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Abstract: With the wide use of the Internet of Things and artificial intelligence, energy management
systems play an increasingly important role in the management and control of energy consumption
in modern buildings. Load forecasting for building energy management systems is one of the most
challenging forecasting tasks as it requires high accuracy and stable operating conditions. In this
study, we propose a novel multi-behavior with bottleneck features long short-term memory (LSTM)
model that combines the predictive behavior of long-term, short-term, and weekly feature models
by using the bottleneck feature technique for building energy management systems. The proposed
model, along with the unique scheme, provides predictions with the accuracy of long-term memory,
adapts to unexpected and unpatternizable intrinsic temporal factors through the short-term memory,
and remains stable because of the weekly features of input data. To verify the accuracy and stability
of the proposed model, we present and analyze several learning models and metrics for evaluation.
Corresponding experiments are conducted and detailed information on data preparation and model
training are provided. Relative to single-model LSTM, the proposed model achieves improved
performance and displays an excellent capability to respond to unexpected situations in building
energy management systems.

Keywords: LSTM; building EMS; load forecasting; IoT

1. Introduction

With the improvement of construction techniques and human creativity, buildings
have become increasingly larger. Modern buildings have become so large that they cannot
be managed and controlled by using human resources only. In a commercial building,
the amount of energy wasted can reach up to 40% if energy consumption is not properly
controlled [1]. With the improvement of the Internet of Things and artificial intelligence
(AI), building energy management systems have been adopted as an important part of
building facilities. With an energy management system, a commercial building can save up
to 25.6% of its total energy consumption [2]. Along with such management systems, load
forecasting has become equally important, but it requires advanced technology to achieve
accurate predictions. Power management in a building requires accurate load forecasting to
maintain stability, improve performance, and detect abnormal system behavior. However,
accurate load forecasting is challenging because of the continuous development, increasing
complexity, and growing variety of building energy management systems [3,4]. Load
forecasting can be categorized into short-term load forecasting (STLF), medium-term load
forecasting, and long-term load forecasting; they typically involve load predictions over
the span of 24 h, two weeks, and one year, respectively [5]. STLF requires the highest
prediction accuracy as it provides a significant amount of information for management
strategies, reliability analysis, short-term switch evaluation, abnormal security detection,
and spot price calculation [6,7].

STLF for buildings and facilities is one of the most critical elements of a smart city
because it can balance electricity demand and generation. In such buildings within a smart
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city, the use of STLF is crucial as these structures provide power to an increasing number
of applications. However, the output load of buildings or public facilities tends to change
unexpectedly because of complex factors that cannot be calculated and are difficult to
predict. These factors are complex and challenging to model with traditional approaches,
which achieve low prediction accuracies [8]. Thus, research has been focusing on neural
networks and deep learning to adapt to new requirements and challenges. Artificial neural
networks (ANNs) and deep learning models are currently attracting attention because of
their high accuracy and flexibility in terms of input data types and applications. Although
traditional ANNs and probabilistic approaches are suitable for forecasting photovoltaic
power generation, their advantageous capability of independently extracting features does
not apply to time series data, which are at the core of load forecasting. In dealing with
time series data, recurrent neural networks (RNNs) and long short-term memory (LSTM)
networks have been developed with a unique architecture that enables them to “remember”
the features in data series.

However, RNN and LSTM approaches have disadvantages and limitations in time
series data prediction, including the vanishing gradient problem and low accuracy with
unexpected and unpatternizable intrinsic temporal factors (UUITFs). In cases involving
UUITFs, extracting features and recognizing the patterns of time series data is difficult [8,9].
These disadvantages limit the use of STLF for building energy management systems, which
require highly accurate and long-term input data processing. To overcome these problems,
we propose a novel LSTM model with bottleneck features. The proposed LSTM model
combines the advantages of LSTM models with long-term, short-term, and previous value
features. The proposed LSTM model with bottleneck features offers improved accuracy
relative to traditional LSTM networks. Hence, it is projected to become a robust tool for
STLF for building energy management systems. Our study focuses on the development
of a novel multi-behavior with bottleneck features LSTM model and its implementation
within a building energy management system at Kookmin University.

Figure 1 shows the overall architecture of the proposed building energy management
system at Kookmin University. The RETIGRID energy management system collects statis-
tical information from the building’s power system and sends it to the server. The data
include energy measurements from labs, lecture rooms, computer rooms, and personal
offices. They also include power consumption data for standard equipment, such as air
conditioners, projectors, and light bulbs. The data are stored in a secure local database for
further processing. Additional information about weather and daily activities is added to
the data before prediction. A novel neural network is responsible for predicting the output
load value; its output is presented to users in the form of graphical visualization. Based on
the characteristic of the STLF and specific input data of Kookmin University, we propose
a unique scheme and a new LSTM-based model for STLF. The main contributions of this
paper are as follows:

• We briefly review the characteristics of STLF and the requirements for an accurate
AI model for Kookmin University’s output load data. A unique scheme for STLF for
building energy management systems is proposed.

• The main contribution in this work is the multi-behavior with bottleneck features
LSTM model for use in STLF. This novel model provides more accurate and stable
approaches to STLF and is applied to Kookmin University’s output load data.

• To investigate the efficiency of the proposed model, we build and analyze several
models and metrics for evaluation. The corresponding experiments, data preparation,
and model training are presented in detail.

The remainder of this paper is organized as follows. Section 2 describes related
works, includes a novel approach in STLF and the requirement of a novel bottleneck
features LSTM model for better accuracy. Section 3 provides the working scheme and the
proposed model, including the overall architecture and practical development. Section 4
discusses the load data characteristics and their application. Section 5 details the proposed
model and its results. The proposed model is compared with traditional machine learning
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and neural network approaches, including the k-nearest neighbor (KNN), convolutional
neural network (CNN), and single-model LSTM. Section 6 summarizes the conclusions
and suggestions for future research.
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Figure 1. Proposed building energy management system. 
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2. Related Works

STLF plays an important role in modern energy management systems, and it has been
widely studied based on approaches such as traditional forecasting, machine learning,
and deep learning models. Traditional forecasting has been thoroughly investigated and
widely applied because of its high computational speed, robustness, and ease of imple-
mentation [10]. Machine learning methods and their expansions have been the subject
of research interest for several decades; they include linear regression [11,12], multiple
linear regression [13,14], and KNN [15]. For applications based on linear forecasting, these
models are an excellent choice as they reflect the relationships among the features of output
load and relevant factors. In these methods, the KNN approach is widely used in load
forecasting due to a fast calculation time, high accuracy, and flexibility with different types
of data. Therefore, we consider KNN in this study as a comparison method to highlight
the performance of the LSTM model. The disadvantages of machine learning methods
are prone to issues related to linear problems, which restrict the use of linear regression
methods, particularly for nonlinear models. Other methods, such as support vector re-
gression [16] and the decision tree [17] can work with non-linear problems. However,
they cannot adapt to time series data and they cannot remember previous features in the
long term.

Various ANN-based techniques have been introduced to overcome the challenges
of nonlinearity and complex relationships in load data. The general ANN techniques
include feedforward neural networks (FFNN) and backpropagation neural networks [18].
Compared to other machine learning methods, FFNN is more suitable for load forecasting
due to its ability to work with nonlinearity and complex data. However, the FFNN is
not effective in time series data analysis. Taking advantage of neural networks, deep
learning has been introduced as a powerful tool for data analysis and prediction in many
fields of research. Deep learning is based on the same concept as that of ANN as it uses
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a neural network to learn and adapt to unique situations. Nonetheless, the capability of
ANNs is boosted in deep learning by raising the number of layers and taking advantage
of their structure [19]. Thus far, deep learning has demonstrated an essential role in
many areas, and it has become more popular than methods such as face recognition and
automatic tracking. CNNs and RNNs are most widely applied in image processing and
data analysis [20]. With these advantages, CNNs and RNNs can work with time series data
and are also useful in STLF [21].

LSTM [22] is developed based on the RNN structure. It is fine-tuned to cope with
the problems of time series data, including delays and relatively long intervals between
forecasting and handling of important events [23]. Apart from LSTM, many methods
can be used to address the gradient issues of the RNN structure. Nevertheless, LSTM is
useful in improving long-term memory and ultimately achieving superior performance
in STLF [24,25]. Therefore, RNNs and LSTM have proven to be beneficial and are widely
used in STLF for building energy management systems [26,27]. However, the RNN and
LSTM approaches have limitations with regard to the vanishing gradient and low accuracy
with UUITFs [8,9]. LSTM in STLF can also lead to the loss of necessary data during the
training process and is unsuitable for parallel computing. Concretely, it cannot process
the task of computing wasteful usage and the time consumption of resource management.
Given the strict requirements of building load forecasting, previous models have not been
significantly effective. Hence, establishing a new appropriate model with a high accuracy
and adapts to the UUITFs is required for the STLF.

3. Multi-Behavior with Bottleneck Features LSTM Model for Short-Term Load Forecasting

Figure 2 shows the overall architecture of an STLF scheme for a building energy
management system. Raw data are collected for the preprocessing phase, during which the
system “cleans” the signal to remove any unwanted components or features from the vari-
ables to be modeled. In our scheme, we do not remove outliers as they reflect the variations
in activities across an entire building and are therefore necessary for model operation.
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Figure 2. STLF architecture for a building energy management system. Figure 2. STLF architecture for a building energy management system.

In support of pattern recognition, the raw data are augmented with additional data,
including weekday and weather information, to account for the impact of fixed weekly
schedules and weather on energy consumption. The data are then collected and divided
into three categories per sample: short-term data (6 h), long-term data (1 week), and
previous information (4 weeks). Each sample is labeled and fed into the multi-behavior
with bottleneck features LSTM model to generate the final forecasting value.
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3.1. LSTM Method for Different Time Scales

Based on time intervals and applications, load forecasting can be divided into several
categories, including short-term, mid-term, and long-term intervals [28]. In this section,
we introduce and analyze our approach to short-term forecasting using an LSTM network
to increase the overall accuracy of traditional LSTM-based models. Based on the character-
istics of short-term forecasting and LSTM-based models, the proposed LSTM model for
different time scales is introduced to overcome the disadvantages of traditional methods.

3.1.1. Recurrent Neural Network (RNN)

The RNN is a special type of ANN. In the RNN, the output of one unit is fed into
another unit to create a network with an internal state (memory) and temporal dynamic
behaviors. With their unique structure, RNNs can analyze a sequence of data with dynamic
behaviors between nodes. RNNs are widely used in series pattern recognition applica-
tions, including handwriting recognition [29], speech recognition [30,31], and time series
data prediction.

RNN nodes are connected in a sequence; that is, one node in a layer is fed to other
nodes in the next layer (Figure 3). Each node in the RNN has its activation function and
each connection has a temporal weight. A node can be an input, an output, or a hidden
node. RNNs are typically used in supervised learning, in which each input is “labeled,”
i.e., the output target is assigned according to the individual input. At a specific time step,
the RNN cells calculate the output by using their activation functions and weight matrix.
Using the input data and output of the previous RNN, the current RNN can combine the
input and internal state of the network. The sequence error is calculated as the sum of the
deviations of all outputs generated by the network. In the case of multiple sequences, the
error is the combination of each sequence.
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3.1.2. Long Short-Term Memory (LSTM)

LSTM is an improvement of the RNN architecture [32] used in time series data con-
vergence. A typical LSTM cell has a fixed structure that comprises an input gate, an output
gate, and a forget gate. In particular, the LSTM cell is used to store weight in the long term
and its gates allow the memory to move in and out during the training and testing phases.
By taking advantage of its ability to access long-time intervals at different events in a time
series, LSTM works well for time series data processing. It is also suitable for exploding
and vanishing gradient problems that occur in training traditional RNNs.

A typical LSTM architecture comprises a dynamic structure of units containing three
gates to control the input information and memory as they go through the LSTM units
(Figure 4). These units are responsible for extracting the features and dependencies of the
input sequences. In an LSTM unit, the gates control the values flowing into the cell and
the way the input pattern is “memorized.” The weights of the connections between gates
determine how the gates operate.
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Figure 4. Architecture of LSTM cell.

The forget gate layer decides what information is forgotten. This gate obtains input
data from ht−1 and xt, combined with the sigmoid active function: with an output value
close to 1, the gate can carry almost all information; when the value is close to 0, the gate
removes all previous information.

ft = σ(W f ·[ht−1, xt] + b f ) (1)

The information subsequently passes through the input gate layer, where it is stored
by the cell state; the weight for the next state is then updated. In this phase, the sigmoid
layer decides which value to update, and a tanh activation function creates a vector of new
values Ct that can be added to the state. The state is updated by combining the outputs of
these functions.

it = σ(Wi·[ht−1, xt] + bi) (2)

C̃t = tanh(WC·[ht−1, xt] + bC) (3)

In the next phase, the cell state is updated based on the previous output value. The
old state is multiplied with ft to forget the information fed into the forget gate. The new
candidate value Ct is subsequently added and scaled according to the degree to which each
state value should be updated.

Ct = ft ∗ Ct−1 ∗ C̃t (4)

In the final step, the cell decides the output values based on the cell state. First, the
sigmoid layer decides which part of the cell state is the output. Second, the cell state passes
through a tanh function (with values between −1 and 1) and is multiplied with the output
of the sigmoid gate.

ot = σ(Wo·[ht−1, xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

LSTM networks are fine-tuned to cope with the exploding and vanishing gradients
that may occur in traditional RNNs. LSTM networks are also effective in classifying,
processing, and making predictions based on time series data. The advantage of LSTM
over RNNs, hidden Markov models, and other sequence learning methods in various
applications is its high insensitivity to gaps in length.
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3.1.3. LSTM-Based Model for Input Data of Different Time Scales

Relative to other ANN models, such as MLP or CNN, LSTM can process long-term
input data and reflect time series data characteristics because of its unique structure and
the recursive connections between nodes. The proposed LSTM approach of different
time scales is expected to improve forecasting models’ capability to reflect short-term
activities, including UUITFs, and long-term time series input data characteristics, which
are a significant research topic at present. To highlight the ability of the proposed approach
of different time scales and the improvement in the forecasting model, a single LSTM-based
model is considered as a baseline for comparison. The fundamental concept of the proposed
approach is the unique combination of the features of LSTM networks with long- and
short-term input data, including the ability of the latter in terms of dealing with UUITFs
with intrinsic weighting and the forecasting ability of the former. When the input data fed
to the model lengthen, the importance of recent data in weight training is decreased and
the information is lost. In this case, the training of the forecasting model cannot progress
further, and the forecasting performance decreases. A possible solution is to use input data
with a short duration, such as 6 h (Figure 5). Through this approach, the importance of
recent data in the training phase increases and the data become suitable for STLF. However,
the model’s capability of analyzing long-term patterns is greatly weakened thus reducing
the overall prediction accuracy. From this point, the LSTM model for short-term input data
will be referred to as the short-term single-model LSTM, and that for long-term input data
will be referred to as the long-term LSTM-based single model.
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The ability of a forecasting model to adapt to UUITFs and maintain output values
close to the ground truth is essential. If a model can track UUITFs and adapt quickly, it
can be considered robust in terms of UUITF prediction. The relation of reactivity and
accuracy throughout the proposed model is presented with the forecasting results of many
unexpected events that decrease the ground truth value and significantly affect the accuracy
of the model.

In Figure 6, a temporal variation due to UUITF can be observed in the orange line
(ground truth) between time slots 11 and 14. The long-term LSTM in (a) does not reflect
the UUITF, whereas the short-term LSTM in (b) can track the UUITF as it approaches the
ground truth. However, the short-term LSTM is not robust in terms of forecasting accuracy
as indicated by the difference between the blue line and the ground truth from time slots
18 to time slot 24; the same is similar for the UUITF (b). Thus, in order to maintain the
prediction accuracy of the proposed model, the input data must be kept for a long duration
and the information about recent events must be preserved.

Given the limitations of long-term LSTM and short-term LSTM, the requirements of
combining their advantages should be met in load forecasting for building management
systems. The multi-behavior with bottleneck features LSTM model was developed based
on the approach of different time scales, and further adjustments are made to increase the
stability of the forecasting process. In the next section, we introduce the multi-behavior
with bottleneck features LSTM model to improve the accuracy and stability of STLF.
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3.2. Multi-Behavior with Bottleneck Features LSTM Model for Short-Term Load Forecasting

Figure 7 shows the overall architecture of the proposed framework, which incorporates
multiple time scales and weekday information approaches. The input data of multiple
time scales, including a 6 h duration and 1 week duration, are fed into the model, in which
they are divided into short duration processing and long duration processing. The two
networks are responsible for extracting the corresponding data features for the input data
of each time behavior. Conversely, previous weekday information is analyzed to extract
data for weekly features. Subsequently, the output is oriented to the fully connected layer,
which can combine the information from three different networks to determine the load
forecast for the next hour. The overall architecture of the multi-behavior with bottleneck
features LSTM model is inhered from previous studies [8,9].
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The model can maintain the overall forecasting accuracy of a baseline LSTM/RNN
model, reflect the recent data characteristics to predict UUITFs, and emphasize the im-
portance of weekly features in load forecasting. Finally, a multi-behavior with bottleneck
features LSTM framework, which combines the bottleneck features of short-term, long-
term, and weekly feature LSTM networks, is proposed to exploit the combination of a
short-term LSTM that can re-emphasize UUITFs, the forecasting ability of long-term LSTM,
and the features from previous weekday data.

The combination of the aforementioned features requires a neural merge layer. The
input features exhibit different characteristics, leading to reduced overall accuracy. In this
model, each feature provides a different approach that can work on its own. Thus, a single
fully connected neural network is not suitable for combining output values. Fortunately,
we can use a neural network with bottleneck features to establish a connection between
features as the outputs of the hidden layer can be used as inputs for the other layers. Each
neuron in the extracted feature layer receives one input from the previous LSTM layer, and
it is calculated as

zi = xLSTM·wi + bi (7)

where xLSTM is the output of the previous LSTM layer, wi is the weight of the neural node,
and bi is the bias. The activation function is subsequently calculated as:

f (zi) =

{
0.01zi f or zi < 0

zi f or zi ≥ 0
(8)

Through bottleneck features, the disadvantageous application of multiple time be-
haviors turns into the use of a high number of classes in the next layer. The short-term
LSTM-based approach emphasizes a relationship with recent data by weighting such
data according to trained weights. By contrast, the long-term LSTM-based model can
analyze long-term patterns, such as periodicity. The weekly feature LSTM-based model
performs relatively well because of the stable schedule of the university. Therefore, the
proposed multi-behavior with bottleneck features LSTM framework can provide reactivity
and accuracy by considering the two concatenated embedded results.

To investigate the efficiency of the proposed model, we analyzed several other mod-
els and the metrics for evaluation. The compared models were the short-term single-
model LSTM, long-term single-model LSTM, feedforward neural network (FFNN), two-
dimensional convolution neural network (2D-CNN), and KNN. The performance evalu-
ation metrics included the root mean square error (RMSE), mean absolute error (MAE),
coefficient of variation of the root mean square error (CV-RMSE), and mean absolute per-
centage error (MAPE). The corresponding experiments are presented herein, along with
detailed information about data preparation and model training.

4. Data Analysis
4.1. Input Load Data

Data were collected from one building at Kookmin University, Seoul, Korea, by using
the RETIGRID power monitoring system, which can manage the working data of a specific
building. The energy management system collects the energy data of the building by
using a smart meter that is specifically designed for the task. The data collected include
the active power of the system and other parameters, such as reactive power, apparent
power, phase current, phase voltage, power factor, and frequency. Data were collected
over a period of 9 months, from 25 March 2019 to 18 December 2019, with 5 min intervals.
High-quality detailed data suitable for analysis and prediction were collected at short
intervals over a long period. Another advantage of this dataset is its stability because
the university operates according to a fixed schedule for the duration of each semester.
This fixed schedule is the main factor affecting the active load of the building as it plays
an important role in total power consumption and stable power usage patterns. Along
with important parameters affecting power consumption, we also tracked other useful



Electronics 2021, 10, 1026 10 of 19

parameters, such as temperature and hours of daylight, which contain information about
regular activities and thus affect the total output load.

Figure 8 shows an example from the RETIGRID system that displays the active load
of the building for one month (December) along with general study activities. The first
consideration is the minimum active load value, which occurs at the end of the day, usually
between the cessation of activities at 9 p.m. until the start of a new working day at 8 a.m. the
following morning. We can assume that this power consumption is necessary to maintain
critical equipment and machines in the building, such as heaters, ventilation, light bulbs, or
computer servers. The second consideration is the active load that is significantly affected
by work activities. Power consumption drops off significantly during the weekend, and
the active load on Sunday is lower than that on Saturday mainly because of the lack of
classes and study activities. These characteristics were analyzed and considered to be
representative of regular activities within other facilities and offices as a primary factor in
further study and model design.

The load data had many disadvantages, including the lack of comparative data, such
as those from other buildings. The system also had minor errors resulting in the loss of data
for short periods that had to be filled or replaced. Figure 9 shows an example of missing
data for a short period from 10:00 a.m. to 16:00 p.m. on 19 August 2019. However, the
number of errors was small, and they did not affect the overall result of the data analysis
and prediction. The overall flow of the data preprocessing phase is shown in Figure 10.

4.2. Preprocessing

The raw data collected by the energy management system included the system’s
active power, reactive power, apparent power, current phase, voltage phase, power factor,
and frequency. Other data, such as temperature and hours of daylight, were collected
separately and combined to provide information on daily activities. Based on the previous
data analysis, weekday information was added to the input data. Holiday dates were also
collected and combined with the input data because they also affect daily activities. As
missing data were checked and filled, we accepted the small errors caused by gaps in the
data in cases when the missing values could not be obtained. Another problem we needed
to consider was that the sampling frequency for the load data, which were collected every
5 min, was too high and did not provide sufficient stability for the current study. The
short time interval between data points caused instability in the data analysis and a high
level of noise. To address this issue, we increased the time interval to 1 h by using the
accumulated partial load values. The preprocessing in the building energy management
system is shown in Figure 10.
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During the preprocessing stage, we divided the input data into a training set of
9 months and a test set of 3 months. The duration of the input sample was optimized to
provide sufficient information for prediction while maintaining a reasonable operating
speed. The input data can therefore be considered as a composition of data samples from
time step t − d to t − 1 and can be used to predict load power at step t. Relative to
previous STLF problems, the input data from the university were stable and contained
enough relevant information to obtain a reasonable prediction. The data were divided into
one-week batches (24 × 7 h) with no negative impact on the training process. With this
method, the batches were fed continuously into the model and the temporal variations
could be reflected in the time series data.

The input data included short-term (6 h), long-term (1 week or 168 h), and weekday
information for 1 month (4 samples). These samples were collected and labeled before
being fed to the model. Each sample also included the real value of the power load for the
next hour as the output value for model training. The data labeling process is the most
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critical part of our scheme as it involves the construction of the complete input dataset to
be fed to the LSTM-based model.

4.3. Weekday Information and Input Data Improvement

The total power consumption of one building is affected by the daily activities of
the people, machines, and facilities within it. This characteristic is significant in schools
and public facilities, where the number of machines and devices is constant and daily
routines are the primary variable affecting the output load. Figure 11 shows the active
power on all Thursdays of the months of May, June, and July. The active power levels
for all hours in May were almost the same (a), thus indicating the consistency in power
consumption characteristics depending on the university’s schedule. Similarly, the active
power levels in July (c) were consistent across all weeks. However, the peak active power
for July was higher than that for May because high temperatures at this time led to
increased power consumption by air conditioning equipment. As for June (b), 6 June was
exceptional because its active power was much lower than those of the other days. As
6 June is a national holiday in Korea (Liberation of the Fatherland Day), all daily activities
in the building ceased. This characteristic can be used to increase the accuracy of the
forecasting model.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 19 
 

 

time step t − d to t − 1 and can be used to predict load power at step t. Relative to previous 
STLF problems, the input data from the university were stable and contained enough rel-
evant information to obtain a reasonable prediction. The data were divided into one-week 
batches (24 × 7 h) with no negative impact on the training process. With this method, the 
batches were fed continuously into the model and the temporal variations could be re-
flected in the time series data. 

The input data included short-term (6 h), long-term (1 week or 168 h), and weekday 
information for 1 month (4 samples). These samples were collected and labeled before 
being fed to the model. Each sample also included the real value of the power load for the 
next hour as the output value for model training. The data labeling process is the most 
critical part of our scheme as it involves the construction of the complete input dataset to 
be fed to the LSTM-based model. 

4.3. Weekday Information and Input Data Improvement 
The total power consumption of one building is affected by the daily activities of the 

people, machines, and facilities within it. This characteristic is significant in schools and 
public facilities, where the number of machines and devices is constant and daily routines 
are the primary variable affecting the output load. Figure 11 shows the active power on 
all Thursdays of the months of May, June, and July. The active power levels for all hours 
in May were almost the same (a), thus indicating the consistency in power consumption 
characteristics depending on the university’s schedule. Similarly, the active power levels 
in July (c) were consistent across all weeks. However, the peak active power for July was 
higher than that for May because high temperatures at this time led to increased power 
consumption by air conditioning equipment. As for June (b), 6 June was exceptional be-
cause its active power was much lower than those of the other days. As 6 June is a national 
holiday in Korea (Liberation of the Fatherland Day), all daily activities in the building 
ceased. This characteristic can be used to increase the accuracy of the forecasting model.  

  
(a) (b) 

 
(c) 

Figure 11. Active power levels on Thursdays for the months of: (a) May, (b) June, and (c) July. Figure 11. Active power levels on Thursdays for the months of: (a) May, (b) June, and (c) July.

Daily routines are reflected in data for weekends and holidays, during which activities
cease and supporting devices stop running, leading to shallow power consumption and
different patterns relative to those for typical weekdays. Figure 12 shows the active power
for a Sunday when most activities were halted, except for those of a small number of people
conducting personal business. Active power levels were collected for May (a), June (b), and
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July (c) under the same conditions as those in Figure 11. The data proved to be difficult to
predict because of the lack of any recognizable pattern. As the conditions on holidays differ
from those on regular weekdays, including the information from these periods should
improve model accuracy. Therefore, the data on daily routines and weekly features for
a given weekday are critical in output load prediction. Weekly features reflect a regular
working routine and stable schedule and were thus applied to the LSTM network to collect
information and predict the output load.
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5. Implementation and Experiments
5.1. Forecasting Model Implementation

The multi-behavior with bottleneck features LSTM architecture has 64 hidden LSTM
units and 64-dimension bottleneck features. The input of the short-term LSTM-based model
was set to 6 h and that of the long-term LSTM-based model was set to 24 × 7 h (one week).
The bottleneck features of the multi-behavior LSTM-based model were concatenated with
32, 64, and 16 ratios and fed from the short-term, long-term, and weekly feature LSTM-
based models, respectively. The weights of all LSTM cells were initialized according to
the work of Xavier [33], and DROP was applied [34] with 0.7 keeping probability. Leaky
ReLU [35] was used as the activation function for the hidden and output layers of the
combined features; its formula is defined as

f (x) =

{
0.01x f or x < 0

x f or x ≥ 0
(9)
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The loss function applied to the training phase was MSE. We selected the stochastic
gradient descent (SGD) as the iterative optimization algorithm. The models were trained
with a minibatch size of 168 by using the ADAM solver [36], and the learning rate was
0.0005. The proposed multi-behavior with bottleneck features LSTM model was trained
over 1000 epochs.

5.2. Data Preprocessing

The input data were split into a training set of 9 months and a test set of 3 months.
The training data can therefore be considered as a dataset from time step t − d to t − 1 and
can be used to predict load power at step t. The data were divided into one-week batches
(24 × 7 h) with no negative impact on the training process. All the values of each field were
normalized to [−1; 1]. A single batch was combined with the continuous 168 composed
data, each of which consisted of continuous duration. The entire batch group was shuffled
and 70% of an arbitrarily selected batch group from the total number of batches was used
for the training data; the remaining batch group was used as the test data. In this regard,
the continuity of the sample data in each batch was maintained to help determine whether
the model can reflect temporal variation in load forecasting.

5.3. Performance Evaluation Metrics

The following error evaluation metrics were used to evaluate the overall results of the
load forecasting scheme.

Root mean square error (RMSE) measures the difference between forecast values and
observed values. The RMSE represents the square root of the differences between forecast
values and observed values; that is,

RMSE =

√√√√ 1
N

N

∑
i=1

(Pf − Po)
2 (10)

where N is the number of observations, Pf is the forecast value, and Po is the actual value.
Mean Absolute Error (MAE) is the average of absolute errors. It can effectively reflect

the accuracy of the forecasting value error and is defined as

MAE =
∑N

i=1

∣∣∣Pf − Po

∣∣∣
N

(11)

The coefficient of variation of the root mean square error (CV-RMSE) can compare
datasets or models with different scales. The CV-RMSE is also known as the normalized
root mean square error (NRMSE) and is calculated as

NRMSE =
1

ymax − ymin

√√√√ 1
N

N

∑
i=1

(Pf − Po)
2 =

RMSE
y

(12)

The mean absolute percentage error (MAPE) is a performance matrix in statistics that
can be used as the loss function for forecasting problems. It is usually expressed as a ratio
defined by the following formula:

MAPE =
1
N

N

∑
i=1

∣∣∣∣At − Ft

At

∣∣∣∣ (13)

We selected RMSE and MAE to evaluate our proposed scheme as they are suitable
for evaluating short-term predictions, such as hourly load forecasting. The NRMSE and
MAPE are more popular than other data of different scales.
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5.4. Experimental Setup and Evaluation
5.4.1. Experiments with CNN, FFNN, and KNN Regression Models

The experimental setup used Python version 3.7.4 [37] and TensorFlow version
r1.14 [38]. To compare the performance of the proposed model with that of other ma-
chine learning models, we need to apply different learning algorithms to the output load
dataset. In this study, we considered FFNN, KNN, and 2D-CNN models for the LSTM
comparison. These models were chosen since they are widely used in STLF along with
the LSTM mode [21,25]. In [25], the LSTM method was compared with an FFNN and
KNN model. The MAPE of the LSTM scores outperformed those of the FFNN and KNN,
thus demonstrating the effectiveness of LSTM in load prediction. Based on this study,
we selected the FFNN and KNN models as comparison candidates in STLF using the
dataset. For further comparisons, we also tested the dataset with the 2D-CNN model.
The experiment was conducted using the output load input data without weekday and
holiday information.

Table 1 shows the performance scores of the FFNN, CNN, and KNN models for the
output load dataset. The FFNN model used herein had a typical architecture with three
hidden layers and one output node. The duration input data were set to 1 day (24 h).
We used two different hidden layers with a size of 168 for the prediction model. The
activation function for the combined feature layer was ReLU and the loss function was
MSE. We selected the SGD as the iterative optimization algorithm by using the ADAM
solver. The proposed multi-behavior with bottleneck features LSTM model was trained
over 1000 epochs. For the CNN model, we only used two convolutional layers with
a ReLU activation function. Similar to that done for the FFNN, we selected the SGD,
ADAM solver, and training over 1000 epochs for the CNN model. The KNN was easy
to implement and was thus used herein for regression with three neighbor functions. As
the most straightforward technique, the regression KNN did not have a high accuracy,
with its RMSE score being 6260 and its MAE score being 3777. The 2D-CNN had the best
performance scores with an RMSE of 2759 and MAE of 1939. The FFNN’s performance
scores were relatively poor, with its RMSE being 3407 and its MAE being 2493.

Table 1. Performance of the FFNN, 2D-CNN, and KNN.

FFNN (961 Epochs) 2D-CNN (923 Epochs) KNN

RMSE 3407 2759 6260
MAE 2493 1939 3777

NRMSE 13.12 10.15 24.04
MAPE 28.19 27.71 60.31

5.4.2. Single LSTM Model

The single LSTM-based network only includes a single bottleneck feature LSTM-based
network connects with a fully connected layer. Experiments were performed with two
different single LSTM-based network models: a short-term input data model (6 h duration)
and a long-term input data model (1 week duration). Two different test sets were used:
one included only the raw data, and the other included the raw data plus weekday and
holiday information. We also investigated whether the LSTM network was a robust model
for load forecasting and residential energy management systems relative to other machine
learning methods. First, we compared the performance of the long-term and short-term
single-model LSTM networks with those of previous machine learning techniques and
then with that of the proposed model. For the training process, we ran with a large number
of epochs and chose the best results from them. Therefore, we can consider if the model
has overfitting problems or not.

Table 2a shows the overall performance of the short-term LSTM-based single model
(6 h) and that of the long-term LSTM-based single model (1 week). The LSTM-based single
model had better performance scores than the other machine learning methods in terms
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of RMSE, MAE, NRMSE, and MAPE. The RMSE of the short-term LSTM-based single
model LSTM was 2118 with 430 epochs; this result was much smaller than those of the
FFNN and 2D-CNN. The long-term LSTM-based single model is even better with an RMSE
score of 1778 after 310 epochs. The MAE scores of the LSTM-based single model were also
satisfactory at 1552 and 1370 after 1000 epochs. The NRMSE and MAPE scores, which
are essential in scaled comparisons, were also high at 8.07 and 19.36 for the short-term
LSTM-based single model and 6.77 and 19.82 for the long-term LSTM-based, respectively.

Table 2. (a) Performance of long-term and short-term single LSTM models using a dataset without
weekday and holiday information. (b) Performance of long-term and short-term single LSTM models
using a dataset with weekday and holiday information.

(a)

Short-Term Single LSTM
Model (430 Epochs)

Long-Term Single LSTM
Model (310 Epochs)

RMSE 2118 1778
MAE 1522 1370

NRMSE 8.07 6.77
MAPE 19.36 19.82

(b)

Short-Term Single LSTM
Model (550 Epochs)

Long-Term Single LSTM
Model (460 Epochs)

RMSE 1891 1691
MAE 1423 1268

NRMSE 7.20 6.44
MAPE 21.65 20.83

In the next step, we considered the improvement of the model’s performance with
the addition of weekday and holiday information. The weekday and holiday information
improved the performance of both short-term and long-term LSTM-based single models
(Table 2b). This result was due to the improvement in schedule pattern detection, which
mostly depended on weekday information. In this experiment, the long-term single
network performed relatively well because it utilized additional information to predict the
output value. Nevertheless, the short-term single LSTM-based model displayed robust
performance in the detection of UUITFs. Figure 6 shows the ability of the short-term
single-model to adapt to the UUITF relative to the long-term single-model LSTM.

5.4.3. Multi-Behavior with Bottleneck Features LSTM Network

The multi-behavior with bottleneck features LSTM network comprised three bottle-
neck LSTM networks connected to two fully connected layers: short-term LSTM (6 h),
long-term LSTM (1 week), and weekday feature extraction (value from the same hour of
the same weekday for the past four weeks). Experiments were performed with long- and
short-term single-model LSTM networks and with all three LSTM networks. We used test
sets with and without weekday and holiday information.

Table 3 presents the load forecasting results obtained using the multi-behavior with
bottleneck features LSTM network and the combined information from the long-term,
short-term, and weekly feature LSTM subnetworks. Compared with the single-model
LSTM network (Table 2), the multi-behavior LSTM-based model displayed better perfor-
mance. With the weekday and holiday information, the RMSE scores decreased to 1518
after 720 epochs. The MAE also decreased to 1146 after 720 epochs. These results showed
the multi-behavior with bottleneck features LSTM model to be more stable and accurate
than the long-term single LSTM-based model, and that it outperformed other traditional
machine learning methods, including CNN, FFNN, and KNN models. With the week-
day and holiday information, the multi-behavior with bottleneck features LSTM model
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also had improved results, with its NRMSE and MAPE scores being 5.59 and 6.71 after
720 epochs, respectively.

Table 3. Performance of the multi-behavior with bottleneck features LSTM model.

Without Weekday and Holiday
Information (860 Epochs)

With Weekday and Holiday
Information (720 Epochs)

RMSE 1745 1518
MAE 1269 1146

NRMSE 6.42 5.59
MAPE 9.7 6.71

To prove the capabilities of the multi-behavior with bottleneck features LSTM model in
UUITF prediction, we should consider the prediction output relative to the real input data.
Figure 13 shows the results for the multi-behavior with bottleneck features LSTM model
with 720 epochs over one week. The short-term LSTM subnetwork enabled the model
to keep track of the UUITFs while the long-term LSTM and weekly feature subnetworks
maintained forecasting values close to the ground truth. The proposed model was robust
when dealing with weekday forecasting because of the fixed schedule of work activities.
However, its performance declined during the weekend when the schedule was not fixed
and the pattern was difficult to recognize.
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6. Conclusions

STLF is essential in energy management systems and energy market transactions,
particularly for public facilities and offices. STLF plays an essential role in time series data
analysis and building load prediction. The proposed scheme utilizes a multi-behavior with
bottleneck features LSTM network and thus combines the advantages of different methods
of time series data analysis to forecast output loads. Based on various experiments and
implementations, we confirmed that the proposed model was robust in load forecasting
using real-world test data from Kookmin University.
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Compared with the single-model LSTM network, the proposed model displayed better
performance with lower RMSE and MAE scores, and also the ability to adapt with the
UUITFs in the building load forecasting. The proposed model also proved to be more
stable and accurate than the long-term single LSTM-based model. Therefore, this study
is a good reference for future research into different ways to achieve better solutions for
STLF problems. With better performance, STLF can improve prediction accuracy and
provide a significant amount of reliable information for management applications, such as
reliability analysis, short-term switch evaluation, abnormal security detection, and spot
price calculation.
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