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1. Introduction

Artificial intelligence (AI) and its sister ambient intelligence (AmI) have in recent
years become one of the main contributors to the progress of digital society and human
civilization. For example, breakthroughs have been achieved in image processing [1–4]
natural language processing [5–7], and reinforcement learning [8,9]. All of this affects
practically every aspect of our lives, be it search engines such as Google, autonomous
vehicles, robots, or smart healthcare. The relation to electronics is particularly interesting.
While the exponential progress of electronics expressed through Moore’s Law [10] or Keck’s
Law enabled progress of information society and AI, the design of new chips already to
some extent depends on the successful application of AI methods, and will likely more so
in the future.

Several questions arise in relation to the above research and development fields. Are
there major possibilities for improvements by connecting SW, AI, and AmI methods directly
to the chips? Is it possible to integrate the flexibility of SW with the speed of electronic HW
and vastly improve the cognitive and computing powers? Will AmI benefit through this
progress, since it is intrinsically devoted to connecting devices and humans?

However, future is all but certain as the COVID-19 crisis demonstrates. It might be
that we are already facing a slow but steady decline of electronic components following
the fast exponential growth. In addition, AI is notoriously known for its wild ups and
downs similar to computer generations, where after a hype a major disappointment is
proclaimed worldwide when the human level intelligence seems to be as far as before [11].
However, like Phoenix, AI rises again and again, and unlike well-known physical hardware
limitations there is no major well-defined limitation for the AI progress. Indeed, it seems
that superintelligence and super ambient intelligence are just decades away [12]. They will
bring major technological and societal changes, hopefully for the best.

The objective of this Special Issue is to focus on the technical and overview contribution
for the AI, AmI, information society and electronics. In addition, papers deal with

• Mobile/wearable intelligence
• Robotics applied to smart tasks
• Applications of combined pervasive/ubiquitous/cognitive computing with AI
• Use of mobile, wireless, visual, and multi-modal sensor networks in intelligent systems
• Intelligent handling of privacy, security and trust

2. Artificial Intelligence and Ambient Intelligence

In the review paper “Relations between Electronics, Artificial Intelligence and Informa-
tion Society through Information Society Rules” [13], Matjaž Gams at al. present relations
between information society (IS), electronics and artificial intelligence mainly through
twenty-four IS laws. The laws constitute a novel collection, not presented in literature
before, describing major properties in the mentioned field, and the way they influence
progress. The laws mainly describe the exponential growth in a particular field such as
processing, storage or transmission capabilities with related references for further study.
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Each law bears the name of its inventor. Rules such as Moore’s Law are reasonably well
known even in general public, however, the majority of rules is not presented at university
education all over the world. There exist probably tens of similar rules, but the authors
picked the most relevant to comprehensibly present the fields. Not all rules are technical,
some present relations to production prices and human interaction while others capture
human cognitive issues. An analysis is devoted to time dependencies of the rules, and the
final part of the paper describes the progress, state-of the-art and potential further progress
of AI. AI is already occasionally exceeding human capabilities and will do so even more
in the future. In some areas where AI was presumed to be incapable of performing even
at a modest level, such as the production of art or programming software, AI is making
progress that can sometimes reflect true human skills by programs like GPT3.

The review paper is followed by seven research papers.
Jaakko Tervonen et al. [14] addressed the issue of human cognitive abilities under

pressure in the information society in “Ultra-Short Window Length and Feature Impor-
tance Analysis for Cognitive Load Detection from Wearable Sensors”. Cognitive load
detection is beneficial in several applications of human–computer interaction, for example
in autonomous driving. The paper concentrates on accurate and real-time bio signal-based
cognitive-load detection. More specifically, the paper addresses the problem of data seg-
mentation by analyzing optimal and minimal window length. A comparative analysis
is presented, in which ultra-short (30 s or less) window lengths were used for cognitive
load detection with a wrist-worn device, which provides heart rate, heart rate variability,
galvanic skin response, and skin temperature. These bio signal data are used to extract
features at six different window lengths. The extracted features are then used to train an
Extreme Gradient Boosting classifier to detect high vs. low cognitive load. The results indi-
cate that longer intervals in general achieve higher accuracy, with 25 s window performing
the best (67.6%). Lowest performance (60.0%) is obtained with 5 s window. The relation
between different bio signal features, the classification performance and the most useful
features was also investigated. The results with wearables seem as reliable as with other,
more expensive and obtrusive sensors.

The article “A One-Dimensional Non-Intrusive and Privacy-Preserving Identification
System for Households” by Tomaz Kompara et al. [15] introduces a novel indoor identifica-
tion system based on a network of laser sensors, each attached on top of the room entry.
There is a need for systems awareness of an inhabitant’s presence and identity in many
ambient-intelligence applications, including intelligent homes and cities, with two major
concerns: costs and preserving non-intrusiveness. The system should be seamless for the
user, preserving the user’s privacy as much as possible. The proposed solution is based on
a one-dimensional depth sensor, mounted on top of a doorway, facing towards the entrance
at an angle. This position allows acquiring the user’s body shape, i.e., silhouette, while
the user is crossing the doorway. The sensor data coupled with classical machine learning
methods are used for user-identification. The system is non-intrusive and preserves privacy.
This is achieved by omitting user-sensitive information such as activity, facial expression
or clothing. Additionally, the system does not use video or audio data. The system is based
on a statistical observation that a typical household is shared by only a small number of
physically quite different inhabitants. This hypothesis was tested on a nearly 4000-person,
publicly available database of anthropometric measurements. The analysis of the relation-
ships among accuracy, measured data and number of residents revealed quality accuracy
up to 10 inhabitants. In addition, the system was evaluated in a real-world scenario on 18
subjects entering a door under a variety of conditions (e.g., different objects and different
clothing). A 10-fold cross validation showed 98.4% accuracy for all subjects, and 99.1% for
groups of five subjects. These results indicate that a network of one-dimensional depth
sensors might be suitable for the identification task with purposes such as non-obtrusive
surveillance for security and ambient-intelligence comfort.

In “Device-Free Crowd Counting Using Multi-Link Wi-Fi CSI Descriptors in Doppler
Spectrum” [16], Ramon F. Brena et al., tasked themselves to successfully measure the
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quantity of people in a given space. This information is relevant in many applications,
ranging from marketing to safety. The approach is based on measuring crowd size with an
inexpensive Wi-Fi equipment, taking advantage of the fact that Wi-Fi signals get distorted
by people’s presence. Based on the previous experience and by identifying distortion Wi-Fi
patterns, the method estimates the number of people in a given space. Using machine
learning classifiers and channel state information (CSI), the method estimates the number
of people placed between a Wi-Fi transmitter and a receiver. The method achieved better
results than the compared single link or averaging approaches. The advantage comes from
taking into consideration individual channel information instead of taking the average
of the information of all channels. The experiments demonstrated improvements from
44% accuracy with one link to 99% with six links. Additionally, more details are presented
about how the addition of each of the multiple links of information influences the accuracy
of the prediction.

In “Constructing Emotional Machines: A Case of a Smartphone-Based Emotion Sys-
tem” by Hao-Chiang Koong Lin et al. [17], the emphasis is on an emotion system (emotion
machines) developed and deployed on smartphones. The objective of this study is to
explore factors that developers focus on when developing emotional machines. More
specifically, user attitudes toward emotional messages sent by machines and the effects of
emotion systems on user behavior were investigated in detail. A study was performed for
two weeks with 124 individuals using a smartphone for more than one year. The partici-
pants used the system at will and freely interacted with the system agent. The smartphones
generated 11,264 crucial notifications in total, among which 76% were viewed by the par-
ticipants and 68.1% enabled the participants to resolve unfavorable smartphone conditions
in a timely manner and allowed the system agent to provide users with positive emotional
feedback. The majority of the participants were pleased by the emotional messages, they
were taking into account the emotional messages and were convinced that the developed
system enabled their smartphone to exhibit emotions. Additionally, a study revealed that
an emotion system triggers certain patterns and behaviors in users, and the degree of
attention paid to emotional messages corresponds to the quality of the emotion system.

In “Gaining a Sense of Touch Object Stiffness Estimation Using a Soft Gripper and
Neural Networks” [18], Michal Bednarek et al. deal with soft gripping. The objective is
to manipulate an elastic, soft and unstructured object, vulnerable to deformations. To
perform such a task successfully, it is necessary to estimate the physical parameters of a
squeezed object to adjust the manipulation procedure. While humans perform the task
using a large volume of obtained knowledge starting from childhood, robots lack that
type of knowledge and must rely on other approaches. The chosen approach is based on
estimation of physical parameters using deep learning algorithms utilizing measurements
from direct interaction with objects using robotic grippers. The interaction of the gripper
with the object generates signals which are used to calculate object stiffness coefficient.
Physical experiments were executed by the Yale OpenHand soft gripper, based on readings
from inertial measurement units (IMUs) attached to the fingers of the gripper. The results
indicate that the approach can reliably estimate the parameters of the object thus enabling
smooth grasping and handling. The results enabled the creation of three datasets of IMU
readings gathered while squeezing the objects, two from the experiments in simulation
environment and one from real-life experiments. The dataset is publicly available to the
scientific community to enable further testing of new approaches in the growing field of
soft manipulation.

The paper “On Robustness of Multi-Modal Fusion—Robotics Perspective” [19] by
Michal Bednarek et al. deals with a robotic perception system that needs to successfully
integrate information from several data streams. Multi-modal fusion of heterogeneous
data streams is a crucial ability enabling noise-robustness. Related approaches often rely
on application-specific manual design of a multimodal-data fusion system to handle multi-
modal data. As the volume and dimensionality of sensory feedback increase in recent
years, it is beneficial to use other approaches. Multi-modal machine learning is one of the
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emerging fields for this task with focus mainly on vision and audio input. Robots, however,
often use haptic sensors when interacting with an environment. An example would be
gripping an object and handling it in a particular way. The experiments described in the
paper involved three tasks: (i) grasp outcome classification, (ii) texture recognition, and (iii)
multi-label classification of haptic adjectives based on haptic and visual data. Four learning-
based multi-modal fusion methods were compared on three publicly available datasets
containing haptic signals, images, and robots’ poses. The quality of each method was
analyzed, in terms of performing the task and on their robustness against data degradation.
The later issue is rarely considered in the research papers, whereas it is quite common in
real life, when a degradation of sensory feedback often occurs during robot interaction
with its environment, e.g., under various light conditions.

In “PUT-Hand—Hybrid Industrial and Biomimetic Gripper for Elastic Object Manip-
ulation” [20], Tomasz Mańkowski et al. present an approach for manipulation of elastic
objects using an anthropomorphic gripper based on off-the-shelf and 3D-printed compo-
nents. The gripper contains five elements and each of them contains three fully actuated
fingers for precise manipulation, and two tendon-driven digits for secure power grasping.
The gripper is equipped with an on-board controller circuit and firmware, enabling full
joint control and observation by resistive position and angle sensors in each joint. Addi-
tionally, the sensory system of the hand consists of tri-axial optical force sensors placed
on fully actuated fingers’ fingertips for reaction force measurement. A PC provides the
motor control using USB communication protocol providing a robot operating system in
the form of a driver. To analyze performance of the gripper, several experiments were
performed and are reported in the paper. The design files, source codes and results are
available online under CC BY-NC 4.0 and MIT licenses.

3. Conclusions

We would like to take this opportunity to thank all the authors for submitting papers
to this Special Issue. We also hope that the readers will find new and useful information
on artificial intelligence and ambient intelligence as this field continues to progress with
amazing speed.
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