with the source direction. In order to overcome the
effect of mutual coupling, there are many techniques developed, which can be roughly
classified into three categories: Auxiliary array or subarray [10,18], sparse reconstruction
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algorithms [11,13] and subspace-based algorithms [14–17]. However, these studies are
based on simplified models, and, to a certain extent, these assumptions do not hold
in practice.

Another array “imperfection” scenario which degrades the efficacy of traditional DoA
estimation algorithms is the sometimes-unavoidable situation of having to use an irregular
grid array [19]. In some scenarios, however, irregular grid arrays can provide decisive ad-
vantages for wireless communication compared to the regular, i.e., uniform, grid arrays [20].
The MUSIC algorithm can be universally applied to irregular arrays. However, it has high
computational cost owing to the exhaustive search. ESPRIT is a computational efficient
method, but is only applicable to uniform arrays. A conventional idea is to transform the
irregular array into a ULA. The array interpolation method [21] is proposed to approximate
an arbitrary array by a virtual ULA. However, the drawback of this method is that the
interpolation is not accurate enough. Another prevalent array transformation method,
called the Manifold Separation Technique (MST) [22], models the arbitrary array steering
vector as a product of a sampling matrix and a Vandermonde structured coefficients vector
that has the same structure as the ULA steering vector. However, the performance of
MST is rather poor in low-SNR scenarios. Furthermore, it requires a large number of
virtual arrays to achieve satisfactory performance, which demands increased complexity.
Moreover, in the presence of combined effects of multiple types of array “imperfections”,
parametric methods may encounter great difficulties. Although the NTK-PRF can handle
both the mutual coupling as well as the irregular grid arrays very well, the latter are left
for a future paper.

Recently, machine learning-based methods have proved powerful for DoA estimation.
For example, Support Vector Regression (SVR) is able to estimate DoA by establishing
training sets of the possible configurations of the impinging sources, and then deriving
a mapping from array outputs to signal directions [23,24]. The derived mapping is then
used on test data to estimate DoA. However, the performance of these methods degrades
rapidly when dealing with unknown configurations, e.g., a varying number of elements in
the array or number of sources. To solve this problem, a novel framework based on a deep
neural network that partitions the search area into several sectors is proposed [25]. Liu [26]
proposes an end-to-end DNN to address the DoA estimation problem. The proposed DNN-
based framework consists of a multitask auto-encoder and a series of parallel multilayer
classifiers, which improve the ability in adaptation to multiple signals. However, these
networks need to be trained offline and it costs a lot of time. The networks critically rely on
the training data. When the SNR changes, in order to ensure the accuracy of the estimation,
the network needs to be retrained. Therefore, these methods are computationally expensive
for real-time applications. In the infinite-width limit, it has been demonstrated that DNNs
have a Gaussian distribution described by a kernel that yields results comparable to DNNs
trained with gradient descent [27]. In the same limit, the behavior of DNNs during training
is described by a related kernel [28], which has low computation burden compared with
DNN training.

In this paper, we solve the problem of DoA estimation of multiple incoming waves on
a ULA in the presence inter-element coupling. The main contributions of this paper are:

• We leverage recent progress in modeling and deriving DNNs using kernel regression
with a NTK to estimate DoA. In the infinite width limit, instead of training the network,
the exact dynamics of its outputs are characterized by a differential equation (through
gradient descent training). Numerical experiments show that the developed method
has good performance in term of the estimation accuracy and computational time
under the effect of electromagnetic mutual coupling.

• We incorporate the PRF feature into NTK to estimate multiple DoAs, which largely
enhances the generalization of the proposed method to multiple arriving signals
scenarios. This method performs well even though the training dataset represents
single incoming waves.
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• We use signal models with electromagnetically exact active electric fields of Multi
Element Antenna (MEA) systems, including mutual coupling (captured by full S-
parameter matrices).

For the convenience of readers, Table 1 lists the acronyms appeared in the paper.

Table 1. The acronyms.

Acronyms Description

DoA Direction of Arrival
NTK Neural Tangent Kernel
PRF Polynomial Root Finding

DNN Deep Neural Network
SVR Support Vector Regression
CBF Conventional Beamforming

MUSIC Multiple Signal Classification
ESPRIT Estimating Signal Parameters via Rotational Invariant Techniques

CS Compressive Sensing
ML Maximum Likelihood

MCM Mutual Coupling Matrix
MST Manifold Separation Technique
ULA Uniform Linear Array
MEA Multi Element Antenna
LoS Line of Sight

MIMO Multi Input Multi Output
UAT Universal Approximation Theorem
ReLU Rectified Linear Unit
SNR Signal-to-Noise Ratio

RMSE Root Mean Squared Error

Notations: Matrices and vectors are denoted by upper case and lower case bold
characters respectively. [·]ij denotes the (i, j)-th element in a matrix. A M× N matrix with

complex entries is denoted by CM×N . [·]T and [·]H , respectively, stand for the transpose
and conjugate transpose. ‖·‖ denotes the Euclidean norm. E[·] is the expectation of a
random variable.

The rest of this paper is organized as follows. Section 2 introduces our system model,
and proposes developed algorithm. The baseline methods are introduced in this section.
Section 3 carries out numerical simulations to validate the effectiveness of the proposed
method. Section 4 states our conclusions.

2. System Model and Methodology

This section describes our proposed method of solving the DoA estimation problem
by a general Rx antenna array. The method employs a Neural Tangent Kernel approach to
estimate the DoA function from a set of induced voltages on the Rx array elements.

2.1. System Model and the Creation of Realistic Sensor Data

Without loss of generality, we consider N 1-port antenna Tx radios forming N M × 1
MIMO wireless links in a free-space Line of Sight (LoS) propagation environment with an
M-port Rx radio. The Rx M-port antenna system is general and need not be, for example,
a regular uniform array. Ignoring noise and interference, the Rx voltages induced by the
incident wave(s) from the Tx radio(s) are related by

Vm =
N

∑
n

HmnXn, (1)

where m = 1, 2, · · · , M is the port index of the Rx, and n = 1, 2, · · · , N is the index of
the incoming plane wave. The columns of the Hmn matrix represent the N M× 1 vector
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channels of the aforementioned MIMO links. In this paper, we use MIMObit [29] in order
to evaluate channel matrix H precisely and generate realistic sensor data (training datasets).
The Hmn are calculated assuming LoS propagation and the exact knowledge of the Tx and
the Rx antennas via an electromagnetics exact approach rendering the full S-par matrix
plus the active E-field gains of each port [30]. The latter capture all the mutual coupling
including the skewness of the radiation patterns and even active impedances and the
termination effects of the antennas in the Rx antenna system. In that sense, the training
data generated here is reasonably realistic for the purposes of evaluating and comparing the
performance of DoA estimation algorithms. Adding noise to Equation (1), concatenation of
all the T times and M ports renders the sensor response of the Rx as

V = H(θ)X + N, (2)

where V is the M × T received signal matrix, X is the N × T source signal matrix, N
represents the received M × T Gaussian noise matrix with zero mean and variance σ2

n ,
and H(θ) is a M× N channel matrix (N here pertains to the different DoA angles and not
number of antennas in the same Tx).

The sensor response, V, in Equation (2) is a function of the angles of incidence, θ, of
the incoming wave(s), i.e., V = F(θ), where F will be considered unknown for the purposes
of the DoA estimation. Using f to denote the inverse function of F, we have

θ = f (V), (3)

Equation (3) implies that the DoA estimation problem can be reduced to a function
fitting problem. However, the analytical expression of f is difficult to obtain, since f is a
highly nonlinear function.

2.2. Neural Tangent Kernel Based DoA Estimation

The Universal Approximation Theorem (UAT) [31] guarantees that a deep neural
network is able to represent any function. Let f in Equation (3) denote a fully-connected
over-parameterized feedforward network with L hidden layers. Indicating with dh|Lh=1,
the dimensionality of the h-th hidden layer, there are d0 = M inputs and dL+1 = 1 output.
We initialize all the weights W and biases b to be identically distributed (i.i.d.) Gaus-
sians N (0, 1), and consider the limit of hidden widths dh → ∞ . Given a training dataset
(V, θ) = {(vi, θi)}N

i=1, where vi ∈ CM is an input vector and θi denotes the corresponding
scalar output of a nonlinear function θi = f (vi), the values of θ∗ = {θ∗i}P

i=1 at a test dataset
of P input points, V∗ = {v∗i}P

i=1, can be estimated via the following kernel regression [32]:

θ̂∗ ≈ K∗K−1θ, (4)

where K∗ ∈ RP×N with (K∗)ij = k
(
v∗i, vj

)
is the NTK matrix between the P input points,

V∗, and the N points in the training dataset V. K ∈ RN×N with Kij = k
(
vi, vj

)
is the NTK

matrix between all the pairs of training points in V. The scalar kernel function, k(x, x′),
between two points, x and x′, is defined by [28]

k
(
x, x′

)
=

L+1

∑
h=1

(
Σ(h−1)(x, x′

)
·

L+1

∏
h′=h

.
Σ
(h′)(

x, x′
))

, (5)

where Σ(h)(x, x′) is a scalar covariance defined recursively as

Σ(h)(x, x′
)
= E

g∼N (0,Σ(h−1))

[
σ(g(x))σ

(
g
(
x′
))]

+ 1, (6)

Σ(0)(x, x′
)
=

1
M

xT ·x′ + 1, (7)
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with E indicating the expected value operation and σ being an “activation function”. Of all
the options, the Rectified Linear Unit function (ReLU), defined as fReLU(y) = max(y, 0),
is used as activation function throughout this paper. The derivative of Σ(h)(x, x′) is also
recursively calculated as

.
Σ
(h)(

x, x′
)
= E

g∼N (0,Σ(h−1))

[ .
σ(g(x))

.
σ
(

g
(
x′
))]

, (8)

and
.
Σ
(L+1)

(x, x′) = 1 for convenience. The derivative of the activation function, σ, is

indicated by
.
σ. In the derivation outlined in [32] with infinite number of neurons in each

layer and infinite training iterations, the argument variables, g(x), of the activation function,
σ, are the output functions of corresponding layers of the DNN and are independent zero-
mean Gaussian processes with covariance Σ(h)(x, x′). That is g ∼ N

(
0, Σ(h)

)
.

However general this NTK-based DoA estimation approach is (i.e., it also applies
to irregular grid arrays), it does not scale well when there are multiple incoming waves,
unless we have and use additional information about the Rx antennas and/or a lot of
training data for all the combinations of number of incoming signals, their strength and
angles of arrival.

In the following sections, we will use a ULA at the Rx and, with that information
(i.e., antenna topology) and the steering vector it implies, we will extend the applicability
of NTK DoA estimation to multiple incoming waves.

2.3. NTK-Augmented Polynomial Root Finder DoA Estimation

Consider the signals an incoming wave induces on an M-element ULA Rx array which
is oversimplified by ignoring coupling and by assuming isotropic radiation pattern for
each antenna. Using the traditional MUSIC method steering vector,

a(θ) =
[
1, e−jkdcos(θ), · · · , e−j(M−1)kdcos(θ)

]T
, (9)

yields the following model of the received signals:

V = a(θ)·E + N. (10)

The autocorrelation of the Rx signal, E
[
V·VH] forms a symmetric polynomial in z

and 1/z, where z = e−jkdcos(θ). I.e., if z0 is a root of this polynomial, so is 1/z0. In the PRF
method [32], the autocorrelation of the real data is used and the phase of the complex root
pairs of the aforementioned polynomial provides estimates of the multiple DoAs. Thus the
PRF enables the estimation of multiple DoA as they are the multiple complex root pairs, z
and 1/z, of the autocorrelation polynomial.

In the present work, we generate realistic data using Equation (2) as mentioned earlier
in Section 2.1. However, the steering vector in Equation (9) is not accurate and, therefore,
the roots of the polynomial do not yield accurate DoA results. Therefore, in order to
capture the effects of the coupling on the roots of the autocorrelation polynomial, we
employ the NTK kernel regression method described in Section 2.2 to derive the mapping
from polynomial roots to signal directions.

We generate realistic V data from Equation (2) for N known DoA angles. This data
constitutes the training dataset (V, θ) = {(vi, θi)}N

i=1. We then form the signal autocor-
relation and proceed with the PRF method to obtain two complex roots for each DoA, θ.
The training dataset then is transformed into a new training dataset, (Z, θ) = {(zi, θi)}N

i=1,
where zi ∈ R4 are the real and imaginary parts of the two complex roots corresponding to
θi ∈ R1.

The NTK-PRF method we propose for ULAs is shown in Algorithm 1.
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Algorithm 1: NTK-PRF for multiple DoAs estimation

�Input: Training dataset (V, θ) = {(vi, θi)}N
i=1, where vi ∈ CM, θi ∈ R1

Test inputs V∗ with P signals, where V∗ ∈ CM×T , P < M
Output: estimated DoAs θ∗
1: for i = 1, N do
2: Un ← 1

T ∑T
j=1 vi

(
tj

)
vH

i

(
tj

)
= UsΛsUH

s + σ2
nUnUH

s

3: zi ∈ R4 ← pH(z)UnUH
n p(z) = 0 , where p(z) =

[
1, z, . . . , zM−1]T

4: end
5: obtain new training data pairs (Z, θ) = {(zi, θi)}N

i=1

6: Z∗ ∈ RP×4 ← V∗ is substituted for vi

(
tj

)
and redo 2–3 without iteration.

7: initialize the NTK-parameterized networks
8: compute K∗ and K using Equations (5) and (8) with Z and Z∗.
9: compute θ∗ using Equation (4)
10: return θ∗

2.4. Baseline DoA Estimation Methods

We compare the performance of our proposed NTK-PRF method to the following
baseline methods:

• Root-MUSIC [33]. This is one of the most common parametric methods suitable for
uniform arrays. Here we use the steering vector in Equation (9), which ignores mutual
coupling, but we generate realistic signal data with coupling using MIMObit (see
Equation (1) and Reference [29]).

• ESPRIT [4]. This is another parameter estimation technique, based on the fact that the
signal at one element is a constant phase shift from the earlier element in the steering
vector. In the simulation, the signal data is same as the case for Root-MUSIC.

• Auxiliary array [10]. We add 6 auxiliary sensors on each side of the array to form a new
ULA with the same element spacing compared to the original. In this way, the effect
of mutual coupling between the middle sensors is reduced. Then the Root-MUSIC as
mentioned above is used to estimate DoA.

• SVR. The support vector regression is trained using LIBSVM [34] with Gaussian kernel,
defined as K(Zi, Z) = exp

(
−γ‖Z− Zi‖2). A parameter v ∈ (0, 1] is introduced to

control the number of support vectors. The upper diagonal elements of the covari-
ance matrix of the array output are utilized as features since they contain sufficient
information about the received signals [24].

• DNN [26]. The framework of DNN consists of two parts, a multitask auto-encoder
and a series of parallel multilayer classifiers. The multitask auto-encoder is introduced
before the multilayer classifiers to decompose the inputs into 10 spatial subregions. For
the training of the auto-encoder, the network is designed to be linear. The covariance
matrix of the array outputs is computed and the upper diagonal elements are used
as the input. The [0◦, 180◦) space is sampled with an interval of 0.9◦ to obtain the
training data in single-signal scenarios. For the training of classifiers, another data set
is collected in the two-signal scenarios with inter-signal angle sampled from the set of
{1.8◦, 3.6◦, . . . , 36.04◦}. The network of each classifier has L = 3 hidden layers with
ReLU as activation function.

• DNN-PRF. The neural network with ReLU as activation function is designed using
TensorFlow [35], and we use the Adam optimizer to train the network with 50,000 it-
erations [36]. The number of the hidden layers is chosen to be L = 3, i.e., the same as
with the NTK-PRF proposed here. The widths (i.e., number of neurons) of the three
hidden layers are 64, 32, and 16, respectively. In order to make a more reasonable
comparison with NTK-PRF, the polynomial root of the covariance matrix is calculated
to train the neural network, which is similar to NTK-PRF.

Table 2 gives a comparison of the proposed method with baseline methods used in the
simulation. Root-MUSIC, ESPRIT, and Auxiliary array are parametric methods, thus there
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is no need to calibration data. For Toeplitz structured mutual coupling model, auxiliary
sensors can reduce the effect of mutual coupling. However, the estimation accuracy of
these three methods is poor for the signal data generated by MIMObit. The remaining four
are learning-based methods, which require training (or calibration) data. The performance
comparison of these methods will be shown in Section 3.

Table 2. Main distinctive characteristics between different methods.

Algorithms Need Calibration Data Real Time Multiple DoAs
Estimation

Suitable for Mutual
Coupling

Root-MUSIC No Yes Yes No
ESPRIT No Yes Yes No

Auxiliary Array No Yes Yes Yes
SVR Yes No No Yes

DNN Yes No Yes Yes
DNN-PRF Yes No Yes Yes
NTK-PRF Yes Yes Yes Yes

3. Simulation Experiments and Discussion

In this paper, we examine DoA with a 6-port ULA of half-wave V-pol dipoles as a
receiver (Figure 1a). We assume that the propagation environment is Line of Sight (LoS).
The element spacing is d = 0.3λ at the frequency of this study (f = 3.5 GHz). The antennas
are also designed at the frequency of 3.5 GHz and the magnitude of all the S-par matrix
elements of the ULA is below−8 dB (Figure 1b). The azimuth of signals is from the angular
range of [0◦, 180◦) . The elevation angle is fixed at 90◦ in all simulations and we simply
estimate the azimuthal angle.
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Numerical simulation results of the DoA estimation illustrate the performance of the
proposed method against the baselines. In the NTK algorithm, we use a DNN with L = 3
hidden layers and the ReLU as activation function of each hidden layer. We also consider
1000 different positions of the Tx (i.e., 1000 different DoAs), uniformly distributed in
[0◦, 180◦) space. The sensor data is then generated using Equation (2), and the covariance
vectors of data sets are obtained from N = 1000 snapshots with random noise. A small
number of uniformly selected DoAs are chosen as the training (or calibration) dataset
while all the DoAs are used as the “test” dataset in order to test the performance of each
algorithm. The Root Mean Square Error (RMSE) between the estimated DoA angles and
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the true DoA angles is used as the performance metric for each of the DoA estimation
algorithms considered, which is defined as

RMSE =

√
∑N

i=1
(
θ̂i − θi

)2

N
, (11)

where N is the number of total DoAs for testing, and θ̂i and θi denote the estimated DoA
and true DoA of the i-th signal source respectively.

Table 3 lists the parameters of system setting.

Table 3. System setting.

- - Settings

Rx
Array ULA, d = 0.3λ

Antenna 6-port V-pol half-wavelength dipole
Frequency 3.5 GHz

Tx Antenna 1-port V-pol half-wavelength dipole

Geometry Tx-Rx distance 400 m
Spatial range [0◦, 180◦)

Propagation model - LoS

Figure 2 depicts the performance comparison of different methods versus SNR. Root-
MUSIC and ESPRIT can achieve high-resolution angle estimation with known array man-
ifold. In the presence of unknown mutual coupling, however, their performances are
severely degraded. The auxiliary array method can effectively reduce the effect of mutual
coupling in the Toeplitz structure. However, the realistic electromagnetic mutual coupling
included in the data here does not follow the Toeplitz structure. Thus, the performance
of the auxiliary array method is not that well suited for this problem. SVR and DNN are
very time consuming as they update parameters such as weight and bias at each iteration.
The SVR method maps the upper triangle of the covariance matrix to the estimated angle.
Although it has good estimation performance, its generalization to incoming signals from
multiple angles is weak. In the DNN method, an auto-encoder preprocesses the original
array outputs to reduce the distribution divergences of the input data first. Then, multilayer
classifiers following a one-versus-all classification guideline are introduced to estimate
multiple incoming signals. However, the estimation accuracy is reduced in the case of
multiple incoming signals. The estimation error is relatively large especially when the
angle of the signal is close to the axis of the array (i.e., 0 degrees) or close to the boundary
of the training data angle space. The DNN-PRF here uses 50,000 iterations and only 64,
32 and 16 neurons in layers 1, 2 and 3, respectively. The NTK is derived as the limit of a
neural network with infinite layer width and iterations, and is not an iterative algorithm.
Hence, not unexpectedly, the NTK-PRF is more accurate than the DNN-PRF. The discrep-
ancy is actually higher at lower SNR values. NTK-PRF method proposed here has better
performance than each of the baseline methods in the presence of mutual coupling.
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Figure 2. RMSE of a single signal DoA estimation with different methods vs. SNR for a 6-port dipole
ULA Rx. Training data is at every 0.9◦, and test data is at every 0.18◦.

In the case of multiple arriving signals, the estimated DoAs of the proposed NTK-PRF
method has higher accuracy compared with the baseline methods as shown in Table 4. The
DNN method achieves satisfactory estimation accuracy in the case of two signals, since
the classifiers of DNN are trained in two-signal scenarios. However, when more signals
impinge onto the array simultaneously, this method results in high estimation error. Note
that the proposed NTK-PRF method can detect multiple incoming waves even though it
has been derived with training data from a single-angle of arrival (albeit said training data
were 0.9◦ apart).

Table 4. Multiple signal DoA estimation.

- N = 2 N = 3

SNR (dB) 5 5
True DoAs (◦) 30.09 134.95 30.09 74.95 134.95

Root-MUSIC (◦) 21.27 133.64 20.16 74.59 133.32
ESPRIT (◦) 12.90 138.18 15.10 74.88 136.92
DNN (◦) 32.14 135.87 30.57 59.56 159.72

NTK-PRF (◦) 30.50 134.41 29.84 74.62 134.13

The roots, z (see Section 2.3), are shown in Figure 3. Three sources are considered at
5 dB SNR. The multiple complex root pairs, z and 1/z, have the same phase and reciprocal
magnitude, one zero is within the unit circle and the other outside. As the detailed insert
in Figure 3 shows, NTK-PRF method has higher estimation accuracy when sources are
far apart.
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Figure 3. Three DoAs estimation in the presence of mutual coupling. Training data is at every 0.9◦,
and three DoAs are 30.09◦, 74.95◦ and 134.95◦ respectively.

The probability of resolution is the probability that the algorithm can identify the
two closely separated sources. Assuming that the true angles of two incident signals are
θ1 and θ2, the estimated angles are θ̂1 and θ̂2, respectively. If both

∣∣θ̂1 − θ1
∣∣ and

∣∣θ̂2 − θ2
∣∣

are less than |θ1 − θ2|/2, the two signals are considered successfully resolved. When the
two sources are very close together, mutual coupling results in high estimation error. In
Figure 4, we plot the probability of resolution versus SNR for the different methods. The
two incident signals with θ1 = 70.09◦ and θ2 = 85.05◦ are relatively apart, in order to
obtain the successful estimation. The statistical performance is evaluated by performing
300 Monte Carlo runs for method. The results show that the proposed NTK-PRF has
relatively low resolution probability compared to baseline methods, when two sources
are close.

Table 5 shows the computation time required to train the model with 200 points in
the training dataset and estimate DoA. The number of iterations can be adjusted to make a
tradeoff between the computation time and the performance of the network for DNN-based
method. Furthermore, the trained models differ a lot between widely varying SNR. It is
intractable to tune the parameters of DNN to obtain a satisfactory model. Therefore, the
idea of offline training and on-line estimation may not be practical. In addition to the
DoA estimation accuracy, the NTK-PRF also outperforms the baseline methods in terms
of computational time. For some applications, the proposed method may be able to yield
real-time DoA estimation with the help of a set of calibration sources at known locations.

Table 5. Training and test time of different methods.

- NTK-PRF DNN-PRF DNN SVR

Training time (s) 0.255 152.764 2059.968 1515.466
Test time (s) 0.252 0.316 0.295 0.199
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Figure 4. Probability of resolution with different methods versus SNR. Training data is at every 0.9◦,
and two DoAs are 70.09◦ and 85.05◦ respectively.

Finally, we examine the effect of the density of training data. Figure 5 shows the RMSE
(i.e., DoA estimation error) versus the number of training points used. As expected, the
larger the amount of training data the better the performance of the NTK-PRF method.
However, even a small amount of training data is enough to provide a reasonable RMSE in
the DoA estimation.
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4. Conclusions

This paper investigates an advanced machine learning based method, NTK-PRF,
which is capable of DoA estimation under array element mutual coupling conditions and
in multiple incoming signal scenarios. Instead of using the Toeplitz structured mutual
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coupling model, realistic electromagnetic coupling, i.e., including the skewness of the
radiation patterns and even active impedances, is taken into consideration. Numerical
simulations are carried out to validate the effectiveness of the proposed method compared
with the existing methods (baselines), both in estimation accuracy and computational time.
Results show that even a small amount of training data is enough to obtain acceptable
estimation accuracy. The proposed method is an attractive option for applications with
high real-time requirements and can handle realistic mutual coupling as well as irregular
grid arrays (although the latter is not addressed here). Further work will improve the
estimation accuracy of two closely separated sources under the effect of mutual coupling.
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