
electronics

Article

A Saliency-Based Patch Sampling Approach for Deep Artistic
Media Recognition

Heekyung Yang 1,† and Kyungha Min 2,*

����������
�������

Citation: Yang, H.; Min, K. A

Saliency-Based Patch Sampling

Approach for Deep Artistic Media

Recognition. Electronics 2021, 10, 1053.

https://doi.org/10.3390/

electronics10091053

Academic Editor: Hugo Pedro

Proença

Received: 15 March 2021

Accepted: 24 April 2021

Published: 29 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of SW Convergence, Sangmyung University, Seoul 03016, Korea; yanghk@smu.ac.kr
2 Department of Computer Science, Sangmyung University, Seoul 03016, Korea
* Correspondence: minkh@smu.ac.kr; Tel.: +82-2-2287-5377
† Current address: G403-1, Bldg. of First Engineering, Sangmyung University, Hongjimoon 2-gil 20,

Seoul 03016, Korea.

Abstract: We present a saliency-based patch sampling strategy for recognizing artistic media from
artwork images using a deep media recognition model, which is composed of several deep convo-
lutional neural network-based recognition modules. The decisions from the individual modules
are merged into the final decision of the model. To sample a suitable patch for the input of the
module, we devise a strategy that samples patches with high probabilities of containing distinctive
media stroke patterns for artistic media without distortion, as media stroke patterns are key for
media recognition. We design this strategy by collecting human-selected ground truth patches and
analyzing the distribution of the saliency values of the patches. From this analysis, we build a strategy
that samples patches that have a high probability of containing media stroke patterns. We prove
that our strategy shows best performance among the existing patch sampling strategies and that our
strategy shows a consistent recognition and confusion pattern with the existing strategies.

Keywords: media recognition; CNN; saliency; patch sampling

1. Introduction

The rapid progress of deep learning techniques addresses many challenges in com-
puter vision and graphics. For example, styles learned from examplar artwork images is
applied to style input photographs. In many applications, generation comes from recog-
nition. In the studies that generate styles on input photographs, the style is implicitly
recognized in the form of texture-based feature maps. The explicit recognition of a style is
still a challenging problem.

Style has various components such as school, creator, age, mood and artistic media.
Among the various components, we concentrate on artistic media used to express the style.
The texture of distinctive stroke patterns from the artistic medium such as pencil, oilpaint
brush or watercolor brush is the key to recognize the artistic medium. In many studies, the
features extracted using classical object recognition techniques are employed to recognize
and classify the artistic media.

Many models that recognize artistic media from artwork images are devised based
on deep neural network models that show convincing performance in recognizing and
classifying objects. The preliminary media recognizing models process the whole artwork
image for the recognition. Some recent models process a series of patches sampled from
the artwork image to improve the accuracy of recognition. This improvement comes from
the point that the stroke patterns, which are prominent evidence of an artistic medium,
locate in a local scale. Therefore, a patch that successively catches this stroke pattern shows
higher accuracy. However, since such patches are hard to sample properly, the patch-based
models cannot show consistent accuracies. A scheme that samples patches capturing stroke
patterns from an artwork image in a high probability can improve the accuracy of a media
recognition technique.
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We devise a patch sampling strategy by observing how humans recognize artistic
media from an artwork image. Humans tend to concentrate on the stroke patterns on
an artwork to recognize the media by ignoring other aspects of the artwork. We build a
saliency-based approach to mimic such a concentration. Saliency is defined as a quantized
measurement of distinctiveness of a pixel. We estimate a distribution of saliency scores of
the patches sampled from an artwork image. Then, we build a relation between the distri-
bution and the human-concentrated patch by executing a human study. Finally, we build a
strategy to sample a patch that catches the distinctive stroke patterns based on saliency
and apply this strategy to improve the accuracy of the existing media recognition models.

Our strategy begins by estimating saliency values from an artwork image. To find the
saliency values that correspond to the stroke patterns of the image, we execute a human
study. We hire mechanical turks to manually mark the regions of prominent stroke patterns
in an artwork image. The saliency values on the pixels those belong to these regions are
estimated to build a strategy for selecting the regions automatically.

The remainder of this paper is structured as follows. In Section 2, we survey related
works that recognize artistic style and media, while in Section 3 we propose our saliency-
based patch sampling strategy. In Section 4, we present our multi-column structured
framework and in Section 5, we measure the accuracy of our framework. We compare it
with that of existing recognizers and analyze the results in Section 6. Finally, we conclude
our proposed approach and suggest proposals for future work in Section 7.

2. Related Works

Researchers have developed various methods for recognizing different elements of
artworks, such as styles, genres, objects, creators and artistic media. We classify the existing
schemes according to the features they employed.

2.1. Handcrafted Features for Recognizing Style and Artist

Several researchers have presented methods combining handcrafted features and deci-
sion strategies, including SVM. Liu et al. [1] combined features including color, composition,
and line, and demonstrated that this combination of features led to better performance than
a CNN-based feature methods. Florea et al. [2] employed features such as color structure
and topographical features and exploited SVG as their decision method. Their scheme
exhibited better performance than deep CNN structures such as ResNet-34. However, these
handcrafted feature-based methods are no longer commonly studied, as the performance
of CNNs has dramatically improved.

Recently, Liao et al. [3] presented an oil painter recognition model based on traditional
cluster multiple kernel learning algorithm working on various handcrafted features. Their
features include both global features such as color LBP, color GIST, color PHOG, CIE, Canny
edges, and local features such as complete LBP, color SIFT, and SSIM. The accuracy for
recognition ranges in 0. 512∼0.546 according to their algorithms.

2.2. CNN-Based Features for Recognizing Style and Artist
2.2.1. Fusioned Features

In early research, Karayev et al. [4] combined handcrafted features and features
extracted from AlexNet, an early deep CNN model, to recognize artwork styles. As the first
step, they compared features from AlexNet with various handcrafted features including
L*a*b* color histogram, GIST, graph-based visual saliency, meta-class binary features and
content classifier confidence. They then demonstrated that the combination of features
from AlexNet and the content classifier results in the best performance in recognizing
styles. Bar et al. [5] also combined features from AlexNet and PiCodes, a compact image
descriptor for object category recognition, for the purpose of style recognition.

Recently, Zhong et al. [6] classified the styles of artwork images based on brush stroke
information. For this purpose, they suggested gray-level co-occurrence matrix (GLCM) that
detects and represents brush strokes. The information embedded in GLCM is processed
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through deep convolutional neural network to extract relevant feature maps, which are
further processed using SVM.

2.2.2. CNN-Based Features

A number of studies have demonstrated that CNN models without additional features
exhibit acceptable performance for recognizing artwork styles. Some researchers employed
AlextNet with minor improvements [7–9], while other employed state-of-the-art CNN
models, such as VGGNet and ResNet [10–12]. They have also extended their datasets,
including WikiArt, the Web Gallery of Artworks (WGA), TICC and OmniArt, by expanding
the size and increasing the variety of the datasets. The size of WikiArt has been increased
by more than 133 K through incrementally collecting artwork images. The WGA is a
historical artwork dataset including artworks from the 8th century to the 19th century
with extensive collections of medieval and renaissance artworks. TICC is composed of
digital photographic reproductions of artworks from the Rijks that have uniform color
and physical size. OmniArt, a museum-centric dataset, combines several datasets from
museums including the Rijks, the Metropolitan Museum of Art and the WGA.

2.2.3. Gram Matrix

In several studies, texture information plays an important role in recognizing artwork
styles and synthesizing artistic styles in photographs. These studies employ the Gram
matrix, which is effective for processing texture information [13]. The Gram matrix is
defined as the correlation between different filter responses of CNN layers. Each element
of the matrix represents the level of spatial similarity between feature responses in a layer.

In contrast to the CNN-based features, which are specialized for object recognition,
Gram-based texture information is effective in improving the performance of style recogni-
tion. Sun et al. [14] demonstrated the effectiveness of the Gram matrix for style recognition
by combining the features from an object-classifying CNN structure and the texture infor-
mation represented in a Gram matrix. Chu et al. [15,16] employed both features from a
Gram matrix and a Gram of Gram matrix for style recognition. The recognition module
used in these works is VGGNet. The performance of the style recognition methods using
the Gram matrix is superior to that of methods using CNN models. We compare the
performance of the features from the Gram matrix with the performance of our approach
and demonstrate that a multi-column structure using well preserved stroke patterns is
effective for media recognition.

More recently, Chen and Yang [17] presented a style recognition framework using
adaptive cross-layer correlation, which is inspired by Gram matrix. They classified artworks
into 13 painting styles at 73.67% on the arc-Dataset and 80.53% on the Hipster Wars dataset.

2.2.4. Features for Fine-Grained Region

In multi-column structured models devised for image aesthetic assessment [18–21],
local patches sampled from an image are fed into the recognition modules in the model.
Many existing object-classifying CNN models are employed for the recognition module.
Instead of carefully sampling patches, these methods focus on processing the features
extracted from the recognition modules for media recognition.

Anwer et al. [22] proposed a multi-column structured model for style recognition.
They sampled patches from portrait images based on prominent components such as the
eyes, nose and lips. This object-based sampling strategy cannot be applied for media
recognition, since most artists tend to hide stroke patterns in describing the details of
salient objects. In our approach, we devise a saliency-based scheme to properly sample
patches containing stroke textures.

Yang and Min [23] proposed a multi-column structure to recognize artistic media from
existing artworks and to evaluate synthesized artistic media effects, which are produced by
many existing technologies. They collect dataset for synthesized artistic media effects for
their experiment. Through our further analysis, the media stroke textures on the artwork
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images play an important role in recognizing the media. Since this structure does not
include any considerations on how to concentrate on the stroke textures, the performance
of this structure can be improved.

Sandoval et al. [24] presented a classification approach for art paintings by feeding
five patches cropped from four corners and center of the painting into a multi-layered
deep CNN. They employed various well-known architectures including AlexNet, VGGNet,
Goog-LeNet and ResNet to classify the art paintings into their styles. They experimented
the process by designing several scenarios that specify various conditions such as voting
and weight strategy. However, their approach has a limitation in considering how to crop
the patch to reflect the style of the painting.

Bianco et al. [25] presented a painting classification scheme that samples ROIs from the
painting for the input of multi-branch deep neural network. They present two sampling
strategies: a random crop and a smart extracting scheme based on spatial transform
network. They also employ various handcrafted features along with the neural ones. They
classified the genre, artist and style of the paintings at the accuracy of 56.5∼63.6%.

2.3. CNN-Based Feature for Recognizing Artistic Media

Of the studies pertaining style recognition, only several focused on media recognition.
In addition to style and creator, their targets for recognition include type, material, and
year of creation. These methods were motivated by style recognition studies and exploited
various features.

Mensink et al. [26] presented a framework that classifies artworks from the Rijks
dataset according to their creators, types, materials and years of creation. They employed
SIFT encoded with Fisher vector for feature extraction, and an SVM for the decision process.
They aim to classify twelve materials including paper, wood, silver, oil, ink and watercolor.
Their approach involves classifying materials in an artwork dataset using handcrafted
features. However, the wide range of materials makes the classification a straightforward
process. Furthermore, SIFT, their features for extraction, has difficulty in distinguishing the
stroke patterns of similar textures. Therefore, their framework is limited in its ability to
classify artistic media, which is a more complex problem.

Strezoski et al. [12] pursued the same classification problem as Mensink et al. using
both the Rijks and OmniArt datasets. The most important technical improvement of
their study is that it employs features extracted from CNN models instead of handcrafted
features. They used several widely used CNN models including VGGNet, ResNet and
Inception V2 to extract features from artwork images. The results of their experiment
indicate that the features from ResNet led to the best performance. They addressed
different types of recognition problems such as classification, multi-label classification and
regression using a single structure. However, a single structure model of fixed size input
images has the drawback of distortion caused by resizing the input images.

Mao et al. [27] extended the object of classification into content such as stories, genre,
artist, medium, historical figure and event. They employed features from VGGNet and the
Gram matrix for their classification. For this purpose, they constructed Art500K dataset
from various sources including WikiArt, WGA, Rijks, and Google Arts and Culture. One
of their important contributions is a practical implementation. They present a website
and mobile application through which users can upload their artwork images to extract
information. Users can also search artworks that share similar properties by filtering
categories and by visual similarity. They used historical artwork datasets which are widely
used in style recognition studies. However, these datasets are not appropriate for training
and testing for the recognition of artistic media, because the stroke patterns of historical
datasets have been damaged. While they contribute to the expansion of recognizing the
target domain, they do not offer any strategies for preserving the stroke pattern.
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3. Building Saliency-Based Patch Sampling Strategy from Human Study

In this section, we aim to develop a patch sampling strategy that catches the media
stroke texture, which is the key evidence of recognizing media. We begin by estimating
si, a saliency score of a patch pi, which is defined as the mean of the saliency values of
the pixels on the patch pi. si’s, the saliency scores of the patches sampled from an image,
are collected to build P(s), a distribution of the saliency scores. In the second stage, we
hire mechanical turks to watch an artwork image and to mark the region from which they
catch the evidence of the artistic media that creates the artwork image they are watching.
A patch containing the region is denoted as gtPatch, which means the ground truth patch
for the media. The saliency scores of the gtPatches, which are denoted as zi, are marked
on P(s), the distribution of the saliency scores. These two steps are illustrated in Figure 1.
Finally, zi, the saliency scores of the gtPatches marked on the distribution, are collected
for the distribution of the saliency scores of gtPatches. For an arbitrary artwork image, a
patch whose saliency score is the median of this distribution is expected to be a gtPatch for
the image.

patch 
sampling

estimating 
saliency 
score (si)

for patches 
(pi)

𝑃 𝑠 : distribution of 
saliency scores

Marking 
gtPatches by 
Mechanical 

turks

Region of 
background

zi‘s marked on 𝑃 𝑠
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saliency 
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Artwork image
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Figure 1. Two processes to build our saliency-based patch sampling scheme: (a) building the distribution of saliency scores
for an input artwork image, (b) building the distribution of saliency scores for a gtPatch.

3.1. Building the Distribution of Saliency Scores of Patches
3.1.1. Review of Saliency Estimation Schemes

According to a recent survey on saliency estimation techniques [28], 751 research pa-
pers were published on this topic since 2008. Some of them employ conventional techniques
including contrast, diffusion, backgroundness and objectness prior, low-rank matrix recov-
ery, and Bayesian, etc, and others employ deep learning techniques including supervised,
weakly supervised and adversarial methods. In order to select a proper saliency estimation
technique for our purpose, we build the following requirements: (i) uniformly highlight-
ing salient regions with well-defined boundaries, (ii) many salient region candidates that
potentially contain media stroke texture, and (iii) a wide range of saliency values.

From these requirements, we can locate important objects in more salient regions
and media stroke textures in less salient regions. Figure 2 illustrates several saliency
estimation results. We exclude frequency-based methods that do not clearly distinguish
objects and backgrounds. We also exclude context-aware detection schemes, since they
concentrate on the edges of important objects. We select robust background detection
schemes that emphasize objects in stronger saliency values. Among the various robust
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background detection schemes [29–32], we select Zhu et al.’s work [32] that presents an
efficient computation environment.

(e) minimum barrier distance(d) robust background detection(b) frequency-tuned method(a) Original image (c) Context-aware detection

Figure 2. Results of candidate saliency estimations.

3.1.2. Efficient Computation of Saliency Score of Patches

Values in the saliency map are between zero to one (see Figure 3b). We define the
saliency score of a single patch as the average of the salient values of pixels inside the patch.
The patches have an identical 256 × 256 pixel size (see Figure 3c) and the saliency scores of
all patches inside an input image are computed (see Figure 3d).

Figure 3. Process of computing the saliency score of all patches of an image. (a) input artwork image, (b) corresponding
saliency map, (c) saliency score computation for a patch with a size of 256 × 256, (d) saliency score computation of all
patches inside an input image.

Estimating the saliency score for a patch may require a heavy computational load,
as all possible patches from an artwork image are considered. This may require a time
complexity of O(k2 × n2) for an image of n × n resolution and a patch of k × k size. Because
we set k to 256, which is as large as n, O(k2 × n2) could nearly be O(n4).

For efficient estimation, we use a cumulative summation scheme with an auxiliary
memory R of size n × n. R(q), where q = (i, j), stores the sum of the saliency values in a
patch defined by O and q, where O is the origin of the image. From s(x, y), the saliency
values at a pixel (x, y), R(i, j) is computed by the following formula:

R(i, j) = s(i, j) + R(i − 1, j) + R(i, j − 1)− R(i − 1, j − 1). (1)

This formula is implemented through the pseudocode in Figure 4 and illustrated in
Figure 5c.
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Input: s // saliency map, s(i, j) stores the saliency value of a pixel (i, j)
n // size of an image (n × n)

Output: R // auxiliary memory
// R(i, j) stores the sum of saliency values of the pixels in (0 ∼ i) and (0 ∼ j)

// Initialization
R(1, 1) = s(1, 1)

// Computing borderline
for k = 2 to n

R(1, k) = s(1, k) + R(1, k-1) // upper border
R(k, 1) = s(k, 1) + R(k-1, 1) // left border

// Computation
for i = 2 to n

for j = 2 to n
R(i, j) = s(i, j) + R(i-1, j) + R(i, j-1) - R(i-1, j-1)

Figure 4. Pseudocode for computing auxiliary memory R from a saliency map s.

The above algorithm has a time complexity of O(n2). Using R, we estimate S(p, q),
the saliency score of a patch defined by an upper left vertex p = (px, py) and a lower right
vertex q = (qx, qy), as follows:

S(p, q) = R(qx, qy) + R(px, py)− R(qx, py)− R(px, qy) (2)

This formula is illustrated in Figure 5d. Note that S(p, q) takes O(1) to be computed.

3.1.3. Building the Distribution of Saliency Scores

si, the saliency scores of the patches sampled from an image, form P(s), a distribution
of saliency scores for an input image. Since we sample patches very densely, the neighbor-
ing patches that overlap in a large area have similar saliency scores. The raw distributions
of the images can have different minimum and maximum saliency scores, since the saliency
depends on the content of the images. Therefore, we normalize the saliency scores si to ŝi
using the following formula:

ŝi =
si − smin

smax − smin
, (3)

where smax and smin denote maximum and minimum saliency score, respectively. The raw
distribution (P(s)) and normalized distribution (P̂(s)) of saliency scores are illustrated in
Figure 6. We use the normalized distribution.

3.2. Building the Distribution of Saliency Scores of gtPatches

We aim to sample a patch that contains media stroke texture through the distribution
of the saliency scores. For this purpose, we hire mechanical turks to mark the regions of
an image that contains the media stroke texture. The saliency scores of these gtPatches
that contain the regions form a distribution of saliency scores of gtPatch, which guides the
expectation of gtPatch for an artwork image.
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w q
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q q q q
= + + –
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(c) Computing R(q), where q = (i, j): R(i, j) = s(i, j) + R(i – 1, j) + R(i, j – 1) – R(i – 1, j – 1)

q

Figure 5. The process of computing auxiliary memory R and saliency score S of an image, which is motivated by cumulative
sum algorithm.

3.2.1. Capturing gtPatches from Mechanical Turks

To capture gtPatches, we hire ten mechanical turks. Before hiring mechanical turks,
we execute a null test to exclude those turks who cannot do their job properly. We prepare
several groundtruth images where the stroke media texture is very salient, and ask the
turks to capture gtPatches on the images. According to the result, we exclude those turks
who fails to satisfy our standard. We restrict the number of regions they mark as the same
number of gtPatches and exclude the turks who fails to score 80% of correct answers. From
this strategy, we tested 21 candidates to hire 10 turks for our study.

The hired turks are instructed to classify 100 artwork images according to artistic
media. During the classification process, we instruct them to mark the regions in which
they detect the media as illustrated in Figure 7. For correctly classified images, we samples
256 × 256 sized patches that cover the regions as a gtPatch. Turks are instructed to mark at
most three regions per images for the media stroke texture.
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(a) Input images (b) 𝑃 𝑠 : raw distribution 
of saliency scores

(c) 𝑃 𝑠 : normalized distribution 
of saliency scores
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Figure 6. The normalized distributions of saliency scores for input images.

Figure 7. Example of gtPatch capturing. Regions selected by mechanical turks help recognize the
artistic media of an artwork. Turks select at most three 256 × 256-size of patches from a single
artwork image.
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We analyze the distribution of the saliency scores of the gtPatches sampled from an
artwork image and determine the relationship between the saliency score and patches.
Figure 8 illustrates an example. The saliency scores of the gtPatches are marked in the
histogram of the saliency score distribution, and in this example, they are located between
q1 and the median of the distribution.

3.2.2. Building the Distribution of Saliency Scores of gtPatches

From one thousand images examined by mechanical turks, we capture 2316 gtPatches
and estimate their saliency scores (zi’s). From these scores, we build Q(z), a distribution of
saliency scores of gtPatches. This distribution gives us a guide to sample a gtPatch from an
arbitrary artwork image.

Input image

Expected gtPatches
for input image

𝑄 𝑧

Distribution of normalized saliency score

Distribution of normalized saliency score

PDF of MTS patches

30000

25000

20000

15000
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𝑃 𝑠
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Saliency scores 
for expected gtPatch

0.0 0.2 0.4 0.6 0.8 1.0

40

30

20

10

0

Figure 8. Estimating normalized distribution of saliency scores.

3.3. Capturing Expected gtPatches from an Input Image

We sample five expected gtPatches per an artwork image. Our first candidate for an
expected gtPatch is a patch whose saliency score is the mode of Q(z) distribution. The
next candidate patches are sampled by the next mode values in Q(z). Since the distance
between the neighboring patches is 10 pixels, the saliency scores of the neighboring pixels
become very similar. Therefore, those patches that overlap the already chosen expected
gtPatches in greater than 10% of their areas are ignored. In this process, we sample next
expected gtPatches (See Figure 9).

However, a patch of identical saliency score may show very different stroke patterns,
since the saliency score is the mean of the saliency values of the pixels in the patch. A patch
that has a higher variance of the saliency values of the pixels is less adequate for a gtPatch
than a patch that has lower variance (See Figure 10).
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(a) (b)

Figure 9. Excluding overlapped patches: (a) The black patch is a captured gtPatch. The dashed patch
is a patch of next mode. But, it is excluded, since it is overlapped with the black gtPatch. The realline
patch is captured next. (b) The two gtPatches.

Figure 10. Examples of patches with identical saliency scores (0.67) but different variance values
(0.16 and 0.33, respectively). The patch with high variance has a smaller probability of containing
MTS than a patch with low variance.

4. Structure of Our Classifier

Our classifier is composed of several recognition modules, each of which is a pre-
trained CNN [23]. The structure of our multi-column classifier is presented in Figure 11. The
saliency scores of the patches on an input artwork image are estimated to sample patches,
which are processed through a recognition module. To configure our recognition module,
we examine several well-known CNN models for object recognition including AlexNet [33],



Electronics 2021, 10, 1053 12 of 23

VGGNet [34], GoogLeNet [35], ResNet [36], DenseNet [37], and EfficientNet [38]. To
determine the CNN for the recognition module of our classifier and the number of modules
of our classifier, we executed a baseline experiment to compare the accuracies on the
various combinations on the CNN models and the number of modules on YMSet+.

Our baseline experiment, is planed to find the best configuration by changing the
recognition module and the number of modules. Since our model is a multi-columned struc-
ture consisted of several independent recognition modules, we test six most widely-used
object recognizing CNN models including AlexNet [33], VGGNet [34], GoogLeNet [35],
ResNet [36], DenseNet [37], and EfficientNet [38]. We also change the number of mod-
ules as 1, 3, and 5. We execute this experiment on YMSet+, which is composed of 6K
contemporary artwork images of four media. The measured the accurcies of the eighteen
combinations and illustrated them in Figure 12, where Figure 12a compares the number
of modules per CNN models and Figure 12b compares CNN models. As a result of this
experiment, we decide the best configuration of our model. A model of five modules of
EfficientNet shows best accuracy.

Figure 11. Our saliency-based multi-column classifier.
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Figure 12. Result of our baseline experiment: Comparison of the CNN models and the number of modules.
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5. Experiment
5.1. Data Collection

Because stroke texture plays a key role in recognizing artistic media in artwork images,
we carefully collect artwork images that properly preserve media stroke texture. We employ
YMSet [39], which is composed of the four most frequently used artistic media including
pencil, oilpaint, watercolor and pastel. YMSet consists of 4 K contemporary artwork images
in which media stroke texture is preserved. We extend YMSet to build YMSet+ which
contains 6K artwork images. To train and to test our model, we separate YMSet into three
parts: train set (70%), validation set (15%) and test set (15%).

To demonstrate that our model is effective for historical artwork images, we also
construct artwork datasets from WikiArt, one of the largest artwork image collections on
the internet. We build Wiki4, which is composed of 4K artwork images with the four most
frequently used artistic media, and Wiki10, which is composed of 6K images with ten most
frequently used media. The frequency of media in WikiArt is suggested in Figure 13, and
the images in three datasets are illustrated in Figure 14.

Figure 13. Frequency of the most frequently used media type from WikiArt: Yellow box denotes the media contained in
YMSet+ and Wiki4, and red rectangle denotes those in Wiki10.

Since our model employs soft max operation to determine the most prominent media,
the last layer of our model depends on the number of media to recognize. Therefore, in
processing YMSet+ and Wiki4, the last layer of our model has four nodes, and Wiki10
dataset, the last layer is slightly modified to have ten nodes.

5.2. Experimental Setup

Our model is a multi-column structure of individual modules for recognizing artistic
media. For the recognition module, we employ EfficientNet, which has the best perfor-
mance in recognizing both objects and artistic media among CNN structures, discussed
in Section 5. We employ Adam optimization as the optimization method, and we assign
0.0001 for the learning rate, 0.5 for weight decay and 40 for batch size. The learning rate is
decreased by a factor of 10 whenever the error in the validation set stopped decreasing.

After training process using training dataset, we execute further hyper-parameter
tuning on validation (development) dataset. Those parameters optimized on the validation
dataset are employed for the test dataset to record the result of our model. The hyper-
parameters include the number of units for layers, drop-out ratio, and learning rate.
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The training was performed on an NVIDIA Tesla p40 GPU and took approximately
two hours, depending on the size of the dataset. The performance is measured using the
F1 score, which is the harmonic mean of precision and recall.

(c) Wiki10: 6K historical artwork images of four media of ten media

(a) YMSet+: 6K contemporary artwork images of four media (b) Wiki4: 4K historical artwork images of four media

Oil Watercolor Tempera Pastel Fresco Ink Etching Pencil Lithograph Engraving

Oil OilWatercolor WatercolorPastel PastelPencil Pencil

Figure 14. The collected datasets.

5.3. Training

We set the number of epoch as 100 for every training. We apply an early stop policy for
the training, if our train process reaches a stable performance before 100 epochs. Figure 15
shows the decrease of the error during training of our model. Each curve means the error
for train and validation(development).

Our model trains individual recognizing networks including AlexNet, VGGNet,
GoogLeNet, ResNet, DenseNet and EfficientNet with our datasets. The train times per
epoch required for each model with our datasets are listed in Table 1. Since our study
compares patch sampling strategies on an identical multi-columned structure, the training
time in Table 1 is same for the three sampling strategies. We note that GoogLeNet requires
exceptionally long training time.
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Figure 15. Decrease of error for the training process.
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Table 1. Time required for training a network for one epoch.

Module
Time per Epoch (min)

YMSet+ Wiki4 Wiki10

AlexNet 6.4 4.5 6.3
VGGNet 6.7 4.7 6.9

GoogLeNet 13.1 9.2 13.8
ResNet 7.3 4.8 7.1

DenseNet 7.6 5.1 7.5
EfficientNet 7.2 4.9 7.3

5.4. Experiments

We execute three experiments in this study. The first experiment, which is a baseline
experiment, is to find the best configuration of the multi-columned media recognition
model. The second experiment is a measure on three patch sampling strategies to prove
two arguments: (i) our strategy shows best performance and (ii) three sampling strategies
show a consistent recognition patterns. The first argument is important, since the most
important contribution of this study depends on it. The second argument is also important,
since our sampling strategy inherits the recognition pattern of a multi-columned media
recognition model. Since three comparing sampling strategies share an identical model,
the characteristic of the model should be consistent on the sampling strategies. These two
arguments are specified as research questions (RQs) in Section 6. The third experiment
is a measure on the recent deep learning-based methods to prove that our model shows
best performance.

Object-based patch sampling Random patch sampling Our patch sampling 

Figure 16. Comparison of three sampling schemes.

5.4.1. Experiment 1. Baseline Experiment

Our first experiment, a baseline experiment, is planed to find the best configuration by
changing the recognition module and the number of modules. As explained in Section 4,
we decide the best configuration of our model as five recognition modules of EfficientNet.

5.4.2. Experiment 2: Comparison on Patch Sampling Schemes

In our second experiment, we apply three datasets including YMSet+, Wiki4, and
Wiki10 to the multi-columned media recognition model by alternating three sampling
strategies. The first strategy is an object-based sampling [22], which samples the prominent
regions from a portrait. The second one is a random sampling [23], which samples patches
in a random way. The third one, our strategy, samples patches based on the criteria designed
by estimating saliency and mimicking human strategy. An example of the sampled patches
of these three strategies are illustrated in Figure 16. In this experiment, we measure F1
score, whose comparison is illustrated in Figure 17.
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5.4.3. Experiment 3: Comparison on Recent Deep Learning-Based Recognition Methods

In our three experiment, we compare ours with three recent deep learning-based
recognition methods. Lu et al. [20] proposed a postprocessing scheme for media recogni-
tion, while Sun et al. [14] employed a Gram matrix for media classification. We select these
two methods for our comparison. Furthremore, we replace the VGGNet employed in Sun
et al.’s work with cutting edge EfficientNet to improve their performance. Therefore three
methods including Lu et al.’s work, Sun et al’s work and Sun et al’s work with EfficientNet
are compared with ours. In this experiment, we measure F1 score, whose comparison is
illustrated in Figure 18. This result shows that our model shows better performance than
the existing deep learning-based methods.
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Figure 17. Comparison of F1 scores for three sampling schemes on three datasets: YMSet+, Wiki4
and Wiki10.
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Figure 18. Comparison of F1 scores for three deep learning-based methods on three datasets:
YMSet+,Wiki4 and Wiki10.
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6. Analysis

The purpose of our analysis is to answer the following two research questions (RQs):

1. (RQ1) Our sampling strategy shows best accuracies on confusion matrices.
2. (RQ2) Our sampling strategy shows a significant different accuracies than the other

sampling strategies.
3. (RQ3) Why pastel shows worst accuracies for four media recognition through

three approaches.
4. (RQ4) Three sampling strategies show consistent recognition and confusion patterns.

6.1. Analysis1: Analysis of the Performance Compared to the Sampling Strategies

RQ1 is resolved by estimating the performances of the three strategies and comparing
them. In Figure 17, we estimate accuracy, precision, recall and F1 score for the three different
datasets. The performances of the individual medium as well as the total performances
are compared. As illustrated in Figure 17, other strategies show better performance than
ours in some specific media from some specific dataset. For example, other strategies
show better performance than ours in watercolor from YMSet+. However, for the total
performance, our strategy outperforms the other strategies in all measures and in all
datasets. Therefore, we can resolve RQ1 that our sampling strategy shows better results
than the other sampling strategies.

6.2. Analysis2: Analysis of Statistically Significant Difference of the Accuracies

RQ2 is resolved by t-test and Cohen’s d test on the F1-scores for Wiki10 media. Instead
of YMSet+ and Wiki4 datasets whose dataset size is four, we choose Wiki10 dataset that has
ten media. We configure five pairs for the comparison: (i) object-based sampling approach
and ours, (ii) random sampling approach and ours, (iii) Lu et al. [20]’s method and ours,
(iv) Sun et al. [14] and ours, (v) Sun et al. [14] with EfficientNet and ours.

For t-test, we build a hypothesis H0 that there is no significant difference between
ours and the opponent method. In case that p value is smaller than 0.05, then H0 is rejected,
which means that there is significant difference between two groups.

In computing Cohen’s d value, we notice that N, the number of sample, is 10, which is
smaller than 50. Therefore, we estimate a corrected d value whose formula is:

d =
ME − MC
SDpooled

× (
N − 3

N − 2.25
)×

√
N − 2

N

The results of Analysis2 are presented in Table 2.

Table 2. p value for t-test and Cohen’s d value.

t-Test Cohen’s d

p Value H0 Corrected d Value Effect Size

(i) object-based & ours 0.03535 reject 0.82129 large
(ii) random & ours 0.34326 not reject 0.43590 medium

(iii) Lu et al. [20] & ours 0.00011 reject 1.12530 large
(iv) Sun et al. [14] & ours 0.00513 reject 0.87636 large

(v) Sun et al. with EfficientNet & ours 0.048644 reject 0.76138 medium

From this analysis, we conclude that our approach produces significantly different
results from object-based, Lu et al.’s, Sun et al.’s and Sun et al.’s with EfficientNet, but
cannot produce significantly different result from random sampling approach. We also
produce results with large effect size for object-based, Lu et al.’s and Sun et al.’s and
medium effect size for random and Sun et al.’s with EfficientNet.
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6.3. Analysis3: Analysis on the Poor Accuracy of Pastel

RQ3 is resolved by analyzing why pastel shows poor accuracy. It is interesting to
analyze why pastel is the worstly recognized media for YMSet+ and Wiki4 through three
approaches. The reason of the poor recognition of pastel is that pastel is mis-recognized
as oilpainting. According to the confusion matrices in Figure 19, oil is the most confusing
media for pastel through our three datasets and three approaches. However, pastel is not
the most confusing media to oil.

Object‐based sampling Random sampling Our approach

YMSet+

Wiki4

Wiki10

Figure 19. Comparison of confusion matrices: Row denotes the dataset and column denotes sampling strategies.

We analyze this difference comes from the point that oilpastel, which is a kind of a
pastel, is labeled as pastel. However, the stroke patterns of oilpastel look very similar to
those of oilpainting (See Figure 20). Therefore, all three approaches produces a confusing
result in deciding oilpastel artwork images. They mis-classify those oilpastel artworks as
oil instead of pastel.
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Figure 20. Oilpastel artworks similar to oilpainting artworks.

6.4. Analysis4: Analysis on the Consistency of the Sampling Strategies

It is important to show that the sampling strategies show a consistant recognition and
confusion patterns for the media recognition process, which is addressed in RQ4. This
analysis is executed in two aspects: proving the consistency for recognition pattern and
for confusion pattern. We employ the confusion matrices from three datasets illustrated in
Figure 19.

6.4.1. Analysis on the Consistency for Confusion Pattern

We define a confusion matric between two media for our analysis. Confusion metric
between two media mi and mj, which is denoted as mij, is defined as the sum of the
elements in a confusion matrix Mij and Mji. Note that Mij means that medium mi is
misclassified into mj, and Mji is vice versa. Therefore, a confusion metric mij measures the
magnitude of confusion in recognizing media mi and mj.

To analyze the consistency of the sampling strategies, we categorize the confusion
metric between two media into four groups based on the average µ and standard deviation
σ of the confusion metrics:

• strong distinguishing: mij ≤ µ − σ

• weak distinguishing: µ − σ < mij ≤ µ

• weak confusing: µ < mij ≤ µ + σ

• strong confusing: µ + σ ≤ mij

From the confusion type, we estimate matching type for three datasets. We define the
matching type in four classes:

• strong match: mij’s from three datasets belong to the same confusion type.
• weak match: mij’s from three datasets belong to the same side of confusing or distin-

guishing, but they can be either strong or weak.
• weak mismatch: mij’s from three datasets belong to the opposite sides, but they are all

weak distinguishing or confusing.
• strong mismatch: mij’s from three datasets do not belong to the one of three above cases.

In Figure 21, we present the confusion metric for each media pair from three datasets
as well as their matching type. The summary of the matching type is suggested in Figure 22,
where 100% of the media pair from YMSet+ match, 66.7% from Wiki4 and 82.3% from
Wiki10 match.
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(c) Confusion metric for each pair of Wiki10

pair Object-based Random Ours Matching type

oil-pastel 0.18 0.18 0.11 Strong match

oil-pencil 0.04 0 0.01 Strong match

oil-water 0.12 0.11 0.11 Weak match

pastel-pencil 0.14 0.13 0.07 Strong match

pastel-water 0.07 0.05 0.03 Strong match

pencil-water 0.05 0.03 0.03 Strong match

pair Object-based Random Ours Matching type

oil-pastel 0.27 0.22 0.21 Strong match

oil-pencil 0.05 0.07 0.07 Strong match

oil-water 0.23 0.19 0.22 Weak match

pastel-pencil 0.2 0.08 0.09 Strong mismatch

pastel-water 0.17 0.13 0.1 Strong match

pencil-water 0.1 0.2 0.11 Weak mismatch

(a) Confusion metric for each pair of YMSet+ (b) Confusion metric for each pair of Wiki4

pair Object-based Random Ours Matching type pair Object-based Random Ours Matching type

engraving-etching 0.14 0.17 0.22 Weak match ink-litho 0.24 0.09 0.17 Strong mismatch

engraving-fresco 0 0 0 Strong match ink-tempera 0.04 0.02 0.03 Strong match

engraving-ink 0.17 0.08 0.21 Weak match ink-oil 0.07 0.02 0.03 Strong match

engraving-litho 0.13 0.06 0.01 Weak mismatch ink-pastel 0.02 0.03 0.02 Strong match

engraving-tempera 0.01 0.03 0 Weak match ink-pencil 0.17 0.33 0.28 Weak match

engraving-oil 0.03 0 0.06 Weak match ink-water 0.15 0.09 0.1 Weak mismatch

engraving-pastel 0 0.08 0 Strong mismatch litho-tempera 0.03 0.05 0.04 Strong match

engraving-pencil 0.07 0.03 0.03 Strong match litho-oil 0.06 0.12 0.1 Weak mismatch

engraving-water 0.01 0.03 0 Weak match litho-pastel 0.04 0.02 0.08 Weak mismatch

etching-fresco 0 0.01 0 Weak match litho-pencil 0.12 0.12 0.11 Strong match

etching-ink 0.21 0.15 0.18 Strong match litho-water 0.15 0.08 0.16 Weak match

etching-litho 0.18 0.2 0.15 Strong match tempera-oil 0.18 0.14 0.18 Weak match

etching-tempera 0.01 0.02 0.01 Weak match tempera-pastel 0.09 0.05 0.07 Strong match

etching-oil 0.04 0.01 0.01 Strong match tempera-pencil 0.02 0.05 0.02 Strong match

etching-pastel 0.04 0.01 0.02 Strong match tempera-water 0.18 0.12 0.14 Weak match

etching-pencil 0.12 0.06 0.03 Weak mismatch oil-pastel 0.27 0.27 0.19 Strong match

etching-water 0.07 0.01 0.02 Strong match oil-pencil 0.07 0.05 0.01 Strong match

fresco-ink 0.03 0.02 0.02 Strong match oil-water 0.28 0.28 0.19 Strong match

fresco-litho 0.02 0.01 0.02 Strong match pastel-pencil 0.07 0.02 0.05 Strong match

fresco-tempera 0.24 0.23 0.19 Strong match pastel-water 0.18 0.12 0.19 Weak match

fresco-oil 0.09 0.09 0.06 Strong match pencil-water 0.16 0.09 0.08 Strong match

fresco-pastel 0.02 0.03 0.02 Strong match

fresco-pencil 0 0.01 0 Weak match

fresco-water 0.12 0.06 0.1 Weak mismatch

Figure 21. Confusion metrics and their matching types for each media pair from the three datasets and three
sampling schemes.

Matching type
No.

YMSet+ Wiki4 Wiki10

Strong match 5 (83.3%)
100%

3 (50.0%)
66.7%

24 (53.3%)
82.3%

Weak match 1 (16.7%) 1 (16.7%) 11 (28.9%)

Weak mismatch 0 (0.0%)
0%

1 (16.7%)
33.3%

6 (13.3%)
17.7%

Strong mismatch 0 (0.0%) 1 (16.7%) 2 (4.4%)

Total 6 (100.0%) 6 (100.0%) 45 (100.0%)

Figure 22. The matching results of confusion metric.

6.4.2. Analysis on the Consistency for Recognition Pattern

The diagonal element of a confusion matrix Mii plays a key role for the analysis on the
consistency of the recognition pattern. Mii denotes the percentage of recognizing i medium
into i medium. We define a recognition metric for i-th medium as Mi ( we abbreviate
double i’s as a single i).

Similar to the analysis on the confusion pattern, we categorize the recognition metric
into four categories:

• strong unrecognizing: Mi ≤ µ − σ
• weak unrecognizing: µ − σ < Mi ≤ µ
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• weak recognizing: µ < Mi ≤ µ + σ
• strong recognizing: µ + σ ≤ Mi

In Figure 23, we present the recognition metric for each medium from three datasets
as well as their matching type. The summary of the matching type is suggested in
Figure 24, where 100% of the media pair from YMSet+ match, 50% from Wiki4 and 80%
from Wiki10 match.

media Object-based Random Ours Matching type

engraving 0.53 0.58 0.53 Strong match

etching 0.6 0.75 0.79 Weak match

fresco 0.68 0.77 0.8 Strong match

ink 0.5 0.65 0.6 Weak mismatch

lithograph 0.45 0.57 0.46 Weak match

tempera 0.52 0.66 0.75 Weak mismatch

oil 0.53 0.57 0.59 Strong match

pastel 0.7 0.73 0.71 Weak match

pencil 0.53 0.56 0.63 Strong match

watercolor 0.47 0.45 0.56 Weak match

media Object-based Random Ours Matching type

oil 0.84 0.89 0.96 Strong match

pastel 0.81 0.79 0.86 Weak match

pencil 0.92 0.95 0.94 Weak match

water 0.83 0.89 0.87 Strong match

media Object-based Random Ours Matching type

oil 0.68 0.69 0.82 Weak mismatch

pastel 0.77 0.87 0.77 Strong mismatch

pencil 0.81 0.79 0.81 Weak match

water 0.72 0.76 0.79 Strong match

(c) Recognition type for each pair of Wiki10

(a) Recognition type for each pair of YMSet+ (b) Recognition type for each pair of Wiki4

Figure 23. Recognition metrics and their matching types for each medium from the three datasets and three
sampling schemes.

Matching type
No.

YMSet+ Wiki4 Wiki10

Strong match 2 (50.0%)
100%

1 (25.0%)
50%

4 (40.0%)
80%

Weak match 2 (50.0%) 1 (25.0%) 4 (40.0%)

Weak mismatch 0 (0.0%)
0%

1 (25.0%)
50%

2 (20.0%)
20%

Strong mismatch 0 (0.0%) 1 (25.0%) 0 (0.0%)

Total 4 (100.0%) 4 (100.0%) 10 (100.0%)

Figure 24. The matching results of recognition metric.

7. Conclusions and Future Work

In this paper, proposed a saliency-based sampling strategy that identifies patches
containing stroke patterns of artistic media. To determine the relationship between saliency
and media stroke pattern, we hired mechanical turks to mark gtPatches in artwork images
and statistically analyzed the saliency scores of the patches. Based on the statistical rela-
tionship, we developed a strategy that samples patches with median saliency score and
low variation of saliency values. We compared the performance of the existing patch sam-
pling strategies and demonstrated that our saliency-based patch sampling strategy shows
superior performance. Our strategy also shows a consistent recognition and confusion
pattern with the existing strategies.

In future work, we plan to increase the level of details for recognizing target media.
For example, artists can use only pastels to perform a variety of artistic techniques, such
as smearing, scumbling and impasto, etc. These techniques are important for the deep
understanding of artworks. We also plan to extend our study to be used as conditions of a
generative model such as GAN to produce visually convincing artistic effects.
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