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Abstract: The gradual increase in latency-sensitive, real-time applications for embedded systems
encourages users to share sensor data simultaneously. Streamed sensor data have deficient perfor-
mance. In this paper, we propose a new edge-based scheduling method with high-bandwidth for
decreasing driver-profiling latency. The proposed multi-level memory scheduling method places
data in a key-value storage, flushes sensor data when the edge memory is full, and reduces the
number of I/O operations, network latency, and the number of REST API calls in the edge cloud. As a
result, the proposed method provides significant read/write performance enhancement for real-time
embedded systems. In fact, the proposed application improves the number of requests per second by
3.5, 5, and 4 times, respectively, compared with existing light-weight FCN-LSTM, FCN-LSTM, and
DeepConvRNN Attention solutions. The proposed application also improves the bandwidth by 5.89,
5.58, and 4.16 times respectively, compared with existing light-weight FCN-LSTM, FCN-LSTM, and
DeepConvRNN Attention solutions.

Keywords: driver behavior profiling; edge computing; memory scheduling; key-value storage

1. Introduction

Over the years, deep learning algorithms have revolutionized the autonomous car in-
dustry by achieving higher accuracy and performance for the comfort of people. However,
there is an end-to-end latency issue owing to the need for a higher level of computational
resources when autonomous cars simultaneously request driver profiling. Edge computing
enables driver-profiling services to reduce the end-to-end latency by providing services to
users closer their vicinity. If resources are exhausted in edge computing, service migration
must be performed seamlessly to fulfill requirements of the user. However, the ultimate
answer will be offloading such services using edge-based solutions. In this paper, we
propose a new in-memory data scheduling technique to provide locality awareness for
real time execution and fulfillment of users/client (embedded systems) requirements. The
data scheduling technique is aimed at decreasing end-to-end latency. In addition, a novel
architecture is proposed to deploy a deep learning framework for driver profiling inside
the edge server with lower latency, despite a higher number of responses to requests.

The following are the key contributions of this study:

• We present a new architecture for driver-profiling with deep learning techniques in
cars with embedded system.

• We achieve a greater number of responses from a driver profiling service.
• We successfully re-implement all the algorithms in an edge server environment.
• We conduct extensive experiments to confirm the advantages of our approach.

The remainder of the paper is structured as follows. We review background infor-
mation and related work in Section 2. Section 3 presents driver profiling fundamentals.
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Section 4 presents detailed experimental results from our approach. We provide conclu-
sions in Section 5.

2. Related Work

Driver behavior profiling using driving features is an emerging trend for multiple
markets, such as traffic safety, user-based insurance, and monitoring. In this regard, it is
one of the fertile areas of research containing ample studies. In this section, we describe the
existing research in two major categories: machine learning models and applied platforms.

2.1. Existing Driver-Profiling Deep Learning Models

Studies dealing with the modeling of individual driver activities use many state-of-
the-art machine learning algorithms. These include statistical classification techniques such
as the decision tree, random forest, K-nearest neighbors [1], hidden Markov model [2],
Gaussian mixture model [3], K-means [4,5], support vector machine (SVM) [5], and many
others. However, many of them have various shortcomings, such as data dependence
and working under only specific conditions, which are overcome by the vigorous nature
of deep learning algorithms [6] having a more significant advantage in feature learning.
Scalar data from driving information can be considered a spatiotemporal task because
it involves feature extraction per sample (spatial features) as well as includes temporal
information, such as the relationships of the samples over time. However, in some studies,
a convolutional neural network (CNN) was employed in individual time series to capture
local dependencies along temporal dimensions of sensor signals for similar applications,
such as action recognition [7]. However, state-of-the-art research offered promising results
by using the combination of a CNN (for spatial feature extraction) and long short-term
memory (for temporal feature extraction) for driver identification [6,8] and behavior anal-
ysis [9,10]. In this research, we compared the proposed architecture with state-of-the-art
deep learning algorithms for driver identification, such as the DeepConvRNN [6], and
FCN-LSTM [8]. The proposed architecture uses a lightweight FCN-LSTM [11] model with
network pruning and offers sparse learning for new classes.

2.2. Applied Embedded Deep Learning Platforms

To deploy driver behavior-profiling models for real-time applications, there are var-
ious options, such as a smartphone integrated with the vehicle (e.g., Automotive Grade
Linux (AGL) [8,12]), in-vehicle dedicated embedded computers, such as an Advanced
Driver-Assistance System (ADAS) [13], cloud- or edge-based services in connected car
ecosystems [14], etc. There are many dedicated embedded system solutions available in
the market providing energy-efficiency and low -power profile, such as Intel Movidius
(Neural Compute Stick -I, -II), Raspberry Pi 3+, and the NVIDIA Jetson series (e.g., Nano,
TX1, TX2, and Xavier) replete with high-speed GPUs. Among these, the NVIDIA Jetson
series is most favorable because it offers a wide range of developer kits (CudaToolkit,
CuDNN) with various specifications. Jetson series provides energy efficiency (low power
consumption), less weight, a compact form factor, high performance per watt, and low-
power GPU cores [15]. As per comparative studies [16], the Jetson series offers higher peak
performance than Raspberry Pi 3+ and Intel Movidius. In this regard, we opted for the
Jetson series, implementing the proposed driver behavior identification on a Jetson nano as
a client.

In Figure 1, we illustrated the existing EDPA architecture including an interaction
diagram, a client and server communication model, and two detailed client and server
latency charts. Moreover, Algorithm 1 shows the pseudo-code of the traditional EDPA
predicting the driver class using client and server functions. On Lines 1-5, the EDPA-
client( ) function first initializes the configurations, reads data from sensors, and then
stores data in memory (data[K]). Then, the client EDPA function calls a deep learning
service named EDPA-server( ), which is initialized by the allocated sensor data, data[K], in
memory. As a result, the EDPA-server( ) function returns the driver class, the execution
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time, and the accuracy of the driver profiling as a prediction on Line 4. Finally, on Line 5,
the EDPA-client( ) function visualizes the prediction data in the embedded car interface. To
be more specific, the EDPA-server( ) function is described on Lines 7–12, where it configures
TensorFlow for predictions, and re-allocates sensor data on Lines 7–8. Consequently, the
EDPA-server( ) function loads the trained model into TensorFlow on Line 10.

Figure 1. Existing EDPA architecture [6,8,11].

Algorithm 1: The traditional EDPA [6,8,11]

Function EDPA-client():
Initialize the configurations.
d[K]← read data from sensors.
prediction← EDPA-server(d[k]).
visualize(prediction).
return.

Function EDPA-server():
Initialize the Tensorflow configurations.
data[K]← Initialize the sensor data.
load the trained model in TensorFlow.
prediction← driver_profiling(data[k]).
return prediction.

Table 1 lists the parameters used in this paper, along with their symbols, represen-
tations, and ranges of usage. The end-to-end prediction latency in the proposed EDPA,
EDPAlatency, is as follows:

EDPAlatency = TS2 + TS4 + TS5 + TS
′
+ TS3, andTS

′
> TS2 > TS4 > TS3 > TS5 (1)

The total prediction latency in the proposed EDPA using the EDPA-server() function,
TS
′
, is as follows:

TS
′
= TS5

′
+ TS4

′
+ TS6

′
, andTS4

′
> TS5

′
> TS6

′
(2)
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Table 1. Parameter notations.

Symbol Representation Applied Function

TS1 Initialization latency EDPA-client( )
TS2 Read latency from sensors EDPA-client( )
TS3 Visualization latency EDPA-client( )
TS4 Insert data to cache EDPA-client( )
TS5 Delay EDPA-client( )
TS1

′
Initialization latency EDPA-server( )

TS2
′

Memory allocation latency EDPA-server( )
TS3

′
Trained model loading latency EDPA-server( )

TS4
′

Driver profiling latency EDPA-server( )
TS5

′
Latency when requesting a job EDPA-server( )

TS6
′

Latency when updating prediction EDPA-server( )
TS

′
Total classification latency EDPA-client( )

EDPAlatency End-to-end latency Embedded system

3. Edge-Based Data Scheduling for FCN-LSTM Driver Profiling

In this study, we only focused on edge-based solutions in order to provide uninter-
rupted services when the number of requests increases at the edge server. In this scenario,
the client will call the driver-profiling API service and will exit accordingly. In the traditional
platforms, for every API call, all the deep learning libraries (TensorFlow, etc.) and models
(driver profiling model file h5, frozen graphs, etc.), will be loaded beforehand in order to
execute particular deep learning applications. In the proposed platform, driver-profiling
calls are separately managed, and the loading and pre-processing time will be consumed for
every single call. In addition, a traditional solution is also computationally expensive, such
that it consumes resources that cost the users embedded resource-sensitive computations
every time for loading the necessary dependencies and deep learning models for inferences.

The computation power of edge computing services has been revolutionized along
with a very high capacity for computations, databases, and flexible services. In our pro-
posed architecture, deep learning services are handled using a distributed architecture
based on in-memory caching for sensor data. In this regard, we used the proposed edge-
based data scheduling architecture, as shown in Figure 2.

Figure 2. The proposed edge-based data scheduling architecture.
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Algorithm 2 shows the pseudo-code of the proposed EDPA for predicting the driver
class using distributed client/server functions. First, each EDPA− client() function ini-
tializes the configurations and checks the server, and, if the server function was already
activated, it is passed to the next line. In contrast, if the server function was not activated,
the client will activate the server function using a REST API call. In the next step, itera-
tively on Lines 4–10, the client function reads data from the sensors and stores the data in
memory as jobdata. Then, the client function saves jobdata to in-memory cache on Line 6.
Later, after a fixed delay, the client function calls EDPA-server( ), which is initialized by
the allocated sensor data, jobid, on Line 8. As a result, EDPA-server( ) returns the driver
class, the execution time, and the accuracy of driver profiling as prediction on Line 8.
Finally, EDPA-client( ) visualizes the prediction data in the embedded car interface on Line
9 for the given time series-based data sensors. The proposed distributed EDPA-server( )
function is described on Lines 12–23, where EDPA_server( ) initializes the configurations
of TensorFlow for the prediction, and then loads the in-memory data scheduler on Line 14.
Consequently, EDPA-server( ) loads the trained model only once for each Node.js worker
in TensorFlow on Line 15. In the next step, iteratively on Lines 4–10, the server function
reads data by requesting the prediction job from in-memory cache and stores the data
in jobdata. Then, the driver profiling function updates the prediction data for the given
jobid by calling the update_prediction function developed for in-memory cache on Line 19.
Finally, the EDPA-server( ) call calculates the statistics of the prediction data for the given
embedded car interface on Line 21 and updates the statistical data of the in-memory cache
on Line 22.

Algorithm 2: The proposed EDPA

Function EDPA-client():
Init_config( ).
check_server( ).
while true do

jobdata ← read_sensor().
jobid ← Insert_cache(jobdata, jobclient_id).
delay( ).// waiting for prediction.
prediction← EDPA-server(jobid, jobclient_id).
visualize(prediction).

end
return.

Function EDPA-server():
Init_config( ).
load_data_scheduler( ).
load_model( ).
while true do

request_job( ).
jobprediction ← driver_profiling(jobdata).
update_prediction(jobid).

end
calculate_statistics( ).
update_statistics( ).
return.

The end-to-end prediction latency in the proposed EDPA, EDPAlatency, is as follows:

EDPAlatency = TS1 + TS2 + TS
′
+ TS3, andTS

′
> TS1 > TS3 > TS2 (3)
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The total prediction latency in the traditional EDPA using the EDPA-server() function,
TS
′
, is as follows:

TS
′
= TS1

′
+ TS2

′
+ TS3

′
+ TS4

′
, andTS2

′
> TS3

′
> TS4

′
> TS1

′
(4)

In-Memory Data Scheduler

Key-value (KV) stores are suitable for latency-sensitive internet services, and they
have been widely used in large-scale data-intensive internet applications [17]. High de-
mand from users has increased the need for fast read/write performance in accessing
databases [18–20]. Sensor-based key-value data consist of many small files, which create a
latency bottleneck from low I/O performance in the system [17,21].

As shown in Figure 3 and Algorithm 3, the proposed in-memory data scheduler
provides multi-level buffering (MLB) and a flushing flowing-down mechanism, which
incurs significant write performance enhancement and makes the KV items move much
faster by performing the pipelining process at the edge level. The proposed in-memory
data scheduler is suitable for both put-intensive workloads and scan-intensive data anal-
ysis workloads and, thus, can be used as the back-end storage engine for edge storage
systems. A three-level memtable architecture was designed for the proposed in-memory
data scheduler. Memtables and key-value sensor data are constructed using two of linked
list (1) and linked list (2) data structures.

Figure 3. In-memory data scheduling implemented as insert_cache().

In Algorithm 3, Flush() function applies on KV items which are sequenced in advance.
KV items are copied at certain intervals (the flush size) to each memtable level. KV items
are queued in sequence (flush size = MAX). Each KV item’s related meta information is
stored in MTMemtable, describing how sensor data are stored in the memtable. A recovery
mechanism is needed when the system suffers a sudden power-off, losing all the in-buffer
KV items. Therefore, data stored in memtables are flushed to the Cassandra database at
each checkpoint. Based on the methods described in [22–24], in-memory schedulers such
as Redis have a much lower read write latency compared to the other KV database such as
Cassandra and Leveldb. Therefore, in the proposed in-memory scheduler, linked list(1)
and (2) in-memory structures play the role of the cache system, which accelerates the read
and write performs and sharply reduces the latency of the data scheduler.
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Algorithm 3: Data scheduling in Insert_cache function

Function Insert_cache():
Insert metadata and job_client_id into Linked list(1).
data[K]← Allocate data chunks for given job_data.
KV[k][v]← Convert data[K] into key-value data.
Insert key-value data KV[k][v]→ Linked list(2).
return job_id

Function Flush():
Interval← Set the flushing interval as Interval.
FS[2]← Set the flushing size for linked list(1) and (2).
while true do

delay (Interval ).
if Linked list(1) size > = FS[1] then

Insert All Key-value meta information→ CassandraDB.
end
if Linked list(2) size > = FS[2] then

Insert All Key-value sensor data→ CassandraDB.
end

end
return.

4. Experimental Results

In this section, we evaluate the performance of the proposed low-latency distributed
driver behavior-detection system. The system detects five types of driving behaviors
through multi-class classification. We used an array unison shuffle technique to randomly
shuffle samples of all five classes. Then, we divided the dataset into two non-overlapping
sets, including 75% for a training set and 25% for a test set. We experimented with various
CNN configurations, including different filter sizes, numbers of convolutional layers, and
numbers of filters, to achieve a simple yet efficient network. Moreover, we experimented
with a CNN configuration to achieve a model with low computational costs and high
efficiency, which is appropriate for embedded applications.

The proposed edge-based driver profiling application (EDPA) was compared to exist-
ing EDPAs in terms of the deep learning algorithm (DA), the data scheduling technique
(DST), the service architecture type (SAT), the request-handling level (RHL), the scalability
level (SL), and end-to-end latency (EEL), as shown in Table 2.

Table 2. A summary of the related EDPA research.

EDPA Reference DA DST SAT RHL SL EEL

Algorithm 1 [6] DeepConvRNN-Attention - Sequential processing Low Low Low
Algorithm 2 [8] FCN-LSTM - Sequential processing Low Low Low

Algorithm 3 [11] light-weight FCN-LSTM - Sequential processing Low Low Medium

This work
FCN-LSTM,

DeepConvRNN-Attention,
light-weight FCN-LSTM

Yes Distributed-Parallel processing High High High

4.1. Data Sources

Driving features can be extracted using various sources, mainly using in-vehicle sensor
data and smartphone sensor data. In [1,4,6,8,25,26], the authors exploited CAN-Bus data
for identification of drivers using footprint. CAN-BUS (OBD-II protocol) communication
data include parameters related to (1) the engine (coolant temperature, friction torque, etc.),
(2) fuel (long-term fuel trim bank, fuel consumption, etc.), and (3) the transmission (wheel
velocity, transmission oil temperature, etc.). Similarly, in other studies, [27–29], smartphone
sensor data is used for driver behavior profiling and various other applications [30]. Smart-
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phones can provide speed, acceleration, rotation rates, and other parameters for driver
behavior profiling. Conversely, some researchers exploit hybrid approaches by combining
vision (cameras) and other sensors (LiDAR, GPS, IMU, etc.) for driver profiling [9,10,31].
Besides, few studies included physiological sensor data to classify distracted drivers [32].
CAN-BUS is the most favorable and reliable candidate among the data sources mentioned
above [4]. Among various CAN-BUS datasets, a security dataset [1] provides up to 51 fea-
tures captured from CAN-BUS, and has been used by several researchers recently for driver
identification [6,8,11]. The authors of [1] further shortlisted 15 features out of 51 features
of CAN bus using InfoGainAttributeEval evaluation method, previously implemented by
Weka [33], which is one of the ranker search methods. These 15 features include “Long Term
Fuel Trim Bank1”, “Intake air pressure”,“Accelerator Pedal value”, “Fuel consumption”,
“Torque of friction”, “Maximum indicated engine torque, Engine torque”, “Calculated
LOAD value, Activation of Air compressor”, “Engine coolant temperature, Transmission
oil temperature”, “Wheel velocity front left-hand”, “Wheel velocity front right-hand”,
“Wheel velocity rear left-hand”, and “Torque converter speed”. In this paper, we targeted
the same set of aforementioned features, previously utilized by several researchers for
driver identification [1,6,8,11]. In this regard, our input size of time series is 15 (features) ×
60 (Window size Wx, as mentioned in Table 2). Subsequently, Algo1 receives multivariate
time-series data while Algo2 and Algo3 further process both uni-variate and multivariate
time series data by shuffling the dimensions, as depicted in Figure 4a,b.

Figure 4. (a) Algo3, Depthconv-RNN, Reprinted from ref. [11]; (b) Algo2, FCN-LSTM [8], Reprinted from ref. [34] (initially
proposed for time-series classification) and (c) Algo1, DeepConvRNN-Attention [6].

Table 3. Specifications of embedded devices and edge servers.

Domain Platform Hardware Specifications Implementation Details

Edge Server Desktop CPU: Intel Core.i7, RAM: 4 GB, NVME: 128 GB An edge-Server
for four clients

Embedded system Jetson Nano CPU: ARM Cortex-A57, RAM: 4 GB, HDD: 128 GB A local server for a client *
* Note that Jetson Nano is only used for a traditional EDPA as a server function.
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Table 4. Driver identification algorithms with their specifications.

Input Algorithm Accuracy (%) FLOPs * Memory Feature
Engineering Windowing

60 × 45 Algo1 in the proposed EDPA 97.72 1.524 M 7.53 MB Yes Wx = 60, dx = 6

60 × 45 Algo2 in the proposed EDPA 95.19 1.521 M 7.53 MB Yes Wx = 60, dx = 6

60 × 15 Algo3 in the proposed EDPA 95.1 0.46 M 3.09 MB No Wx = 60, dx = 10

60 × 45 Algo1 in the traditional EDPA [6] 97.83 1.624 M 7.88 MB Yes Wx = 60, dx = 6

60 × 45 Algo2 in the traditional EDPA [8] 95.29 1.623 M 7.88 MB Yes Wx = 60, dx = 6

60 × 15 Algo3 in the traditional EDPA [11] 94.9 0.56 M 3.28 MB No Wx = 60, dx = 10
* Floating point operations per second (mega flop/s).

4.2. Hardware Settings

The specifications of the Jetson Nano client used in embedded systems in cars and the
edge server (such as the domain, platform, hardware specifications, and implementation
details) are shown in Table 3. In addition, we illustrate the proposed distributed EDPA
prototype in Figure 5. As shown in Figure 5, the proposed EDPA Edge Server can connect
to four embedded systems in cars and, at the same time, uses four Node.js workers. This
is because, edge server run the Node.js Application has multiple limitation such as the
number of CPU cores, the number of thread, the size of memory, and the number of
Node.js workers. Based on our edge server specification described in Table 3, we can
support only four Node.js workers but, if, we use an edge server with higher number
of the cores and memory size, we might be able to achieve a higher number of Node.js
workers and autonomous cars. The performance of proposed EDPA for each autonomous
cars does not depend on the number of workers because of we dedicate to each Node.js
worker one autonomous car. Furthermore, if the number of worker increases or decreases
we can dedicate less or more autonomous cars into edge server. However, the average
overall performance may increase or decrease for a higher or lower number of dedicated
autonomous cars.

Figure 5. The prototype, including hardware and software settings of the proposed distributed EDPA.

4.3. Evaluation of Driver Profiling

We performed extensive experiments on the driver profiling algorithms, comparing
specifications such as accuracy, FLOPs(floating-point operations per second), memory
usage, feature engineering, and windowing size, while training models for Algo1, Algo2,
and Algo3 in Table 4. We performed the experiment for the proposed EDPA using three
mentioned driver profiling algorithms [6,8,11]. Algo1 and Algo2 algorithms require feature
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engineering using moving standard deviation, mean, and median, whereas Algo3 algo-
rithm directly normalizes raw features correspondingly. In Table 4, Wx denotes as time
series size, and dx denotes as the shift between consecutive sliding window. In addition,
the existing driver profiling algorithms require a 60 s window (time steps) for inferring the
driver identity. Table 4 proves that the traditional and proposed EDPA architecture similar
accuracy, FLOPSs and memory consumption for three driver profiling algorithms, while
we tried to improve the latency and bandwidth in the proposed EDPA. Driver profiling
latency and the number of requests per second are listed in Table 5. The traditional and the
proposed EDPABW for the existing driver profiling algorithms are listed in Table 6. The
proposed EDPA uses applied to the three existing driver profiling algorithms [6,8,11] to
train the models in the proposed EDPA. To increase the number of requests per second, we
implemented the lightweight FCN_LSTM, which employs sparse learning. Each request
defines as a driver profiling classification call. The number Node.js worker handing the
driver profiling requests may increases if we use an edge server with higher number of the
cores and memory size. The average EDPAlatency is calculated using the following formula:

Average EDPAlatency =
Total EDPAlatency

The number o f requests per second(Req/Sec) (5)

Moreover, the average bandwidth EDPBW is calculated using the following formula
for n input data frames and k clients:

Average EDPABW =

k
∑

i=1

n
∑

j=1
(Size o f input data f rame)+(Size o f the prediction data)

Total EDPAlatency
(6)

Table 5. End-to-end latency and the number of requests per second (Req/s).

Algorithm Req/s
Total

EDPAlatency

Average
EDPAlatency

Traditional EDPA using Algo1 DeepConvRNN_Attention [6] 1 0.7910 s 0.7910 s
Traditional EDPA using Algo2 FCN-LSTM [8] 1 0.7510 s 0.7510 s
Traditional EDPA using Algo3 light-weight FCN-LSTM [11] 2 1.096 s 0.498 s
Proposed EDPA using Algo3 7 0.651 s 0.142 s
Proposed EDPA using Algo2 5 0.851 s 0.182 s
Proposed EDPA using Algo1 4 0.951 s 0.242 s

Table 6. The EDPABW for the driver profiling algorithms.

Algorithm
Total Prediction

and Input Frames
Data Size

Average EDPABW

Traditional EDPA using Algo1 DeepConvRNN_Attention [6] 10 MB 10.09 MB/s
Traditional EDPA using Algo2 FCN-LSTM [8] 10 MB 10.51 MB/s
Traditional EDPA using Algo3 light-weight FCN-LSTM [11] 5 MB 9.12 MB/s
Proposed EDPA using Algo3 5 MB 53.76 MB/s
Proposed EDPA using Algo2 10 MB 58.75 MB/s
Proposed EDPA using Algo1 10 MB 42.06 MB/s

The advantages of the proposed EDPA based on the experimental results are high-
lighted as follows:

• In the traditional EDPA, EDPA-Client( ) and EDPA-Server( ) are located in different
containers inside each Embedded Nano board, which clearly shows they have a 1:1
relationship. Therefore, in the traditional EDPA, Algorithm 1 does not have a loop
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structure in client/server, but Algorithm 2 does. In the proposed EDPA, Algorithm 2,
EDPA-Server( ) uses Node.js applications which employ multiple workers in parallel
which clearly show they are having 1:4 relationship. Besides, we can scale the number
of Node.js applications using the load balancer. In the proposed EDPA-server function,
initialization latency TS1

′
, memory allocation latency TS2

′
, and trained model loading

latency TS3
′

are excluded from end-to-end latency EDPAlatency, which results in
improving and reducing the average EDPAlatency of the EDPA system.

• The function driver_profiling employs the light-weight FCN-LSTM, which execute
five requests per second.

• The proposed EDPA-server function connects four embedded cars via the in-memory
scheduler, and at the same time uses four Node.js workers.

• The proposed EDPA-server function operates four Node.js workers in parallel.
• Each proposed EDPA-client activates a Nodejs worker using the check_server REST

API.
• Each in-memory scheduler thread allocates key, value, and meta information related

to each data sensor file using a linked-list structure in parallel.

5. Conclusions

In this study, we proposed a new method for put-intensive, edge-based data schedul-
ing to decrease driver profiling end-to-end latency. The proposed in-memory scheduling
stores sensor data in a key-value storage cache. The proposed memory scheduling re-
duces the number of I/O operations in the edge server by merging sensor data in memory
using a linked-list structure. We achieved a greater number of responses for the driver
profiling service. We successfully re-implemented all the algorithms in the edge server
and conducted multiple experiments to verify the advantages of the proposed EDPA. The
proposed application improves end-to-end latency and bandwidth significantly compared
with traditional EDPA using the lightweight FCN-LSTM, DeepConvRNN, and FCN-LSTM
deep learning algorithms.
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