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Abstract: Bayesian optimization is a sequential method that can optimize a single and costly ob-
jective function based on a surrogate model. In this work, we propose a Bayesian optimization
system dedicated to monitoring and estimating multiple water quality parameters simultaneously
using a single autonomous surface vehicle. The proposed work combines different strategies and
methods for this monitoring task, evaluating two approaches for acquisition function fusion: the
coupled and the decoupled techniques. We also consider dynamic parametrization of the maximum
measurement distance traveled by the ASV so that the monitoring system balances the total number
of measurements and the total distance, which is related to the energy required. To evaluate the
proposed approach, the Ypacarai Lake (Paraguay) serves as the test scenario, where multiple maps
of water quality parameters, such as pH and dissolved oxygen, need to be obtained efficiently.
The proposed system is compared with the predictive entropy search for multi-objective optimization
with constraints (PESMOC) algorithm and the genetic algorithm (GA) path planning for the Ypacarai
Lake scenario. The obtained results show that the proposed approach is 10.82% better than other
optimization methods in terms of R2 score with noiseless measurements and up to 17.23% better
when the data are noisy. Additionally, the proposed approach achieves a good average computational
time for the whole mission when compared with other methods, 3% better than the GA technique
and 46.5% better than the PESMOC approach.

Keywords: multi-function estimation; Bayesian optimization; data acquisition; environmental moni-
toring; autonomous vehicles; multiple-objective Bayesian optimization

1. Introduction

Monitoring water resources is a very useful practice for their maintenance. The results
obtained by supervision campaigns can be used as a key tool for efficient decision-making
regarding the protection of water bodies, such as reservoirs, lakes, and lagoons, against
climate change damage and other threats. The limnology or study of inland aquatic ecosys-
tems is fundamentally based on observing the water environment chemical, physical, and
biological characteristics. A water quality level can be determined by taking into account
these features through several chemical and physical indicators or variables, such as pH,
temperature, total suspended solids, and dissolved oxygen, among others. These param-
eters are part of the biological characteristics that a water body can acquire. Therefore,
monitoring the behavior of quality parameters of water masses represents a valuable
mission due to its involvement in the maintenance of healthy aquatic environments. Exam-
ples of dramatic scenarios, from the water quality indicators point of view, include those
in which an excessive amount of nutrients exist in their waters so that green-blue algae
(cyanobacteria) blooms proliferate. This situation is harmful for the ecosystem because
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these algae are known to be toxic not only to fauna and aquatic plants but also to hu-
mans. Some examples of lakes [1] having this issue include Ypacarai Lake (San Bernardino,
Paraguay) and Lake Titicaca (El Collao, Perú). Consequently, monitoring the water quality
state of these lakes is crucial for eradicating the algae blooms and restoring the freshness
and quality of their waters [2].

Generally, monitoring missions consist of both manual measurement campaigns and
fixed stations located at the water resources. However, in some scenarios, the manual
procedure exposes the human operator to the danger of toxic waters while maneuvering
the measurement equipment. Regarding the utilization of fixed stations, it fails to provide
a global state of the water quality, which is more aggravated for large water resources,
leading to wrong estimations. Thus, these mechanisms present several disadvantages
with respect to recent distributed approaches, such as using autonomous surface vehicles
(ASVs) equipped with water quality sensors (see Figure 1). For instance, the use of ASVs
significantly decreases the mission costs by allowing automated sampling [3]. The current
literature shows a vast amount of environmental monitoring systems using ASVs, ranging
from intelligent patrolling [4] to informative path planning (IPP) approaches [5]. These
systems are very useful and have significant advantages when compared to manual or
fixed monitoring tools. However, the majority of the proposed systems are focused on pure
exploration methods, without aiming to obtain a surrogate function or regression model
that represents and predicts the behavior of water quality parameters in unexplored loca-
tions. Another main limitation of the existing systems corresponds to the non-generalized
data acquisition paradigm because they are focused on a single parameter acquisition; i.e.,
they only focus on obtaining data taking into account only one water quality parameter.
However, most water quality sensor systems are capable of performing multiple measure-
ments at the same time (multi-probe systems). In addition, battery autonomy is another
main constraint in current monitoring systems based on ASVs. Consequently, the mobility
of vehicles should be determined carefully to accomplish efficient monitoring campaigns.

Figure 1. Example of autonomous surface vehicle for environmental monitoring.

This work is focused on alleviating the aforementioned limitations of current moni-
toring systems based on ASVs. First, we propose using Gaussian process (GP) to estimate
models of water quality parameters with small datasets of real measurements. GP-based
regressors are suitable for modeling in those scenarios. Thus, they remove the necessity of
monitoring every location of the lake, saving time, money, and human resources. Second,
we consider a multi-function estimation framework for modeling several water quality
parameters simultaneously. Therefore, we propose a generalized monitoring system with
multiple data acquisition functions. Third, we take into account the mobility restrictions
of ASVs with respect to available battery energy by limiting the distance traveled by the
ASV among measurements. The proposed system is based on a previous work and it
enhances the single Bayesian optimization (BO) approach, allowing it to intelligently select
measurement locations so that all three requirements are satisfied. Thus, we propose a
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multi-function estimation using Bayesian Optimization (MEBO) approach for environmen-
tal monitoring through a single ASV.

The classical BO approach consists of sequentially selecting new measurement lo-
cations according to an acquisition function (AF). The AF determines the benefit/value
of sampling in an unknown location according to maximizing a single target function.
However, whenever multiple target functions are considered, different AFs are obtained
simultaneously for each one of them, resulting in a multi-function estimation scenario.
Then, the question is how to combine or fusion the different AFs to determine the next
location to sample.

We extend the proposed AFs in [5] by adding AF Fusion (AFF) methods for pro-
viding measurement locations. These fusion methods balance the desirability of taking
measurements on certain locations in order to decrease uncertainties on several water
quality maps simultaneously. The proposed MEBO considers and evaluates two different
AFFs, the coupled and decoupled techniques. The former combines the different AFs for
providing an overall optimal measurement location, while the latter provides the best
location according to the simple evaluation of different AFs. Consequently, the MEBO for
environmental monitoring approach consists of (i) defining surrogate models for all the
unknown water quality parameters; (ii) fitting these surrogate models with measured data;
(iii) acquiring new measurement locations according to a fusion of AFs; and, finally, (iv)
reaching the destination point, performing new measurements. and adding such data to
the data set.

The main contributions of this work can be summarized as follows:

• A generalized multi-parameter measuring system for environmental monitoring
based on Bayesian optimization with acquisition function fusions.

• An experimental study of data sampling distance between measurements using kernel
hyper-parameters information.

• A validation and comparison with other approaches in a real-case scenario such as
the monitoring of Ypacarai Lake in Paraguay.

The present work is divided into the next sections. Section 2 includes the related
works found in the literature. Next, in Section 3, the statement of the problem is described.
Afterwards, Section 4 presents the proposed MEBO approach. The surrogate model’s per-
formance and computational evaluation of the proposed method and the related methods,
as well as the discussion of the results, are available in Section 5. Finally, the conclusion
and future works are presented in Section 6.

2. Related Works

This section is divided into two parts: first, several works that use autonomous
vehicles, both aerial and aquatic, for environmental monitoring tasks are presented; second,
some works related to multi-Bayesian optimization are reviewed.

2.1. Environmental Monitoring with Autonomous Vehicles

The application of monitoring based on autonomous vehicles is an active research
field [6,7]. Both aerial and aquatic (surface and underwater) vehicles have been proposed
to measure environmental variables. Such is the case of the work in [8] that proposes
a Q-learning fuzzy logic for flying ad hoc networks. Another work [9] develops aerial
vehicles’ path-planning strategies for autonomous search and localization of targets in a
risky environment while optimizing both search and survival via the selection of a balance
Pareto-point front and using customized reward functions. A recent study [10] designs a
multi-objective optimization for drone delivery that manages to minimize the delivery cost
using the ε-constraint method and the percentage of unsuccessful delivered packages while
maximizing the on-time delivery reward. The MO strategy is also proposed in [11], where
a coverage problem is addressed using multiple aerial vehicles for efficient communication
networks. Related to monitoring, in [12], the authors describe a path generation algorithm
that minimizes time of rescue action using a genetic algorithm (GA) technique. The work
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takes into account several dynamic and time constraints in order to provide efficient routes
for reaching a target destination. Another approach [13] considers multiple aerial vehicles
for agricultural monitoring using a distributed swarm control technique.

Works using ASVs for environmental monitoring, specifically for lakes, can be found
in the literature [3–5,14–16]. However, they are generally focused on one objective such as
minimizing the uncertainty of one water quality parameter. In [4], a deep reinforcement
learning (DRL) approach was designed so that a single ASV patrolled the Lake. In [14],
the authors generalize the DRL to a multi-agent ASV using an enhanced approach. The
work also compares different deep reinforcement learning approaches, such as double
DRL and dueling DRL, for multi-ASV missions. The work in [3] aims at obtaining a
sequence of visiting beacons at the Ypacarai Lake, using the travelling salesman problem
(TSP) definition and the use of evolutionary approaches (GA) to define the best sequence.
The mentioned work was further improved and compared with Hamiltonian circuits
in [15]; the evolutionary-based approach manages to obtain the best visiting order so
that the maximum possible area coverage is performed. Additional improvements were
proposed in [16], where two objectives (exploration and exploitation) are accomplished
but not simultaneously. The Ypacarai Lake environmental monitoring problem was also
addressed [5] with a BO approach using a single ASV with a single water quality sensor. In
the mentioned work, the authors describe adaptations of AFs so that mobility constraints
of ASV are taken into account.

Table 1 shows a summary of related works. The mentioned works can be related to
our work in terms of MO, monitoring missions, or applications. The works are ordered by
year of publication.

Table 1. Brief summary of related works. Specifying whether the work is Multi-Objective (MO) or not.

Ref. Specific Objective Is MO? Main Algorithm Vehicle Year

[9] Search for targets in risky environments Yes Pareto-front point selection Aerial 2018

[13] Agricultural field coverage No Distributed swarm control Aerial 2018

[10] Package delivery pptimization Yes ε-constraint method Aerial 2019

[3] Pure exploration No TSP and genetic algorithm ASV 2019

[16] Exploration and intensification No Hamiltonian and Eulerian circuits ASV 2019

[8] Routing algorithms for Comms. Yes Q-learning fuzzy logic Aerial 2020

[12] Time-efficient path planning No Genetic algorithm - 2020

[4] Monitoring through patrolling No Double deep Q-learning ASV 2020

[11] Wireless network coverage Yes Simulated annealing Aerial 2020

[5] Monitoring and model obtaining No Bayesian optimization ASV 2021

[14] Multi-agent monitoring No Double deep Q-learning ASV 2021

2.2. Multi-Objective Optimization

Multi-Objective Bayesian Optimization has been applied to many optimization
works [17,18] in several research fields. Although the MEBO has not been used in mon-
itoring systems with autonomous vehicles, the sequential BO proposed in the existing
works is useful and can be adapted to accomplish monitoring tasks. For example, in [17],
a predictive entropy search for multi-objective BO with constraints (PESMOC) is proposed
using a four-step process. This method takes into account the Pareto-front generated by a
set of predicted mean distributions. The general PES AF is used for each objective function.
In addition, the authors propose both coupled and decoupled methods to fuse the different
AFs. The first fusion technique consists of adding the different AFs in order to obtain a
global AF. However, the second method, which consists of selecting the maximum of the
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different AFs, has been proven to generate better results. In this work, the same terms for
the fusion of different AFs are adopted, and the appropriate definition and expressions can
be found in Section 4. On the other hand, in [18], the authors used a two-stage BO for global
optimization based on the evaluation of multiple AFs using the same surrogate model
and a selection criterion, obtaining a reward-based AF selection system. However, in the
mentioned work [18], the system is capable of evaluating the objective function without
accounting for distance between measurements locations, so that, ultimately, multiple AFs
(one for each objective) were used only for increasing the total number of measurements.

Furthermore, multi-objective optimization systems using fixed sensor stations have
been recently proposed for different environmental missions, such as ventilation system
monitoring [19] or even water quality monitoring [20]. Both mentioned works pursue
the objective of optimally positioning sensors in fixed locations. While the former [19]
uses a GA for obtaining the optimal locations according to several functions, the latter [20]
utilizes transinformation entropy, which measures mutual information, to be minimized
by an enhanced GA for multi-objective optimization. These methods consider the multiple
objectives and solves the problem by taking into account each objective independently, like
the decoupled method in [17]. For coverage problems taking into account multiple vehicles,
in [21], the authors propose a coupled weighted multi-function for deciding positions of
UAVs for optimal coverage deployments. These works base the selection of locations on
GA.

Finally, the proposed method differentiates from the related works as it is the first,
to the best known of the authors, that addresses the multi-objective data acquisition for
environmental monitoring using ASVs. The MEBO system is capable of minimizing the
uncertainty, which minimizes the surrogate error of multiple water quality models si-
multaneously. Furthermore, we manage to implement MO optimization approaches for
environmental monitoring, whereas recent MO algorithms are not tested in this scenario.
When comparing to the fixed station works, the proposed MEBO method can efficiently
select measurement locations when the functions are unknown, whereas the fixed moni-
toring station methods are based on monitoring environments with a priori information.
With respect to other ASV-based environmental monitoring systems, the MEBO system
is actively learning, exploring the environment taking into account multiple information
due to the fact that it is based on Bayesian optimization for multiple functions. In addition,
contrary to the constant distance between measurement locations approach proposed in [5],
the MEBO approach in this work aims at generalizing this distance based on a relationship
with the length-scale hyper-parameter of the surrogate model, which at the same time, is
related to the real behavior of the objective functions. Therefore, the proposed approach
actively updates another high-level hyper-parameter for monitoring.

3. Statement of the Problem
3.1. Objective Functions

The target consists of minimizing the error of a set of functions simultaneously, using
the next expression:

minimize {
i=n

∑
i=1
Fi(x)}

s.t. x ∈ X
(1)

In the expression shown above, Fi(x) is one of the n functions to be minimized, i.e.,
F1(x),F2(x), . . . ,Fn(x). Generally, no solution exists that simultaneously minimizes all
functions since the objectives are counterbalanced; i.e., the value that minimizes Fi(x) is
not equal to the value for minimizing any other function Fi(x). X is a m-sized set, which
corresponds to the feasible search space.

In the context of this work, each function Fi(x) corresponds to the error of a surrogate
model of a water quality parameter i with respect to the real behavior of the same parameter
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in the Ypacarai Lake. In that way, since errors will be minimized on all surrogate models,
good surrogate models of water quality parameters will be obtained simultaneously. This
work considers each function Fi(x) as the mean squared error (MSE) regression loss, which
evaluates the average of squared difference between a real or objective function fi(x)
and the surrogate or approximated regression f̂i(x). The MSE for a given parameter i is
calculated over X (size m) using the following expression:

MSEi( fi(x), f̂i(x)) =
1
m ∑( fi(x)− f̂i(x))2 (2)

Minimizing the expression above consists of obtaining appropriate surrogate functions
f̂i(x), since m and fi(x) are constant. Therefore, the multi-function estimation mission will
be accomplished whenever surrogate models are as similar as possible to the true functions:

f̂i(x) ≈ fi(x) + E2 (3)

The function E2 corresponds to the inherent noise associated to surrogate model-
ing procedures, such as objective function evaluations and error modeling. Specifically,
in water quality parameter modeling, errors include sensor and location measurement
inaccuracies [5].

Furthermore, in the present work, fi(x) corresponds to the real water quality behavior
of parameter i, where x corresponds to a (x, y) location of the Ypacarai Lake (X ⊂ R2).
These functions fi(x) are available for sensing, and measurements will be taken by a
single ASV equipped with a set water quality sensors, which provides a read of the value
of parameter i at location pk ∈ x (Equation (4)). The subscript k corresponds to the
measurement number of o total measurements, where pk is usually used to denote the
location of the last performed measurement.

s(k,i) = fi(pk) + ε2 (4)

Each set of measurements, which contains information of the location pk and the
values of parameters at that location s(k,i), is stored in data set D. As mentioned, the
measurements can be noisy and their values may differ from real data. Therefore, in
Equation(4), ε2 represents the supposed iid noise drawn from function E2. The data set D
provides sufficient information to the MEBO system so that, for every parameter, a function
f̂i can be approximated.

3.2. Assumptions

Next, some assumptions and considerations are established so that the full scope of
our work is defined according to the main objective presented at the start of this section.

• Environment: The environment consists of a defined region modelled as a matrix
M. The matrixM corresponds to the square grid representation of real-life locations
(latitude, longitude). Therefore, the real environment is discrete, meaning that an ASV
can be located in a position related to an element of the map. Every elementMi,j is a
square of side d, and this can be navigable or occupied by an impassable object (such
as terrain or obstacles). The full set of navigable elements or squares corresponds
to X :

X ⊆M ⊆ R2 (5)

If elementMi,j is navigable, it is considered a part of the water body and has measur-
able properties (set X ). Therefore, all navigable locations in the set X are available
for reading, meaning that there exists a water quality map Si for each studied water
quality parameter. The water quality values of each map Si on location x ∈ X are
considered time invariant, i.e., they remain constant through the simulations. All
Si maps of water quality parameters follow the main characteristic of the central
distribution theorem, implying that the expected mean is zero and the standard devia-
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tion is one. However, the values are not necessarily normally distributed around the
center of the Lake. Another important assumption implies that the behaviors of water
quality parameters are smooth and continuous, mainly due to fluid dynamics and
surface wave propagation properties [5]. Figure 2 shows an example of Ypacarai Lake
modelled as matrixM, as determined with a procedure found in [22]. This model
gives X the characteristic of being non-convex; i.e., not all segments made with two
different locations x and x′ can be divided into segments that contain only elements
of X .

Figure 2. Image representation of the Ypacarai Lake model. Note that, since there exist segments
represented with two black squares that cross white squares (obstacles or terrain), X is a non-
convex set.

• Navigation, Guidance, and Control (NGC) System: The ASV has subsystems that
are designed for specific purposes of navigation, guidance, and control. Figure 3
depicts the general system design. The ASV contains the NGC system so that it can
autonomously position, decide missions, and move for accomplishing the objective.
The navigation subsystem is in charge of locating the vehicle; however, the positioning
system is not perfect and can provide the position of the ASV within a circle of radius
r. This positioning error leads to guidance inaccuracies. The guidance subsystem
is in charge of planning paths. Once a goal is defined using a global path planner
(GPP) component, which implements the MEBO approach, this subsystem defines
a collision-free path from the current position of the ASV to the goal location. If no
obstacles are in the segment, a direct route is planned; otherwise, the guidance system
plans a path using RRT*, as it can provide quick, good paths as shown in [23]. Finally,
the control subsystem is in charge of reaching the calculated goal, but as the navigation
subsystem has an error of ±2r, the measurement position pk ∈ x may be shifted by
±3r. This error also accounts for water and air currents, stopping mechanisms, etc.

• Water Quality Sensor System: The vehicle is supposedly equipped with n water
quality sensors named s1, s2, . . . , sn. It can be observed in Figure 3 that the ASV
communicates the water quality sensor system to the mission planning component
through the guidance system. The guidance system commands the performing of
measurements, and the sensor system provides the values of water quality parameters.
These sensors can measure different variables simultaneously, but the ASV needs to
stop to take measurements. This constraint prevents continuous monitoring; i.e., the
vehicle cannot be constantly obtaining new information. As shown in Equation (4), the
sensors do not perform perfect measurements; therefore, noise is present in every read.
For real purposes, the values returned by the sensors are not normally distributed
(µ(x) = 0, σ(x) = 1); therefore, additional data pre-processing is needed to ensure that
the values that are fed to the MEBO system will have the mentioned characteristics.
Preprocessing data is a common procedure in machine learning, and it is used in this
work to facilitate the fitting of Gaussian process models with means of zero.
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• ASV constraints: The ASV has a smaller size than the size d of a square of matrixM
so that a movement in every direction is always possible. For performance evaluation
purposes, the battery autonomy is taken into account. In order to include battery
usage, one approach is to consider its level as a function constraint, but since the
battery level is independent of the position p of the vehicle (i.e., the input in the
proposed MEBO approach), this constraint cannot be approximated to a function of
(x, y). Therefore, methods to include the battery level directly in the BO method as a
constraint, such as the work in [17], cannot be used. Consequently, in this work, as
in a related work [5], we consider that missions finalize whenever the ASV travels a
total distance of 15,000 m, which corresponds to approximately 2.1 h of usage.

Autonomous Surface Vehicle

Guidance 

Navigation
- Localization 

Control
- Move ASV towards

measurement location 

Water Quality Sensor System 
- Obtain values of water quality

parameters (pH, TDS, etc.)

Global Path Planning
- Obtain next measurement

location

Local Path Planning
- Provide colision free

velocity vectors

Mission Planning
- Perform Measurements

- Perform GPP
- Perform Movement

Movement
(x,y)

* Proposed MOBO
approach is executed

in this component

Figure 3. General systems of the designed ASV. Consists mainly on 4 subsystems: water quality
sensors, navigation, guidance, and control.

With the assumptions defined, we remark that, as for the problem, water quality
measurement locations must be strategically selected. The designed MEBO should balance
travelling distance and taking measurements so that enough data are collected from the
environment in order to provide good surrogate water quality models. The scopes of this
work consider that the average MSE is to be minimized sequentially, meaning that on
every step k, the errors of multiple surrogate functions are to be simultaneously minimized
after performing one measurement in position pk. Nonetheless, since in a real execution
access to the function fi(x) is not possible, the calculation of the MSE is also not possible.
Therefore, we base the proposed monitoring system on obtaining probabilistic surrogate
models, which have bounded uncertainty maps, so that we pivot from minimizing error
to minimizing uncertainty maps and assume that uncertainties of surrogate models are
correlated to the error of these models.

4. Proposed Approach

The proposed system is based on the general single BO approach for monitoring [5],
where a sequential strategy evaluates the current state of a water quality parameter and
then proceeds to select new informative measurement locations that enhance the model of
the selected parameter. In this work, we generalize to multiple parameters with the use of
multiple information gathering and evaluating. Figure 4 shows the proposed procedure,
where the classical BO approach is enhanced to consider multiple surrogate models for
selecting the new measurement locations. The proposed MEBO is adapted in order to
favor exploration during the whole mission. First, we define the components of the BO
approach and then we expand the method in order to include the multi-function estimation
goal. In that sense, until Section 4.4, the problem is treated as a single-objective BO, i.e.,
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i = 1. Therefore, the expressions are defined for the monitoring of a single water quality
parameter. Afterwards, we retake the MEBO approach, i.e., i = [1, 2, . . . , n].

Should finish?

Evaluate all AFi

Start Finish mission

Initialize system:
All GPi

i = [1, 2, ... , n]
k = 0

Perform s(k,i) measurements
and save new data Dk

Fit All GPi
Models

Select location
according to a

AFF

Go to selected goal
location pk+1

Considers both:
i)  Maximum distance
    travelled.
ii) Uncertainties of Models
    are sufficiently small.

Yes

No

Figure 4. Proposed multi-function estimation using Bayesian optimization approach for environmen-
tal monitoring using an ASV.

4.1. Bayesian Optimization

BO is the proposed sequential strategy for environmental monitoring [5]. It is generally
used for optimizing an unknown objective function that is expensive to evaluate [24], i.e.,
finding the minimum/maximum of the objective. In the case of environmental monitoring,
the direct application of BO will not provide good surrogate models, as the functions will
be directed to optimize the ground truth model. Nevertheless, with the modification of
parameters and the adjustment of functions, the BO approach can be used to reduce the
uncertainty of surrogate models so that the MEBO approach is capable of providing good
surrogate models of water quality parameters.

In a general sense, BO provides the location where the next measurement should be
performed p∗ = pk+1. This location is obtained using the next expression:

p∗ = argmaxx{g(x)}
s.t. g(x) = α( f̂ (x))

(6)

where the function g(x) needs to be maximized, according to [25]. The function argument of
Equation (6) is decomposed into an acquisition function (α) and a surrogate model f̂ (x). As
the AF depends directly on the surrogate model, first, this model should be appropriately
defined. Many authors [17,25–27] use Gaussian processes as probabilistic surrogate models
since they present important advantages for modeling unknown functions.

4.2. Gaussian Processes

Using a model-based regression whenever the unknown function has a predictable be-
havior presents several advantages, if the surrogate model can fit the data. GP Regressions
are model-based processes [24], where prior and posterior models can be generated using
two sets of information: (i) the relationships between the unknown data and (ii) the sam-
pled data. The latter set corresponds to data D (recall Equation (4)), while the relationship
information corresponds to the covariance function, which measures the similarity between
the inputs. GPs are based on multivariate normal distributions; i.e., for each position x,
a mean µ(x) and a variance σ2(x) can be obtained. For that reason, one of the main advan-
tages of using GPs is that they do not only provide the expected behavior of the objective
function but also an uncertainty measure of the output, namely, the standard deviation.

For appropriately specifying GPs, only a tuple of the mean and the covariance function
is need:

µ(x) = E[ f (x)]

k(x, x′) = E[( f (x)− µ(x))( f (x′)− µ(x′))]
(7)
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The mean corresponds to the expected output of the objective function, while the
covariance between one specific position x and another x′ is equal to the expected product
of differences. If the covariance function can fit the provided data D, the GP mean can be
taken as the surrogate function output as:

f̂ (x) ∼ GP(µ(x), k(x, x′)) = N (µ(x), σ(x)) (8)

Note that the predicted function f̂ (x) using GPs consists of a normal distribution
with a mean µ(x) and a variance σ2(x). Nonetheless, in this section, we refer to f̂ (x)
simply as the mean output µ(x) of the GP, except when indicated otherwise. Before solving
Equation (8), it is preferable to define the covariance function, as well as the kernel matrix.

Covariance functions imposes the geometry of the model [25] due to the fact that they
define the relationships between input features. In this work, we define the features as
the 2D positions where the model needs to be obtained, that is, all positions of set X .
Therefore, the covariance function, sometimes called kernel, should be able to describe the
generalized behavior function of a real water quality parameter. As assumed in Section 3,
it is expected that the water quality parameters are time invariant, smooth, and continuous.
Therefore, the kernels of the GPs in this work should provide similar properties to the
approximated output.

The evaluations of the covariance function for each pair of inputs (x and x′) can be
grouped in a square matrix K, where each element Ki,j = k(xi, xj). Therefore, this matrix,
named kernel matrix, will be symmetric and, since its construction is based on the inputs,
it will also follow the same properties as the Gram matrix, which is semi-positive definite.
The complete covariance matrix for all possible locations x is defined as

K =

[
K K∗

KT
∗ K∗∗

]
=

[
k(x, x) k(x, x∗)
k(x∗, x) k(x∗, x∗)

]
(9)

where the unknown input data x∗ correspond to a subset of X (Equation (5)) that needs
to be approximated, since no measurements were performed in those positions. The re-
maining subset (x of the preceding expression) corresponds to every measurement location
pk s.t. k = [1, 2, . . . , o]. Therefore, for obtaining the kernel matrix, X is effectively divided
into two sets of known and unknown input data: {x, x∗}. Then, K is a square matrix made
with the covariance values between the known input data; K∗ is a rectangular matrix made
with the known input data as rows and the unknown input data as columns; and, lastly, K∗∗
is, again, a square matrix but with rows and columns defined by the unknown input data.

Finally, to solve the GP for unknown input data x∗, Equation (10) is used [24], where
a new term ε2 I is added in order to provide the GP with noise, whenever the measured
values f̂ (x) are known to be noisy (Equation (3)).

µ f̂ (x∗)|D = KT
∗ (K + ε2 I)−1 f̂ (x)

σ f̂ (x∗)|D = K∗∗ − KT
∗ (K + ε2 I)−1K∗

(10)

The expression shown above is sufficient to solve the problem for the unknown inputs
or non-measured locations of the Ypacarai Lake. It is important to highlight that the
inference will not be appropriate if the kernel does not behave as the real function. The
definition of the kernel should be always aimed to fit the unknown objective function.
Therefore, for the monitoring task, the selected kernel should follow the same behavior as
water quality parameters of still waters (surface currents < 2 m

s [5]). Most authors [25,26]
use the radial basis function (RBF) kernel since it can easily fit stationary data and due to
the fact that it is infinitely differentiable (continuous).

RBF is a real-valued covariance function whose values depend solely on the distances
between the inputs x and x′, which defines it as a stationary kernel, i.e., the kernel does
not depend on the position of the inputs but on the relative difference of them. The RBF
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also depends on a hyper-parameter `, which modifies the maximum distance of influence
between the inputs. The RBF has the form of

k(x, x′)RBF = exp (−||x− x′||2
2`2 ) (11)

Due to the definition in terms of exp(·), this kernel can provide a covariance value
within the range of [0, 1]. The value of ||x− x′|| corresponds to the Euclidean distance
between positions. The length scale, or hyper-parameter `, describes the smoothness of the
function; i.e., as the value gets bigger, more distant points are influenced by a single point.
Therefore, the behavior tends to be smoother across the region. The RBF has proven to be
an efficient kernel according to experiments made in [5] for water quality parameters of
the Ypacarai Lake. Therefore, it is the selected covariance function used in this work.

4.3. Acquisition Function

With the posterior (fitted) model, the next natural step is to continue evaluating the
objective function (measuring the value of a water quality parameter in a location of the
Lake). AFs are expressions that are designed to provide a value of interest for evaluating an
unexplored location of the region. For optimization problems, there is a set of well-known
AFs that use the mean and predicted variance of the fitted GP to obtain the desirability
of evaluation for points within the region of interest. Generally, all of the AFs manage
to balance exploration and exploitation during the BO approach so that efficient data
sampling is produced.

The work [5] evaluated this set of well-known general AF (probability of improvement,
expected improvement, max-value entropy search). According to the obtained results, the
best AF for environmental monitoring is the expected improvement (EI) AF.

EI provides values for performing measurements based on two density functions: (i)
the cumulative distribution function Φ(x) and (ii) the probabilistic density function φ(x).
Both functions require normalization of the input data; more formally, EI first calculates
Z using

Z =
f (x+)− µ(x)− ξ

σ(x)
(12)

The expression above uses the maximum value measured so far f (x+) = max s(k) and
a control parameter ξ, which helps on balancing exploration/exploitation weighing. The
full expression of EI is defined as follows:

αEI(x) =

{
( f (x+)− µ(x)− ξ)Φ(Z) + φ(Z)σ(x) if σ(x) > 0
0 if σ(x) = 0

(13)

EI is the selected AF in this work for the BO approach; therefore, whenever new
measurement locations are needed, Equation (13) is used directly to find the maximum
valued location (Equation (6)). Consequently, the AF should be maximized in order to
define the best next measurement location. For obtaining this value, an evaluation of the
AF over the possible values should be performed to find the maximum location.

Usually, an optimizer is used so that the maximum location of an AF, generally a
nonlinear objective function, can be efficiently obtained. These optimizers are based on the
assumption that the objective function is continuous and differentiable everywhere within
the defined boundaries. Nevertheless, the region defined in this work (M) is not differen-
tiable everywhere; therefore, an efficient optimization algorithm like the limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm (l-BFGS) [5] cannot be used. The selected
approach is to calculate the values of the AF for each location in set X . An advantage of
calculating all the values is that there is no doubt that the maximum value is obtained,
contrary to the l-BFGS method that could need to restart the maximum location search in
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order to avoid local maxima traps. Lastly, recall Equation (6), which is used to define the
maximum location according to an AF.

Adaptation of AFs: Since the general AFs do not take into account the movement that
needs to be done between the last measurement position pk and the next p∗, the usage
of these functions as they are can be counterproductive. This is due to the fact that these
movements can deplete the remaining energy available in the vehicle before performing a
certain number of measurements. For that reason, in this work, as in a related work [5],
we propose to adapt the resulting AFs in order to take into account the battery constraints.
A comprehensive study of different adaptations can be found in [5], where the truncated
adaptation has proven to perform better than other propositions.

This adaptation consists of cutting the segment between pk and the best location
according to the results of the AF, so that the new segment has a length of l. This length can
be defined as a constant value to obtain a defined number of measurements before reaching
a certain total distance traveled. In [5], it has been observed that this truncated method
balances very well exploration and distance traveled when truncating by a constant length
of l. Moreover, since this adaptation does not depend on the parameters of the AF, it can be
applied to any AF.

Furthermore, in this work, we propose that the length of the new segment l is dynamic
and related to the length scale ` of the fitted (posterior) GP (l ∝ `). This rationale is based
on the premise that the length scale ` of the RBF kernel defines the maximum distance
between inputs (x ∈ X ) that allows these inputs to influence each other. Therefore, there
exists a dependence between the optimal distance between measurement locations and
the underlying objective function; i.e., large distances may fail in modeling the objective
function, while very short distances can provide redundant information. Hence, since the
length scale is the only parameter that is updated taking into account the real evaluations
to fit the model, an optimal distance between measurement locations can be obtained using
the length-scale hyper-parameter value of the posterior GP.

4.4. Multi-Function Estimation Generalization

The generalization approach consists of determining an appropriate location p∗ so that
a set of surrogate models can be efficiently approximated simultaneously. The surrogate
models consist of GPs that provide their respective mean µi(x) and standard deviation
σi(x). Therefore, the proposed method obtains p∗ taking into account the n surrogate
functions f̂i(x)) using the following expression:

p∗ = argmaxx{α( f̂i(x))} , i = [1, 2, . . . , n] (14)

The AF can be defined as a composite of different AFs or as a general AF that takes
into account the different functions, such as the work in [17]. The proposed approach
consists of composing different AFs through a fusion procedure.

4.4.1. AF Fusion

Based on [17], we define two different AF Fusions, (i) the decoupled and (ii) the
coupled methods. Next, we define these fusion techniques.

1. Decoupled Evaluation: This is designed to optimize one single GP at a time, so that
different objectives are optimized in different steps. The expression responds to select
the next measurement position p∗ as the argument of the maximum of the different
AFs (Equation (15)). For example, if all the AFs weight the different locations of set X
according to the uncertainty σ(x), the measurement location will correspond to the
position where one of the AFs has the highest value of uncertainty. The decoupled
method expression is shown below:

p∗ = argmaxx{αi(x)} , i = [1, 2, . . . , n] (15)
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2. Coupled Evaluation: This is a fusion that acknowledges the importance values of all
the AFs. Therefore, the AFs contribute equally to a general or grand AF. It consists
of adding all the AFs. Thus, the next measurement location p∗ is calculated as the
argument of the maximum of the sum of the AFs, as shown in Equation (16). This
location p∗ will be selected as the location where the different AFs will have their
values maximized as a combined set.

p∗ = argmaxx{
n

∑
i=1

αi(x)} (16)

4.4.2. Multi-Function Truncated Adaptation

As the aforementioned fusion methods will provide the maximum according to gen-
eral AFs, the truncated-adaptation should be applied so that the vehicle can optimally
balance exploration and total traveled distance. Subsequently, the truncated length l is
changed so that it corresponds to a ratio λ of one of the different length scales, more for-
mally:

l = λ×min{`i} (17)

where `i corresponds to the posterior GP hyper-parameter length scale of each one of the
different GPs.

5. Performance Evaluation

In this section, we proceed to define the simulation parameters as well as the perfor-
mance metrics used to evaluate the proposed approach. Afterwards, the results are pre-
sented so that the main values of parameters of the proposed MEBO are carefully selected.
The main algorithm, which was written in Python, is available on GitHub (https://github.
com/FedePeralta/BO_drones/blob/master/bin/v2/Examples/gym_example.py, accessed
on 17 April 2021). We utilized GP and AF libraries provided by sci-kit (https://scikit-
learn.org/, accessed on 17 April 2021) and additional helper libraries like numpy (https:
//numpy.org/, accessed on 17 April 2021), matplotlib (https://matplotlib.org/, accessed
on 17 April 2021), and deap (https://deap.readthedocs.io/, accessed on 17 April 2021). The
simulations were performed on an Ubuntu server with 2.24 GHz AMD 16-Core Processor
and 64GB RAM. Finally, the figures showing the obtained results were made with another
python script that was modified to produce the shown data.

5.1. Performance Metrics

Using the MSE (Equation (2)) is not always very helpful, as the results are not stan-
dardized, and also because it provides results that are not easily comprehensible. Therefore,
we use R2 score (R2S). The R2S provides a score (−∞, 1.0] of how well the predicted or
approximated values correspond to the real behavior.

R2
i ( fi(x), f̂i(x)) = 1− m×MSEi

∑( fi(x)− f̄i(x))2 (18)

where f̄i(x) corresponds to the average value of the real function and m corresponds to the
number of elements in the set X . Equation (18) is interpreted as the ratio between the MSE
and the variance of the real data. It is very useful when comparing different regressions
because they give a standardized value of data fitting.

Additionally, the average computational time that it takes between each measurement
is stored, so we can provide a numerical value of the computational efficiency of the
proposed method.

5.2. Simulation Setup

In this subsection, the setup for the simulation procedures is defined: the ground
truths definition and the simulation parameters.

https://github.com/FedePeralta/BO_drones/blob/master/bin/v2/Examples/gym_example.py
https://github.com/FedePeralta/BO_drones/blob/master/bin/v2/Examples/gym_example.py
https://scikit-learn.org/
https://scikit-learn.org/
https://numpy.org/
https://numpy.org/
https://matplotlib.org/
https://deap.readthedocs.io/
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5.2.1. Ground Truth and Water Quality Parameters

The image representation of Ypacarai Lake shown in Figure 2 is used for the sim-
ulations. The size ofM is 1000× 1500, where each pixel, or elementMi,j has a size of
d ≈ 10 [m]. Consequently, water quality parameter maps of the size ofM are needed.

Since, to this day, there exists no distribution maps of water quality parameter maps of
the Ypacarai Lake, multiple synthetic ground truths need to be created in order to test the
performance of the proposed method. We consider the aforementioned assumptions and
define real objective functions based on a multi-modal, continuous, multidimensional, and
deterministic function very commonly used as a benchmark function, such as the Shekel
function (SF). The SF provides a parametric function capable of defining multiple optimum
locations in a n-dimensional space. SF depends on two parameters which defines the
position of the maximum locations and their respective inverse weight. The SF expression
is as follows:

fShekel(x) =
M

∑
i=1

1
ci + ∑N

j=1(xj − ai,j)2
(19)

where, ai,j and ci are the elements of two set of matrices A and c. Matrix A has the size of
M× N, where M is the number of maximum locations, which are N-dimensional. Matrix
c is a M× 1 vector that defines the inverse importance value of the maximum locations.
On this setting, N = 2 is the selected dimension, and M varies randomly between 2 and 6.
The elements of matrix c are all equal so that the same maximum values are to be expected
throughout the whole regionM.

Eight different ground truths are generated using Equation (19); each one is generated
randomly; and they represent different water quality parameters maps S1, S2, . . . , S8
(Table 2). They are pre-processed so that they can fit the mapM and µSi(x) = 0, σSi(x) = 1.
Examples of the generated Ground Truths can be observed in Figure 5.

Figure 5. Example of different random simulated ground truth maps using the Shekel function. The
maximum locations can overlap and be outside of the feasible set X .

5.2.2. Simulation Parameters

For each simulation scenario (Table 2), 50 different runs with the same starting random
seed are performed using the mentioned set of water quality sensors. Each simulation
places the vehicle on a random initial location and starts the mission. The mission final-
izes whenever the vehicle reached a total distance driven of 15,000 m or if the number
of measurements performed is greater than 50. The limited number of measurements
is associated with the computational performance, due to the fact that this number of
evaluations increases the computational power required for solving the regressions.
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Table 2. Simulation experiments parameters.

Sim. ID Sensors Involved

1 (S1, S2)
2 (S5, S6)
3 (S1, S2, S3)
4 (S5, S6, S7)
5 (S1, S2, S3, S4)
6 (S5, S6, S7, S8)
7 (S1, S2, S3, S4, S5)
8 (S1, S5, S6, S7, S8)

Noises are negligible, except when indicated, so that both sets—the ground truths and
the Gaussian process models—are noiseless. However, the location error is present for all
simulations, so the reached locations for measurement cannot exactly be as planned by the
MEBO system.

5.3. Results for AFF and Length Ratio of Truncated Adaptation Selection

The general hyper-parameter definition of the proposed method is shown in Table 3.
The GPs for each sensor are defined with the same kernel RBF with the same length scale
`, and the AFs are also the same: EI with ξ = 1.0 (from [5]). The hyper-parameters of the
adaptation and the AFF definitions are variables that need to be tuned. For simulations,
we test each set found in Table 2 for λ = [0.125, 0.25, 0.375, 0.5, 0.75, 1.0] using the coupled
and the decoupled evaluations.

Table 3. Definition of MEBO proposed model. Note that two hyperparameters, λ and AFF, are
defined as variables.

Gaussian Processes Acq. Functions Adaptation AFF

RBF (`i = 100) EI (ξ = 1.0) tr- (l = λ×min{`i}) coupled or decoupled

5.3.1. Acquisition Functions Fusion Evaluation

Figure 6 shows the different R2S obtained by the coupled (blue) and the decoupled
(light blue) AFFs using the different λ parameter ratios. Each bar shows the R2S mean of
400 different simulations for a distance driven of 15,000 m. Additionally, the average n
number of measurements performed is also shown on top of each set. The coupled method
proves to obtain better R2 scores overall, only being worse when λ = 1.0, displaying a clear
advantage whenever this ratio is small λ ≤ 0.5. The coupled AFF is the selected method
for fusing or combining Acquisition Functions.

5.3.2. Ratio of Length Scale for Truncated-AF

Observing Figure 6, the evaluations of the λ value can also be obtained. The ratio
has proven to be better for small values, but due to the fact we limit (for reasons of
computational time) the maximum number of measurements to 51, λ = 0.125 does not
outperform greater values. Additionally, an increasing number of average measurements
performed with a smaller ratio can be observed. This is to be expected as smaller distances
between measurements provide an overall greater number of measurements. In Figure 7,
the mean and standard deviations of the R2S over the total distance traveled are shown.
The specific R2S values for some distances are shown in Table 4; this table also contains the
average number of measurements performed and the average computational time required.
The progress of the three ratios (0.50, 0.375, 0.25) over distance is always better, as not only
the R2S gets better, but so does the variance, meaning that the proposed method is more
robust over distance. It is certainly possible that the behavior being better using λ ≤ 0.5 is
correlated with the Nyquist–Shannon sampling theorem, which states that a good sampling
frequency is always at least equal to half of the expected fundamental frequency. With
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λ = 0.375, the variance is smaller. Additionally, the difference at 15,000 m of R2S between
this ratio and the smaller λ = 0.25 is not as meaningful (only 2.8% better). Besides, the
number of average measurements performed with λ = 0.375 (Figure 6 and Table 4) is
approximately 31% smaller than with λ = 0.25. Lastly, the overall average computational
time for the simulations shown in Figure 7 grows significantly bigger when λ gets smaller:
1.586, 1.934, and 3.149 s for λ = 0.5, 0.375, and 0.25 respectively. Therefore, the proposed
MEBO method requires the parameter λ = 0.375 for better performance.

Figure 6. R2 score for different λ values. For each value, the average R2S score is shown, divided in
two bars, one for the coupled evaluation and the second for the decoupled.

Figure 7. Progress of the proposed method using different values of λ.

Table 4. Values of average R2S, quantity of measurements and time for different distances using
different λ ratios. R2S is always better for λ = 0.25, while quantity of measures and computational
time is better with λ = 0.5. λ = 0.375 presents a good balance of these properties.

Average R2S Quantity of Meas. Average Time (s)

λ −→ 0.5 0.375 0.25 0.5 0.375 0.25 0.5 0.375 0.25

d = 5000 0.301 0.355 0.409 7 9 12 1.021 1.131 1.435

d = 10,000 0.542 0.589 0.614 12 15 21 1.443 1.811 2.746

d = 15,000 0.693 0.734 0.754 17 22 32 2.063 2.799 4.736
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Finally, in Table 5, the selected parameters for the proposed MEBO system are shown.
The length scale, which is the same for every water quality parameter, corresponds to the
prior length scale. The adaptation of AFs takes λ as 0.375 and uses the coupled technique
for combining the different AFs.

Table 5. MEBO-proposed approach parameters.

Parameter Value

Gaussian Processes RBF (`i = 100)

Acq. Functions EI (ξ = 1.0)

Adaptation tr- (l = 0.375×min{`i})

AFF coupled

5.4. Comparison with Other Methods

We proceed to compare the proposed method with two different environmental
monitoring approaches. The first is PESMOC [17], which is modified in order to accomplish
the monitoring objective. Afterwards, we utilize the genetic algorithm TSP approach [16]
and modify the system so that BO can be efficiently applied.

1. PESMOC for Environmental Monitoring:
In this work, we use the method proposed in [17] but with some modifications in
order to ensure monitoring. This consists of obtaining the difference between the
logarithm of the uncertainty of a predictive distribution (PD) σPD

i and the average of
logarithms of uncertainties of conditioned PD σCPD

i (conditioned to x|X ∗(m)). X∗(m)

is one of the m different locations of a supposed Pareto Set. For the full explanation of
the PESMOC, please refer to [17]. The PES expression is directly taken from the work,
and it has the form of:

α ≈
n

∑
i=1

(
log σPD

i (x)− 1
M

M

∑
m=1

log σCPD
i (x|X ∗(m))

)
(20)

As shown in the expression above, the coupled evaluation sums up the differences for
each AFi. The decoupled version considers one difference at a time. Next, we define
the parameters that were changed in order to fit the purpose of exploration:

• Pareto Set X∗: Since the objective of this work can be thought of as minimizing
uncertainty, the Pareto Set is taken as the positions where the sum of the predicted
standard deviations reaches their maximum values.

• Conditioning p(y|D, x,X∗): The conditioning is made through a cloned GP
model in order to include a supposed evaluation according to the items of the
Pareto Set.

• Monte Carlo Sampling M: For efficient evaluations, only one point of the Pareto
Set is used. Therefore, the number of Monte Carlo samples is reduced to one.
Indeed, this sacrifices accuracy but definitely improves computational efficiency,
which has been observed as being less efficient than our method due to the fact
that it needs to calculate the GP regression twice for each water quality parameter
or objective.

With M = 1, as foretold, we proceed to test the method using the same GP model and
the same simulation sensors as the proposed method evaluation, but with the best
parameters, λ = 0.375 and coupled AFF.

2. TSP-Based Environmental Monitoring:
In [16], a set of 60 waypoints were defined in the shore of Ypacarai Lake. Afterwards,
the best TSP solution (waypoint visiting order) was found by a GA evolved to optimize
exploration of the Ypacarai Lake. Due to the fact that the GA can be trapped in local
minimum [28], we randomize the starting waypoint so that the ASV does not start



Electronics 2021, 10, 963 18 of 24

always on the same initial position. Contrary to the continuous measuring approach
stated by the mentioned work [16], for comparison, the monitoring system is modified
so that the vehicle can perform measurements only while the ASV is not moving. For
this method, the proposed system in Figure 3 is the same, with the difference of the
global path Planning component.
The distance between measurements locations is the same as the one proposed in
this work, length scale-based. Therefore, the ASV travels from waypoint to waypoint
performing measurements every l = λ×min{`i}meters. Whenever the total distance
traveled reaches 15,000 m, the ASV stops and performs a last measurement, and the
mission ends.

The results are shown in Figure 8. The proposed MEBO approach not only outperforms
the other methods when comparing versus the traveled distance (Figure 8a) but also
when compared with the R2S versus the number of measurements performed (Figure 8b).
Additionally, the GA method seems to be saturating without even reaching the same R2S
as the other methods. Despite the PESMOC shows promising behavior during the first half
of the mission, the R2S starts to drop towards the end. The three different methods have
average negative R2S when the second measurement is performed; this is possible due to
the fact that the values obtained are not informative, and, therefore, the prior model does
not fit very well.

Noisy evaluations were also performed using a general iid noise with value ε2 = 0.01.
Equation (4) used this noisy evaluation for obtaining measurements. Since GPs are capable
of including noise in their equations, Equation (10), the MEBO system allows accounting
for this noise. The value of ε = 0.01, which is sufficiently large enough considering that
the objective functions has µi = 0; σi = 1.0. The results are shown in Figure 8c,d. The
MEBO system is better on the last steps when comparing the R2S against the distance
traveled. However, it is less robust as noisy measurements can affect the GPs. Nonetheless,
the MEBO approach behaves correctly and generally provides satisfactory results. When
comparing with noiseless simulations, an increasing size of the variance of the obtained
results is also observed. This is to be expected as noisy evaluations tend to spread the
obtained data. Furthermore, when comparing with the noiseless simulation, there is a
different total number of measurements performed; this is due to the dynamic length-scale
value that varies with the addition of noise, making the truncated distances different and
leading to a different number of total measurements.

(a)

Figure 8. Cont.
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(b)

(c)

(d)

Figure 8. Results for R2 score using three methods. The proposed MEBO approach (blue) is always
better when compared with the distance traveled or number of measurements. (a) R2S comparison
according to the distance traveled and noiseless observations. (b) R2S comparison according to the
number of noiseless measurements performed. (c) R2S comparison according to the distance traveled,
with noisy observations. (d) R2S comparison according to the number of noisy measurements per-
formed.

In Figure 9, the best result for scenario number 2 of Table 2 is shown. The first two maps
of each sub-figure were generated as the squared error of the generated surrogate model for
parameters “S5” and “S6”. The next two models correspond to the uncertainty maps of the
GPs. All the sub-figures have their own color-maps since the value difference are noticeable.
The first figure, Figure 9a, shows that after 22 measurements, the proposed MEBO approach
manages to perform measurements in the search space; thus, the monitoring is efficiently
completed and the maps are also reliable, as there is a low uncertainty distribution. The
PESMOC approach in Figure 9b also manages to monitor the simulated Ypacarai Lake
(with 21 measurements), but the uncertainty is relatively high on the shores of the lake
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because the AF tends to stay away from the shores. Finally, the GA method in Figure 9c
intensely monitors a path but fails to provide reliable GP models.

(a)

(b)

(c)
Figure 9. Best results for each method when the ASV measures two different parameters. (a) Squared
error and uncertainty maps for the proposed MEBO approach. (b) Squared error and uncertainty
maps for the PESMOC approach. (c) Squared error and uncertainty maps for GA monitoring.

Another important factor corresponds to the R2S variance of the multiple surrogate
models. While sets of different fitted surrogate models can provide an average R2S of
a certain value, the individual R2S for each surrogate model can be very different from
each other. In that sense, the MEBO approach should also minimize the variance of the
R2S of the different surrogate models. In Figure 10, the resulting average variance for
each method is shown with noiseless evaluations. Again, the proposed method shows
good values (low variance means less errors of the multiple surrogate models) in the final
measurements performed. Moreover, the proposed MEBO method generally decreases the
variance thorough the simulations; therefore, the method is better in terms of convergence.
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Figure 10. Average variance of R2Ss of multiple surrogate models using different methods. The more
the method generalizes the acquisition, the lower the variance.

In terms of computational time, it is necessary to define the computational time
complexity of the proposed method. The GP regressions define a computational complexity
of O(m3) [24,25], with m being the number of measurements performed. However, in this
setting, the number of GPs is n, so the computational complexity becomes O((nm)3). With
this complexity, the proposed method can easily be executed for a good size of parameters.
Specifically, for the Ypacarai Lake case study, with the performed simulations, the number
of measurements is an average of 22. Therefore, sets of few (<10) water quality parameters
can still be feasible. Figure 11 shows the results of the proposed approach through time
(measurements performed), as well as the computational time taken by the other methods.
Clearly, PESMOC takes more time (Average of 3.616 s), due to the fact that it has to
calculate twice the number of regressions. The MEBO method and the GA method take
less amount of time, with average times of 1.934 and 1.995 s, respectively. They do not
show an exponential behavior (mainly due to the implementation of the method using
scikit-optimize, which uses the Cholesky decomposition). Our proposed method takes less
time on average due to the fact that it performs less number of measurements, 3% better
than GA and 46.5% better than the PESMOC method.

Figure 11. Number of seconds for obtaining new performed measurements for different methods.
The variance in each column is large due to the fact that there are different number of surrogate
models that needs to be fitted on each set of simulations (Table 2).

5.5. Discussion

The main results obtained in this work are discussed below:

• The proposed MEBO system can efficiently select measurement locations online (i.e.,
with streaming data) so that multiple surrogate models can be obtained simultaneously.
It is notable how the system provides efficient sequential measuring locations taking
into account the available information.
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• We evaluated two different fusion methods of AF, namely, the decoupled evaluation
and the coupled evaluation. The latter proved to be better whenever the number of
measurements were sufficient for good R2S values.

• Through simulations, empirical foundations of optimal measurement performing for
efficient exploring were laid out. We propose that exploration of unknown functions
take into account the underlying hyper-parameters of GPs, such as the length scale.
The simulations showed that, similar to the Nyquist–Shannon sampling theorem, the
distance between measurement locations for surrogate model acquisition needd to
be shorter than half of a supposed frequency of similarity between different locations
(namely, length scale `).

• With an appropriate value of λ, comparisons with other methods were carried out.
Our proposed MEBO approach outperforms the other approaches in terms of R2S
obtained versus distance and number of measurements, being 2.43% better than
the PESMOC implementation and 10.82% better than the GA method. The MEBO
approach is also more robust than the other methods and provides better variance of
R2S values. Moreover, the proposed system also outperforms the others whenever
the data is noisy, obtaining a 17.23% improvement versus PESMOC and a 2.63%
versus GA.

• Computational efficiency comparisons also showed that the proposed method is better
than other BO approaches and similar to adapted water quality environmental ap-
proaches.

6. Conclusions and Future Works

In the present work, a multi-function estimation using the Bayesian optimization
approach for environmental monitoring with an ASV is presented. The system can obtain
multiple water quality parameter maps simultaneously using a sequential decision-making
technique based on Bayesian optimization. Since the objectives consist of minimizing the
error of these maps, the system uses acquisition functions that take into account the different
uncertainties of surrogate model maps, combines these AFs, and obtains measurement
locations. The obtained data are useful not only for monitoring but also for obtaining the
underlying real models of water quality parameters.

We tested two different fusions or combinations of AFs, the coupled and the decoupled
techniques. The obtained results show that the coupled method provided better surrogate
models using Gaussian processes with RBF as kernels. Furthermore, we used adaptations
of AFs and found that using a dynamic length of maximum distance allowed for travelling
(truncated method) provides a better way of exploring unknown terrains. Different λ values
were used, and the best results results were found using λ < 0.5. However, additional
analysis of this relationship, from a generic point of view, needs to be addressed. With
the best combination of hyper-parameters, kernel selection, etc., we compared our MEBO
approach to two other methods (PESMOC and GA applied to environmental monitoring)
and, in comparison, results show that our method is 2.43% and 10.82% better in terms of
R2 Score, robustness, and even computational time (17.23% and 2.63%). Future works will
include using constraint expressions for limiting the decision-making strategies and using
the MEBO system with a heterogeneous multi-robot system.
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