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Abstract: The execution of a quantum algorithm typically requires various classical pre- and post-
processing tasks. Hence, workflows are a promising means to orchestrate these tasks, benefiting
from their reliability, robustness, and features, such as transactional processing. However, the
implementations of the tasks may be very heterogeneous and they depend on the quantum hardware
used to execute the quantum circuits of the algorithm. Additionally, today’s quantum computers are
still restricted, which limits the size of the quantum circuits that can be executed. As the circuit size
often depends on the input data of the algorithm, the selection of quantum hardware to execute a
quantum circuit must be done at workflow runtime. However, modeling all possible alternative tasks
would clutter the workflow model and require its adaptation whenever a new quantum computer
or software tool is released. To overcome this problem, we introduce an approach to automatically
select suitable quantum hardware for the execution of quantum circuits in workflows. Furthermore,
it enables the dynamic adaptation of the workflows, depending on the selection at runtime based on
reusable workflow fragments. We validate our approach with a prototypical implementation and a
case study demonstrating the hardware selection for Simon’s algorithm.

Keywords: quantum computing; quantum applications; quantum software; hardware selection;
workflow technology; quantum workflows; BPMN; modeling extension; QuantME

1. Introduction

In recent years, various advances have been made in the development of quantum
computers, quantum algorithms, and corresponding software tools [1–3]. Additionally,
quantum advantage has already been shown for some problems [4,5]. Thus, quantum
computing is expected to enable breakthroughs in different application areas, such as
machine learning, chemistry, or scientific simulations [6,7]. However, today’s quantum
computers only provide a limited number of qubits and short decoherence times [8,9]. This
limits the maximum width, i.e., the number of required qubits, and depth, i.e., the number
of sequentially executable gates of quantum circuits [10,11]. However, the width and depth
of a quantum circuit depend on the input data for the implemented quantum algorithm,
e.g., the number to factorize for Shor’s algorithm [10,12]. Furthermore, different quantum
computers provide diverse characteristics, and periodic re-calibrations change them over
time, e.g., their decoherence times or readout-errors [13]. Additionally, a set of quantum
hardware simulators is available, e.g., included in Software Development Kits (SDKs),
such as Qiskit [14]. Therefore, the selection of suitable quantum hardware, i.e., a quantum
computer or a corresponding simulator, to execute a certain quantum circuit is a complex
task and it has to be done based on the input data, the resulting quantum circuit properties,
and the current characteristics of the available quantum hardware [8,10].

In addition to the execution of quantum circuits, quantum algorithms often require
algorithm-specific pre- or post-processing tasks, e.g., Shor’s [12] or Simon’s algorithm [15].
Furthermore, there may be algorithm-independent tasks, such as mitigating readout-
errors after the execution of a quantum circuit [8,16,17]. Thus, workflows can be used
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to orchestrate these tasks to benefit from their advantages, such as scalability, reliability,
robustness, and comprehensive error handling mechanisms [18–20]. To ease the modeling
of such quantum workflows and increase the reuse of implementations for the various tasks,
we introduced the Quantum Modeling Extension (QuantME) [21] for imperative workflow
languages, such as BPMN [22] or BPEL [23]. Thereby, QuantME provides modeling
constructs for the different frequently occurring tasks abstracting from the underlying
technical details. However, the various pre-processing, quantum circuit execution, and
post-processing tasks are implemented differently, depending on the quantum hardware
to use [14,17]. For example, because an SDK enabling the execution on this quantum
hardware must be utilized [10]. This means, to support the selection of suitable quantum
hardware based on the input data at runtime, all possible alternative implementations
for the tasks would have to be modeled in the workflow [21]. However, because of the
large and steadily growing software landscape in the quantum computing area, this would
clutter the workflow model and require updating the workflow every time, e.g., a new
software tool, quantum computer, or simulator is released [2,14,24].

In this paper, we introduce an approach to automatically select suitable quantum
hardware for the execution of quantum circuits in workflows and to dynamically adapt
the workflows, depending on the selection at runtime. Therefore, we (i) present a new
QuantME modeling construct to model subprocesses in a workflow, for which the required
quantum hardware should be selected automatically based on the quantum circuit to be
executed. Additionally, we (ii) propose an approach to dynamically replace the tasks in the
subprocesses by reusable workflow fragments implementing the required functionality for
the selected quantum hardware. Thereby, the workflow fragments may be heterogeneous
and use, e.g., different SDKs, compilers, optimizers, or APIs of the various quantum
hardware providers. Furthermore, (iii) the services that are needed by the workflow
fragments are automatically deployed on-demand to avoid a complex manual deployment
and additional costs for the used hardware. Finally, (iv) a prototypical implementation of
our concept and a case study validating its practical feasibility is presented.

The remainder of the paper is structured, as follows: Section 2 presents the fundamen-
tals and the problem statement of our work. Afterward, Section 3 discusses related work
regarding the dynamic adaptation of workflows, the on-demand provisioning of services,
and the selection of suitable quantum hardware. In Section 4, an overview of our quantum
hardware selection approach for workflows is given. Subsequently, Section 5 introduces
the system architecture, our prototypical implementation, and validates our approach with
a case study. Finally, Section 6 provides a conclusion and outlook.

2. Fundamentals & Problem Statement

In this section, we introduce the fundamentals about quantum computing, the lim-
itations of today‘s quantum computers, and the problem of selecting suitable quantum
hardware for a certain quantum computation. Afterward, we show how workflow technolo-
gies can be used to orchestrate the different tasks that are required to execute a quantum
algorithm and present the problem statement that underlies our work.

2.1. NISQ Era & Quantum Hardware Selection

When considering the gate-based quantum computing model, quantum algorithms are
implemented by so-called quantum circuits [2,25]. A universal quantum circuit consists of
a set of gates and measurements operating on different qubits [3]. However, computations
on today’s quantum computers are affected by various kinds of noise, such as gate-errors,
qubit decoherence, or readout-errors [8,17]. This noise leads to errors in computations and
restricts the maximum circuit depth of the executable quantum circuits [11]. Furthermore,
the available quantum computers only provide a small number of qubits. Therefore, they
are referred to as Noisy Intermediate Scale Quantum (NISQ) computers [9].

However, the various quantum computers differ significantly concerning character-
istics, such as the number of provided qubits, their connectivities, or the fidelities of the
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implemented gates [8,10]. Additionally, some of their characteristics change between dif-
ferent re-calibrations, e.g., the decoherence times of the qubits [13]. Moreover, a quantum
compiler has to map the quantum circuit to the qubits and gates provided by the quan-
tum computer before executing it [26,27]. The resulting depth and width of the compiled
quantum circuit may differ because of diverse connectivities or physically implemented
gate sets of the quantum computers [28]. Therefore, the selection of suitable quantum
hardware to execute a certain quantum circuit is a complex task [10,11]. In order to over-
come this problem, different benchmarks [4,29,30] and metrics, such as the total quantum
factor (TQF) [31], quantum volume [32], or the epsilon metric [8,11], were developed to
assess and compare the capabilities of quantum computers or to directly estimate whether
a quantum circuit can be executed on a given quantum computer.

In previous work, we introduced the NISQ Analyzer [10], which automatically selects
suitable quantum hardware for the execution of a quantum algorithm based on given
input data. For this purpose, the corresponding quantum circuit is compiled for the
different available quantum computers and simulators to retrieve its hardware-dependent
depth and width. Subsequently, the NISQ Analyzer determines whether the width of the
compiled quantum circuit is smaller or equal to the number of provided qubits [10]. In
addition, the depth of the compiled quantum circuit is compared to the estimated maximum
executable depth of the quantum computers. This maximum executable depth is estimated
by dividing the average decoherence time of the qubits by the maximum gate time [31].
For the decoherence times of the qubits and the maximum gate time, the NISQ Analyzer
uses up-to-date provenance data [33] about the available quantum hardware. These data are,
e.g., retrieved from the API of the corresponding quantum hardware provider if available
or otherwise determined by executing respective calibration circuits [8,16]. Finally, the
NISQ Analyzer returns the set of quantum computers and simulators, providing enough
qubits and a sufficient maximum executable depth to successfully execute the circuit [10].

2.2. Quantum Workflows & QuantME

The execution of quantum algorithms typically includes classical pre- and post-
processing tasks before and after executing the corresponding quantum circuits [8,17].
For example, the generation of an initialization circuit to prepare the initial state in the
register of the quantum hardware depending on the input data [34]. Furthermore, the
impact of readout-errors can be reduced using classical post-processing [16]. Addition-
ally, some algorithms also require algorithm-specific tasks, e.g., Shor’s [12] or Simon’s
algorithm [15]. Moreover, variational algorithms, such as VQE [35] or QAOA [36], perform
multiple iterations of quantum and classical processing until the result converges [8,37].

Therefore, workflow technology can be utilized to orchestrate all of the required
pre-processing, quantum circuit execution, and post-processing tasks of quantum algo-
rithms [21]. For this, the tasks are specified in so-called workflow models and connected
through control and data flow edges to define their execution order and the data that have to
be exchanged between them [19,38]. Subsequently, the workflow model can be executed
automatically using a workflow engine. Thereby, workflows provide different benefits, such
as robustness, reliability, scalability, and transactional processing [18,39]. Furthermore,
they enable the specification of alternative control flows in the presence of failures, e.g.,
if a quantum computer is down for maintenance or if the user passes an invalid access
token [40,41]. However, existing workflow languages do not provide explicit modeling
constructs that are required for quantum computing related tasks [21].

To overcome these issues and ease the modeling and execution of quantum work-
flows, we introduced the Quantum Modeling Extension (QuantME) [21]. QuantME provides
modeling constructs for different frequently occurring tasks, as well as specific configu-
ration attributes to customize them. It can be applied to various imperative workflow
languages, such as BPMN [22] or BPEL [23]. In this work, we use the BPMN concepts
and their graphical notation to describe our approach. Figure 1 provides an overview of
the QuantME modeling constructs. For example, there exists the Data Preparation Task,
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which generates an initialization circuit depending on the input data and the encoding
specified in the configuration attributes and adds it to the beginning of the quantum cir-
cuit to execute [21]. This means that it generates an executable quantum circuit that is
based on the input data and the base circuit for the quantum algorithm. Furthermore, the
Quantum Circuit Execution Task executes the resulting initialized quantum circuit on the
quantum hardware defined in the configuration attributes of the task. In addition to the
new modeling constructs for the different tasks, QuantME also introduces two new data
objects to transfer quantum circuits or probability distributions that result from a circuit
execution between the tasks. A detailed discussion of all QuantME modeling constructs
and their configuration attributes can be found in [21]. In order to avoid the need to extend
the target workflow engine to understand the new modeling constructs and retain the
portability of the workflows, the QuantME modeling constructs are replaced by reusable
workflow fragments [42] implementing their functionality before deploying the workflow.
Thereby, the selection of a suitable workflow fragment for the replacement depends on
the configuration attributes of the modeling construct, such as the quantum hardware to
use. These workflow fragments can be heterogeneous and use various SDKs, compilers,
optimizers, or APIs of different quantum hardware providers.

Quantum 
Computation
Task

Quantum Circuit
Execution Task

Readout-Error
Mitigation Task

Quantum Circuit 
Loading Task

Oracle 
Expansion
Task

Quantum 
Circuit
Object

?
Data 
Preparation
Task

Result
Object

Figure 1. Overview of the QuantME modeling constructs (based on [21]).

2.3. Problem Statement

Various tasks in a quantum workflow have to be implemented differently, depending
on the quantum hardware that should be used for the execution of a certain quantum
algorithm or the corresponding quantum circuit, as outlined in the previous section [21].
However, the depth and width of the quantum circuit depend on the input data, which
is usually not known when modeling the workflow [10]. Thus, the selection of suitable
quantum hardware to execute a quantum circuit can only be done at the workflow runtime.
However, the modeling of all possible alternative tasks clutters the workflow model.
Furthermore, the resulting workflow model would then have to be adapted whenever a
new alternative task is available, e.g., because a new quantum computer is released or
a new readout-error mitigation technique is proposed. Thus, an approach to abstractly
model the different tasks in the workflow and dynamically replace them with suitable
workflow fragments based on the selected quantum hardware at runtime is needed. Hence,
our first research question is as follows: “How can tasks in a quantum workflow be modeled
independent of the quantum hardware to use and be dynamically replaced by workflow fragments
providing the required functionality for the automatically selected quantum hardware?”

However, the workflow fragments may require services that are not always-on and
must be deployed before executing the workflow fragments [40]. The manual deployment
of these services is complex, time-consuming, and error-prone [43]. Additionally, the
deployment of the services for all available workflow fragments would incur additional
monetary costs for the used hardware, even if the services are not needed when another
workflow fragment is selected. Hence, the required services for the selected workflow
fragment should be automatically deployed on-demand. Therefore, the second research
question for this work is as follows: “How can the workflow fragment implementing a certain
task, as well as the corresponding services, be deployed on-demand during workflow runtime?”
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3. Related Work

In this section, we discuss related work concerning the dynamic adaptation of work-
flows during runtime, the on-demand provisioning of services, and the selection of suitable
quantum hardware to execute a given quantum circuit.

Several works cover the dynamic adaptation of workflows during runtime based on
the current context or situation. Mundbrod et al. [44] present the concept of Context-aware
Process Injection to dynamically adapt business workflows. Thereby, it enables the auto-
mated injection of workflow fragments at design and runtime based on the current context,
e.g., the available resources or the customer request. Bucchiarone et al. [45] propose an
extension for existing workflow languages, called Adaptable Pervasive Flows. In addition to
the existing modeling constructs, they enable annotating goals, preconditions, and effects
to tasks. Based on these annotations, the abstract tasks that are modeled in a workflow are
dynamically replaced by fine-grained workflow fragments at runtime. Képes et al. [46]
introduce an approach to adapt workflows based on the current situation. Therefore, they
use a repository with workflow fragments defining the action that they implement and
the situation when they can be used. Based on this repository, workflow fragments in
traditional workflows are detected and replaced by abstract tasks. Subsequently, a service
bus is called by the abstract tasks during runtime, which discovers and invokes a suitable
workflow fragment. However, the presented works are not tailored to the peculiarities
and requirements in the quantum computing domain. Therefore, the specification of the
selection rules or situations to choose a workflow fragment based on the quantum hard-
ware selection is a complex and error-prone task, which required mathematical knowledge
regarding quantum computing, as well as technical knowledge about workflow technolo-
gies. Furthermore, an additional task performing the hardware selection has to be added
to the workflows or an external service must be integrated into the approaches to adapt
the current context or situation based on the quantum circuit to execute. In contrast, our
approach abstracts from these details and provides a new modeling construct explicitly
defining the relevant configuration attributes for the hardware selection, guiding quantum
experts in the modeling of hardware-independent quantum workflows. Additionally, we
provide a graphical notation and a corresponding modeling tool, which facilitates the
modeling and understanding of quantum workflows.

AgentWork [47] is a workflow engine supporting the runtime adaptation of workflows
by adding or removing tasks based on rules. Thereby, it is intended for use cases, where
the modeling of alternative control flow is not sufficient or it would result in a very
complex workflow model. For example, if an adaptation is required when a value exceeds
a certain threshold which must be continuously monitored. Therefore, the workflow
engine performs the adaptation if necessary. Rinderle et al. [48,49] introduced an adaptive
workflow engine, called AristaFlow. It enables ad-hoc adaptations of running workflow
instances, as well as their automated migration, if a new version of the corresponding
workflow model is available. However, the AgentWork and AristaFlow workflow engines
must be extended to support the quantum hardware selection at workflow runtime. This
would lead to a technology lock-in and reduce the portability of the workflow models.
Furthermore, their corresponding workflow languages do not provide explicit modeling
constructs for quantum computing related tasks. Instead, our modeling extension eases
the modeling of such tasks, is applicable to various imperative workflow languages, such
as BPEL or BPMN (see Section 2.2), and it can be mapped to native modeling constructs of
the extended workflow language. Therefore, the portability between different workflow
engines supporting the same workflow language is retained.

Dynamic binding or late binding are concepts used in Service-oriented Computing (SoC)
to describe the required functionality for a service in an abstract manner and to discover
a suitable service using a service registry at runtime, which is then invoked by a service
bus [38,50,51]. However, the functionality required to implement a QuantME modeling
construct typically comprises several complex tasks, and wrapping them into one large
service would reduce the reusability. Further, the required functionality is very heteroge-
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neous, and the required services are currently not hosted by a provider and registered in a
service registry. Finally, the usage of workflow fragments eases the later analysis of the
results, as all of the steps are modeled explicitly instead of hiding them in a service.

Different research works investigate the automated deployment of the required ser-
vices for a workflow execution. Qasha et al. [52] provide a framework for enabling the
specification of workflows together with the execution environment of the necessary
services based on TOSCA. Hence, the services can be automatically deployed using a
TOSCA-compliant deployment system. To automatically deploy and scale the services that
are needed to execute a BPEL workflow, Dörnemann et al. [53] introduce a concept based
on an extended load balancer. Thus, it has the capabilities to deploy and decommission
the services, depending on the current workload. However, both of the approaches do not
support providing the services on-demand. Hence, the services for all available workflow
fragments would have to be deployed before the workflow execution, incurring additional
monetary costs. Vukojevic-Haupt et al. [54] present an approach for the on-demand de-
ployment of infrastructure, middleware, and services that are required for the execution of
scientific workflows. This means that, if a workflow should be executed, they first deploy
the workflow engine and upload the workflow. During workflow runtime, the service invo-
cations are sent to a service bus, which determines whether the required service is already
running and forwards the request to it. Otherwise, the service is deployed on-demand
using so-called service packages, containing all required information for the service de-
ployment. Although the approach enables the on-demand deployment of services, it does
currently not support the dynamic adaptation of workflows during runtime.

Some works provide concepts to determine the capabilities of quantum computers or
the resource requirements of quantum circuits, not already discussed in Section 2.1. For
example, Suchara et al. [55] present the Resource Estimator Toolbox, which estimates the num-
ber of qubits and gates required to execute a quantum algorithm based on the algorithm
description. However, they do not compare the results to available quantum computers to
determine the suitable quantum hardware for the execution. JavadiAbhari et al. [56] pro-
pose ScaffCC, a compilation framework for quantum circuits. During the compilation, they
track the properties of the quantum circuits, such as their width or depth. However, the
compilation is hardware-independent, and therefore, a mapping to the qubits and gate sets
provided by the different quantum computers has to be done before using these properties
for the selection of suitable quantum hardware. The t|ket〉 [28] compiler validates whether
a quantum circuit is executable on a quantum computer, e.g., by comparing the width of
the circuit to the number of provided qubits, but does not take into account the depth.
Finally, different benchmarks are used to assess the capabilities of quantum computers, e.g.,
based on error-correction codes [30], the sampling of pseudo-random quantum circuits [4],
or the Bars and Stripes machine learning data set [29]. Nevertheless, the benchmarks
only provide a means to compare different quantum computers and they do not enable
determining whether a quantum computer can execute a given quantum circuit.

4. Automated Quantum Hardware Selection Approach

In this section, we introduce our automated quantum hardware selection approach
for quantum workflows. First, we present a new QuantME modeling construct to en-
able the definition of subprocesses, for which the required quantum hardware should
be dynamically selected during workflow runtime based on the quantum circuit to exe-
cute. Subsequently, we show how these subprocesses are replaced by reusable workflow
fragments, depending on the selected quantum hardware.

4.1. Quantum Hardware Selection Subprocess

In order to abstractly model tasks in a quantum workflow, for which the quantum
hardware should be selected automatically during runtime, we introduce a new subprocess,
called Quantum Hardware Selection Subprocess. Figure 2 shows the visual representation
of the new subprocess. It has the semantics to perform the selection of suitable quantum
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hardware for a given quantum circuit and to execute all contained tasks, depending on
this selection. Therefore, the Quantum Hardware Selection Subprocess always requires an
ingoing Quantum Circuit Object (see Section 2.2) with the quantum circuit to conduct the
selection for. The subprocess may comprise tasks to execute the quantum circuit and to
mitigate the readout-errors, as depicted in Figure 2. However, it can also contain additional
pre- and post-processing tasks if they depend on the quantum hardware.

…

?

?

…

Quantum Hardware Selection Subprocess
Quantum Circuit

…

Providers:                  [provider name(s)]
SimulatorAllowed:  [true/false]
SelectionStrategy:   [strategy name(s)]

Configuration Attributes

Figure 2. Graphical notation of the Quantum Hardware Selection Subprocess.

The Quantum Hardware Selection Subprocess has three configuration attributes:
(i) an optional Providers defining a list of quantum hardware providers to use for the
hardware selection, (ii) SimulatorAllowed specifying whether simulators should also be
included in the hardware selection, and (iii) an optional SelectionStrategy to select one
concrete quantum computer or simulator for the execution if multiple can successfully
execute the given quantum circuit. Thereby, the specification of a provider list enables
the user to restrict the selection to a certain set of providers, e.g., based on the available
credentials or trust in the providers. Furthermore, the analysis of the quantum hardware
and quantum circuit may result in multiple quantum computers or simulators that can
execute the circuit [10]. Therefore, for the selection of the concrete quantum hardware to
use, different selection strategies can be defined, e.g., minimizing the monetary costs, using
the quantum hardware with the shortest queue size, or preferring quantum computers to
simulators. Finally, multiple strategies can be combined, e.g., first minimizing the costs and
then selecting from the remaining quantum hardware while using the shortest queue size.

4.2. Automated Hardware Selection and Dynamic Workflow Adaptation

In the following, we introduce our approach for the hardware-independent model-
ing of quantum workflows and their dynamic adaptation during runtime based on the
automatically selected quantum hardware. Figure 3 provides an overview of the approach,
which consists of four steps that are presented in this section.

First, a QuantME workflow model implementing the quantum workflow is created.
Thereby, it may orchestrate the different pre-processing, quantum circuit execution, and
post-processing tasks of one or multiple quantum algorithms. The QuantME workflow
model can contain the QuantME modeling constructs discussed in Section 2.2, as well
as the newly introduced Quantum Hardware Selection Subprocess. Furthermore, it may
comprise native modeling constructs of the used workflow language, e.g., to enable human
tasks, service invocations, or the execution of scripts [21].
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Figure 3. Automated selection of quantum hardware for quantum workflows.

However, existing workflow engines cannot process the QuantME modeling con-
structs without extending them to understand their semantics [21]. Additionally, the
extension of a workflow engine would reduce the portability of the workflows between
other workflow engines that support the same workflow language, which is one of the
benefits of using a standardized workflow language, such as BPMN or BPEL. Therefore, the
QuantME workflow model is transformed into a native workflow model in the second step of
our approach. The native workflow model only contains native modeling constructs of
the used workflow language and, hence, the portability of the workflow model is retained.
For this transformation, reusable workflow fragments are utilized to iteratively replace
the QuantME modeling constructs [21,42]. However, the Quantum Hardware Selection
Subprocess has to be handled differently, as the contained QuantME modeling constructs
can only be transformed after the hardware selection during workflow runtime. Thus, it is
replaced by a traditional subprocess performing the hardware selection, the transformation
of the QuantME modeling constructs, and the invocation of the resulting workflow frag-
ment. Section 4.3 discusses the replacement of Quantum Hardware Selection Subprocesses
in detail. After the transformation, the native workflow model is deployed to a workflow
engine in the third step and it can be instantiated by passing the required input data.

The workflow is executed in the fourth step of our approach. If the original QuantME
workflow model does not contain a Quantum Hardware Selection Subprocess, it can be
executed without the need for a hardware selection at runtime. Otherwise, the hardware
selection and the dynamic workflow adaptation are done in four steps when a traditional
subprocess replacing a Quantum Hardware Selection Subprocess is reached during work-
flow execution (see steps A–D in Figure 3).
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First, the quantum circuit to select suitable quantum hardware for is sent to the NISQ
Analyzer (step A). The NISQ Analyzer compiles the quantum circuit for the different
available quantum computers or simulators. Thereby, the list of quantum computers
and simulators to consider may be restricted to certain quantum hardware providers,
depending on the configuration attributes of the Quantum Hardware Selection Subprocess.
In the same way, simulators are only included if this is defined in the corresponding
configuration attribute. Subsequently, the NISQ Analyzer uses up-to-date provenance
data about the quantum hardware, such as the number of qubits or their decoherence
times, to determine which quantum hardware can successfully execute the given quantum
circuit [10,33]. Finally, it returns the list of suitable quantum hardware to the workflow. An
error is thrown if none of the quantum computers and simulators is suitable to execute
the quantum circuit. Such errors can be handled by attaching an error boundary event
to the Quantum Hardware Selection Subprocess and defining an alternative control flow.
In the case of multiple suitable quantum computers or simulators, the concrete quantum
hardware to use is selected in the workflow based on the specified selection strategy, which
is implemented by another workflow fragment (see Section 4.3).

After selecting the quantum hardware, the workflow fragment that is defined within
the Quantum Hardware Selection Subprocess must be transformed to enable its execution
by the workflow engine (step B). For this, the workflow fragment, as well as the selected
quantum hardware, are forwarded to the QuantME Transformation Framework, which was
also used for the transformation in step two of the approach. The QuantME Transformation
Framework accesses a workflow fragment repository [57] and retrieves the transformed fragment,
comprising only native modeling constructs. Thereby, it is configured to use the selected
quantum hardware. If the transformed fragment was already deployed as a workflow
model to the workflow engine, the corresponding endpoint is returned [40].

Otherwise, the transformed fragment must first be uploaded to the workflow en-
gine (step C). Furthermore, it may require services for its execution that are not always-on
and cannot be reused from a previous workflow execution [40]. Hence, these services
have to be deployed on-demand before executing the transformed fragment [54]. For
this, the QuantME Transformation Framework uses a repository with deployment models
for the services. Such a deployment model contains all of the required information to
deploy a service or application [43]. Thus, a deployment system, such as Kubernetes,
Terraform, or the OpenTOSCA Container, can be used for the automatic deployment of
the services [40,58]. If there are multiple deployment models for a service available, the
selected quantum hardware can also be taken into account when choosing one of them for
the deployment. For example, the deployment of a service performing the optimization
in a variational algorithm might be more efficient using the IBM cloud if a quantum com-
puter from IBM is selected and in Rigetti’s quantum-classical cloud platform if a quantum
computer from Rigetti should be utilized [3,59]. Finally, the QuantME Transformation
Framework performs the binding between the transformed fragment and the deployed
services to enable their invocation [18,38].

In the last step of the workflow execution, the transformed and deployed fragment is
invoked by the workflow (step D). Therefore, all of the required data are passed from the
workflow to the transformed fragment, e.g., the quantum circuit to execute or the access
token to use. Finally, the transformed fragment is executed, accesses the deployed services,
and returns the results to the workflow.

4.3. Transformation into Native Workflow Models

QuantME workflow models are transformed into native workflow models before
deploying and executing them, as outlined in the previous section. Thereby, the QuantME
modeling constructs that are summarized in Section 2.2 are replaced by reusable workflow
fragments depending on their configuration attributes, as discussed in [21]. However, in
the following, we present the transformation rule for the new Quantum Hardware Selection
Subprocesses, as depicted in Figure 4.
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Figure 4. The transformation rule of the Quantum Hardware Selection Subprocess.

Quantum Hardware Selection Subprocesseses are transformed into traditional subpro-
cesses comprising six activities, independent of the contained workflow fragment. These
activities are intended to orchestrate the hardware selection, transformation, and fragment
invocation steps performed during workflow execution in our approach. Therefore, the
resulting subprocesses only differ in the used data while orchestrating these steps. In the
following, the six different activities are described:

• First, the NISQ Analyzer is invoked with the ingoing quantum circuit from the Quan-
tum Hardware Selection Subprocess, which is stored in a traditional data object after
the transformation.

• Afterward, the result from the NISQ Analyzer is received, and the list of suitable
quantum hardware is added to a new data object.

• Next, one of the suitable quantum computers or simulators has to be chosen depending
on the selection strategy defined in the configuration attributes of the subprocess. Thereby,
the implementation of this activity can, e.g., be done using a script task if the quantum
hardware with the shortest queue size should be used. Another selection strategy could
include a manual selection and, thus, would be implemented by a human task. Hence,
new selection strategies can be added as plugins with the corresponding implementation
of the selection task. For this, the implementation of the selection activity is defined as a
workflow fragment. These workflow fragments are then automatically injected during
transformation based on the configured selection strategy.

• Subsequently, the transformation of the workflow fragment specified within the Quan-
tum Hardware Selection Subprocess has to be performed. For this, the selected quantum
hardware, as well as the workflow fragment to transform, are sent to the QuantME Trans-
formation Framework. Thereby, the workflow fragment is serialized and stored in a
separate data object, which can, e.g., be done using the XML syntax for BPMN [22].
The result of the transformation is a workflow model, which is assembled from multi-
ple workflow fragments, depending on the QuantME tasks within the subprocess [21].

• The transformed workflow model is deployed after the successful transformation,
and the corresponding endpoint is received by the workflow.

• In the last step, the deployed workflow model is invoked with the input data. Thereby,
the input data comprises any ingoing data object to the replaced Quantum Hardware
Selection Subprocess including the quantum circuit to execute. Finally, the result of the
invocation is stored in the data object outside the subprocess, which can be accessed
by subsequent tasks in the workflow. The invocation of the transformed workflow
fragment is done using a call activity in BPMN. However, if such an activity is not
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supported by the used workflow language, then it can be split into a send and receive
task, as shown for the invocation of the NISQ Analyzer.

5. System Architecture & Prototypical Validation

In this section, we prove the practical feasibility of our automated quantum hardware
selection approach by presenting a system architecture in which it can be realized. Further,
our prototypical implementation of this architecture and a case study is described.

5.1. System Architecture

The overall system architecture to support our approach is shown in Figure 5. It
consists of extensions of the QuantME Transformation Framework [21,60] depicted on the left
and the NISQ Analyzer [10,61] represented on the right. Thereby, newly added components
are dark, extended components are grey, and existing unchanged components are light.
The QuantME Transformation Framework provides a Graphical Workflow Modeler to enable
the modeling of BPMN workflows supporting the QuantME modeling constructs. Thus, it
is extended with the new Quantum Hardware Selection Subprocess. Furthermore, an HTTP
REST API can be used to trigger the transformation of QuantME workflow models and
the deployment of the required services for workflows. The transformation of QuantME
workflow models to native workflow models is performed by the QuantME Transformer,
which is extended with the transformation rule presented in Section 4.3. Thereby, it
provides a plug-in system for the different selection strategies that can be defined for
a Quantum Hardware Selection Subprocess. The newly added Deployment Orchestrator
is in charge of deploying workflow models, as well as their required services. Hence,
it enables uploading BPMN workflow models to the Camunda Engine [62], a state-of-
the-art BPMN workflow engine. Additionally, the Deployment Orchestrator uses the
OpenTOSCA Container [58,63], a TOSCA-compliant deployment system, to automatically
deploy the services required by a workflow [40,64]. However, it is plugin-based and
can be extended to support other workflow engines or deployment systems. Another
component is the QuantME Validator, which is used by the Graphical Workflow Modeler to
determine if the configuration attributes of the QuantME modeling constructs are valid
and to mark errors during modeling. Finally, the QuantME Repository manages all of
the data within the framework. This includes a repository with Workflow Fragments for
the transformation, as well as Deployment Models for the service deployment. Thereby,
the Deployment Models repository contains a set of TOSCA Service Templates for the
required services [64]. These Service Templates comprise all needed information to deploy
an instance of the corresponding service and can be consumed by a TOSCA-compliant
deployment system, such as the OpenTOSCA Container [40,58]. However, also other kinds
of deployment models, e.g., supported by Kubernetes or Terraform, can be stored and used
for the service deployment after extending the Deployment Orchestrator accordingly.

Graphical Workflow Modeler

QProv

HTTP REST API

QuantME Transformation Framework

QuantME Repository

QuantME
Transformer

Workflow
Import/Export

QuantME
Validator

Deployment
Orchestrator

OpenTOSCA
Container

Camunda 
Engine

HTTP REST API

NISQ Analyzer

Workflow
Fragments

Deployment
Models

Selection 
Rules

Rule Handler

Selector

Connector

Compilation
Services

Figure 5. System architecture for the automated quantum hardware selection.
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The workflows executed by the Camunda Engine send a request to the NISQ Analyzer
when hardware selection is required (see step 4A in Figure 3). Thus, they use the HTTP
REST API of the NISQ Analyzer. The Selector component performs the selection of suitable
quantum hardware based on defined Selection Rules, as described in Section 2.1. It uses
the Connector to retrieve current characteristics of the available quantum computers and
simulators from QProv [65], e.g., the decoherence times of the various qubits. QProv
is a provenance system for quantum computing periodically analyzing and collecting
the characteristics of quantum hardware from various vendors. The Selector also uses
the Connector to interact with the Compilation Services compiling the quantum circuits
and determining the hardware-dependent depth and width for the different quantum
computers and simulators. In addition to the provenance data that are required by the
NISQ Analyzer, further data, such as the current queue size, are retrieved and returned to
the workflow together with the suitable quantum hardware. Therefore, it can be used for
the selection strategy of the Quantum Hardware Selection Subprocess (see Section 4.1).

5.2. Prototypical Implementation

In order to realize the QuantME Transformation Framework, we extended the Ca-
munda Modeler [66], which is an open-source BPMN workflow modeler. It is implemented
as a desktop application using the Electron framework, comprising a graphical user inter-
face and a Node.js backend. Thus, we extended the graphical user interface to support
the QuantME modeling constructs, as well as buttons to trigger the transformation and
deployment functionalities. Furthermore, an HTTP REST API was implemented using the
Express framework to enable the invocation of the QuantME Transformation Framework
by workflows. In order to implement the transformation and deployment functionalities,
corresponding plugins were added to the Camunda Modeler. The reusable workflow
fragments necessary for the transformation are stored in a Github repository using the
BPMN XML syntax [22]. For the deployment of the services, the required deployment
models are managed by a Winery [67] instance. Winery is a graphical modeling tool for
TOSCA-based deployment models. Therefore, the deployment models are exported and
uploaded to the OpenTOSCA Container to create service instances.

An in-depth description of the existing implementations of the NISQ Analyzer, the
defined selection rules, and the Compilation Services can be found in [10]. We extended
the Selector of the NISQ Analyzer to support the selection of suitable quantum computers
based on a certain quantum circuit besides the selection that is based on a higher-level
quantum algorithm and its input data. Furthermore, the Connector is extended to call
QProv for retrieving the most recent characteristics of the available quantum computers as
basis for the selection.

5.3. Case Study

We demonstrate the usage of the new Quantum Hardware Selection Subprocess
to model a workflow implementing Simon’s algorithm [15] in a hardware-independent
manner to validate our approach. Thus, the quantum hardware is selected at runtime
based on the given input data, and the workflow is dynamically adapted. Figure 6 gives
an overview of the corresponding workflow model, as well as the workflow fragments
that can be used to replace the Quantum Hardware Selection Subprocess, depending on
the hardware selection. The presented workflow model, the transformed native workflow
model, and detailed instructions on how to set up the required environment and execute
the workflow using the Camunda Engine are available on Github (see [68]).
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Figure 6. Executing Simon‘s algorithm using dynamically selected quantum hardware.

The purpose of Simon’s algorithm is to determine whether a given function f (x) :
{0, 1}n → {0, 1}n is bijective or not. If it is bijective, then there exists a secret bit string
s which applied to an arbitrary element using xor leads to the second element that is
mapped to the same target element. Thus, this secret bit string has to be found with a
minimum number of function calls by a quantum computer. Thereby, the input of the
quantum workflow is the oracle implementing the function f , as well as the access keys
for the different quantum hardware providers that should be included in the hardware
selection. Then, the required quantum circuit for Simon’s algorithm is generated based
on the given oracle. For this, the functionality provided by Qiskit [69] is used. Therefore,
the resulting quantum circuit is defined in the assembly language OpenQASM [70] and
passed to the Quantum Hardware Selection Subprocess. The configuration attributes of the
subprocess specify, that quantum computers and simulators from IBM and Rigetti should
be utilized for the hardware selection. Furthermore, Shortest-Queue is used as the selection
strategy, which means from the quantum computers and simulators capable of executing
the quantum circuit the one with the shortest queue is chosen.

Within the Quantum Hardware Selection Subprocess, the quantum circuit is first
executed on the automatically selected quantum hardware. Afterward, the readout-errors
are mitigated based on classical post-processing [16]. Thereby, the QuantME tasks in the
subprocess are implemented by two different workflow fragments, depending on the
hardware selection, as depicted at the bottom of Figure 6.

If a quantum computer from IBM is selected, the transformation of the Quantum
Hardware Selection Subprocess results in the workflow fragment on the left (see A). First,
the quantum circuit is executed while using Qiskit and, then, the readout-errors are miti-
gated utilizing current provenance data about the used quantum computer. Thereby, the
mitigation requires performing multiple tasks [8,16]. Due to space reasons, it is represented
as a collapsed subprocess and the expanded subprocess is depicted in Figure 7. In the
following, the different tasks of the subprocess are described:

• First, the calibration matrix for the mitigation is requested from a provenance system,
such as QProv (see Section 5.1). Thereby, the calibration matrix differs for various
quantum computers and, thus, it depends on the hardware selection [16].

• Afterward, the response from the provenance system is received, containing the
calibration matrix for the quantum computer if available. Hence, it does not have to
be separately determined for the current workflow execution, reducing the number of
quantum circuits to execute and increasing the efficiency [8].
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• However, if no up-to-date calibration matrix is available for the selected quantum
computer, it can also be directly calculated in the workflow. For this, the corresponding
calibration circuits are generated in the next task.

• Subsequently, the calibration circuits are executed on the quantum computer.
• Based on the results from the calibration circuit executions, the calibration matrix can

be determined and is stored in a designated data object.
• Finally, the received or calculated calibration matrix is used to mitigate the readout-

errors in the execution results that are passed to the subprocess as input. Thereby,
different readout-error mitigation or unfolding techniques are available [71,72], and
in our example, the so-called matrix inversion technique is used. Hence, the calibration
matrix is inverted and multiplied with the execution results to retrieve mitigated
results.

Calibration Matrix

Receive
Response

Request
Calibration
Matrix

no Execute
Circuits

Calibration
Matrix

Available?

Generate
Calibration
Circuits

Calculate
Calibration
Matrix

yes

Mitigate
Errors

Execution Result

Figure 7. Subprocess to mitigate readout-errors in the results of a quantum circuit execution.

In contrast, if the simulator from Rigetti is selected, the quantum circuit must be
translated from OpenQASM to Quil first (see B in Figure 6). After this, the circuit can
be executed using the Forest SDK [73] and the workflow fragment terminates without
applying readout-error mitigation to the results. The reason for this is that we use a
simulator without noise model and, hence, no mitigation is needed.

The outcome of the two alternative workflow fragments is stored in the result data
object. In the next step, it is verified how many of the already received results are linearly
independent. Thereby, Simon’s algorithm requires n − 1 linearly independent results.
Thus, an exclusive gateway is used to execute the quantum circuit again until n− 1 results
are received. The quantum circuit to execute does not differ between the iterations, and
the characteristics of the quantum computers do not change significantly in this time
interval [13]. Therefore, the hardware selection does not need to be repeated. Instead, the
endpoint of the workflow fragment to execute is stored in the first iteration and, then, it
can be directly invoked in all further iterations. When n− 1 linearly independent results
are received, the linear system of equations is solved using a service task. This leads to the
searched bit string s, which is returned to the user.

6. Conclusions and Future Work

In this paper, we introduced an approach for the automated quantum hardware
selection for quantum workflows. For this, (i) QuantME was extended with a new modeling
construct in order to enable the specification of subprocesses, containing tasks for which the
required quantum hardware should be selected automatically during workflow runtime
based on the quantum circuit to execute. Therefore, it enables the modeling of quantum
workflows independent of a certain quantum computer or simulator to use. Furthermore,
(ii) we presented an approach to dynamically replace the abstract tasks in the subprocesses
by reusable workflow fragments, depending on the selected quantum hardware. Moreover,
(iii) the required services of the workflow fragments are automatically deployed on-demand
if they are not already running to avoid a complex and time-consuming manual deployment
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or the need to deploy all possible services before the workflow execution. We validated the
technical feasibility of our approach by a prototypical implementation.

In future work, we will investigate new metrics for improving the estimates if a certain
quantum circuit is executable on a quantum computer. For this, we plan to use machine
learning techniques and analyze how such metrics can be derived from collected prove-
nance data. Furthermore, our approach is based on the availability of suitable workflow
fragments, e.g., for the execution on different quantum computers or the implementation of
a certain unfolding technique. Therefore, we will develop additional workflow fragments
and provide them in our repository. Additionally, quantum algorithms are currently often
developed using python scripts or Jupyter notebooks. Thus, we will evaluate how quantum
workflows can be generated out of such scripts to enable benefiting from their advantages,
such as reliability, robustness, or scalability.
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