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Abstract: Pedestrian detection is an essential task for computer vision and the automotive industry.
Complex systems like advanced driver-assistance systems are based on far-infrared data sensors,
used to detect pedestrians at nighttime, fog, rain, and direct sun situations. The robust pedestrian
detector should work in severe weather conditions. However, only a few datasets include some
examples of far-infrared images with distortions caused by atmospheric precipitation and dirt
covering sensor optics. This paper proposes the deep learning-based data augmentation technique
to enrich far-infrared images collected in good weather conditions by distortions, similar to those
caused by bad weather. The six most accurate and fast detectors (TinyV3, TinyL3, You Only Look
Once (YOLO)v3, YOLOv4, ResNet50, and ResNext50), performing faster than 15 FPS, were trained
on 207,001 annotations and tested on 156,345 annotations, not used for training. The proposed
data augmentation technique showed up to a 9.38 mean Average Precision (mAP) increase of
pedestrian detection with a maximum of 87.02 mAP (YOLOv4). Proposed in this paper detectors’
Head modifications based on a confidence heat-map gave an additional boost of precision for all six
detectors. The most accurate current detector, based on YOLOv4, reached up to 87.20 mAP during
our experimental tests.

Keywords: FIR pedestrian detection; image noise; data augmentation; bad weather; confidense
heat-map; ADAS; YOLO; ResNet50; ResNext50; DnCNN

1. Introduction

Each year, over 80,000 lives are tragically lost on roads, according to the World Health
Organization (WHO) yearly report [1]. European regional status report on road safety
shows that over 221 people are killed on roads every day in the European region, and
thousands more are injured or disabled, with long-lasting effects. According to the research,
30% of killed road users are pedestrians and cyclists. The main reasons for fatalities are
rapid urbanization and motorization, poor safety standards and infrastructure, lack of
strong enforcement, drivers being distracted or under the influence of drugs or alcohol, a
failure to wear seat belts or helmets, and lack of access to timely post-crash care. Speeding is
another critical element causing lack of time to avoid the accident, and early-stage detection
of collision could drastically minimize the chance of accident [2–4]. Lastly, severe weather
conditions like rain, snow, fog are visibility affecting factors causing drivers to adapt to the
conditions. However, the study of Das et al. [5] showed that fog or smoke is 3.24 times more
likely to result in a severe injury and is 1.53 times more likely to cause a multiple-vehicle
crash. A similar study, prepared by Sun et al. [6] analyzed rain influence for the diver and,
depending on road type, the risk to have an accident increase to 2.61 times.
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1.1. Existing Solutions for Driver Assistance

Autonomous vehicles may reach full automation (Level-5) only when they can perform
all driving functions under all conditions. It includes the ability to operate autonomously
in adverse weather conditions and at night. The far-infrared (FIR) thermal sensors can
deliver the sensing capabilities that Level-5 autonomy demands. It is expected, that night
vision system revenue growth worldwide between 2015 and 2025 will reach around 18% [7].
A number of related patents are registered by AdaSky Ltd. [8–11], Autoliv Development
and AB Flir Systems Inc. [12,13], to name a few. FIR based solutions are already available
for Level-1 and Level-2 vehicle automation levels. Usually, these are pedestrian detection
systems, combining visual spectrum, and FIR camera. Automakers like Audi, BMW, and
Daimler install Autoliv designed FLIR Pathfinder nighttime driving assistance. Such a
system is based on an FIR spectrum FLIR camera with a resolution of 324 × 256 and a frame
rate of 30 Hz [14]. There are not many details available about accuracy, performance, and
type of detector used, but in one publication [15] Autoliv engineers refer to a Cascade clas-
sifier. AdaSky uses convolutional recurrent neural networks for image pre-processing [11]
and additional detector for pedestrian, vehicle, and animal detection.

1.2. Infrared Imaging

Infrared imaging is an important topic in computer vision since radiation of these
electromagnetic waves could be detected by the sensors all day long. The most highly
available and cheapest cameras on the market are near-infrared (NIR) cameras. It is a visual
spectrum camera without an infrared spectrum filter. Such camera for pedestrian detection
systems could provide from 44 to 73 m visibility during the night [16]. However, NIR
vision’s primary drawbacks include their susceptibility to glare, blooming, and streaking
from active light sources such as oncoming traffic, traffic lights, streetlights, and reflective
objects such as road signs. Also, NIR illuminators may cause glare to other drivers using
the same type of system and may cause damage to eyes at short distances (<1 m) [17].

A short-wave infrared (SWIR) spectrum image sensors are rarely used in pedestrian
detection applications. Bertozzi et al. [18] tried to use SWIR cameras in poor visibility
conditions. Research has demonstrated that reduced visibility phenomena as haze and
fog feature quite different behaviors in the SWIR spectrum but still of no practical utility
for automotive applications. Whereas better visibility through haze may be achieved by
employing SWIR sensors, but it is a negligible benefit for pedestrian detection, hazing a
long-distance phenomenon, no improvements can be obtained in foggy conditions. Similar
results observed by [19] where authors shown that detection rates obtained are no better
than reported in the revised state-of-the-art works.

Mid-wave infrared (MWIR) is popular bandwidth used in military applications such
as guided missile technology. The 3000–5000 nm portion of MWIR band is the atmospheric
window in which the homing heads of passive IR ‘heat-seeking’ missiles are designed to
work, homing on to the IR signature of the target aircraft, typically the jet engine exhaust
plume [20]. There are not many published research works related to MWIR use for pedes-
trian detection use, probably because of specific military use. However, Nguyen et al. [21]
tried to set up a dual detector based on MWIR and long-wave infrared (LWIR) spectrum.
The work provided a very robust pedestrian tracking. However, none of the tested se-
quences provided ambient conditions such as fog, smoke, haze, and precipitation, all of
which are expected to impact the two bands differently.

LWIR cameras can provide a better fit for person detection, especially in complex
outdoor scenarios with masking background texture or lack of illumination according
to [22]. In general, the human appearance in LWIR images is not homogeneously bright
due to clothes and other effects. Instead, there are smooth gray-value transitions inside the
human blob and, in case of a merge also to surrounding bright background regions. Also,
according to Beeck et al. [23], LWIR images provide visible pedestrians in severe weather
conditions (e.g., fog, heavy rain).
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The far-infrared (FIR) cameras are mainly used for pedestrian detection because far-
infrared rays are less susceptible to moisture than rays of other wavelength bands [24].
Unlike NIR or visible spectrum cameras, FIR cameras are susceptible to disturbing light,
such as oncoming headlights.

1.3. Contribution

The main contributions of this paper can be summarized as follows:

1. A new approach of severe weather feature extraction and augmentation approach by
using the Denoising Convolutional Neural Network (DnCNN).

2. Results of pedestrian detection using state-of-the-art detectors testing in a wide variety
of situations by using two biggest FIR domain datasets.

3. A set of trained models for pedestrian detection, which shows the current state-of-
the-art performance and are ready for real-time applications.

2. State-of-the-Art

Modern object detectors proposed in literature may be categorized into two categories.
In Figure 1 we have represented a schematic diagram of one-stage and two-stage detectors.
The shared part between the two categories is the backbone and the feature map layer
parts. At this stage an object classification is usually implemented by following structures
like Cross Stage Partial Networks (CSPNet) [25], Darknet [26], ResNet [27], ResNeXt [28],
and VGG [29]. The Feature map layer is a bridge between the Backbone and Head where
different layers are interconnected and composed of several paths. Typically, at this stage,
researchers include different Feature Pyramid Networks [26,30–32] and Path Aggregation
Network [33] (PANet). The Head is the part where actual detection is taking place.

Figure 1. A schematic diagram for comparison of one-stage and two-stage object detectors.
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The state-of-the-art of one-stage object detectors includes several versions of You Only
Look Once (YOLO) [26,34–36], SSD [37], and RetinaNet [38]. The state-of-the-art two-stage
detectors are R-CNN [39], Faster R-CNN [40], and R-FCN [41].

Two criteria are usually used to evaluate object detectors’ performance: speed mea-
sured in frames per second (FPS) and accuracy evaluated by mean Average Precision
(mAP). It is a metric typically used for PASCAL challenges [42] where Average Precision
(AP) for one object class is calculated having an IoU threshold of 0.5 and the mAP is
calculated by averaging AP over all object classes. Typically, two-stage detectors are very
slow because of a complex feature extraction stage and complicated structure. In addition,
two-stage detector are able to process images reaching only from 0.1 to 5 FPS [39–41,43,44].
However, such detectors has comparatively excellent accuracy of up to 69 mAP [45,46] on
many popular benchmarking datasets (Caltech [47], KITTI [48], ImageNet [49], PASCAL
VOC [50], and MS COCO [51]). On the other hand, the single-stage detectors are trying
to trade accuracy in order to gain speed. YOLO and the minimized version called TINY
YOLO were one of the first detectors able to achieve real-time performance with up to
43 mAP, outperforming SSD by 14 mAP [36].

One of the challenges for both detector categories’ backbone and feature map layers is
the multi-scale object detection. To address this problem, researchers usually stack different
size layers on each other to extract features at different scales and join them later in a
feature map layer. For example, the YOLOv2 backbone has 19 layers, and YOLOv3 has
53 layers. Such modification has affected the detector’s accuracy on the MS COCO dataset
by giving a 9.8 mAP increase. However, the speed has decreased from 40 to 20 FPS [52].

For pedestrian detection, researchers try to combine visual spectrum with FIR domain
data [53–56] and apply YOLOv1, YOLOv2, YOLOv3, Faster R-CNN, R-FCN, or slightly
modified versions where accuracy is ranging from 66 to 79 mAP. An actual FIR domain
accuracy was tested by thermal camera manufacturer FLIR and SSD detector and reached
79.4 mAP [57]. A modified version of SSD was also tested [58] and reached from 87.68 to
97.5 mAP and YOLOv2 ranged from 58.5 to 80.5 mAP.

3. Materials and Methods

Numerous research showed that a key to successful machine learning-based image
object detection is a rich dataset with diverse labeled examples used for model training.
However, it is not easy to collect a dataset with many examples covering various situations
captured by the FIR image sensor. The first reason—severe weather conditions prevent
data collection due to rain and dirt which covers the sensor. The second reason—an image
from the sensor is captured after pre-processing, where the charge collected in the FIR
sensor matrix is equalized over the range to form an image. This pre-processing causes
different images achieved at various environmental temperatures, and the same objects
might look differently on a hot summer day and on cold winter day.

The annotation process is time-consuming and requires manual and repetitive work,
which usually introduces errors. Finally, data diversification does not cover all situations.
For these reasons, application-specific data augmentation could be an advantageous tech-
nique to generate additional unique samples. Data augmentation makes the dataset full of
different samples, more balanced, transferring annotation, and filling the dataset gaps.

3.1. Pedestrian Datasets

In order to have an accurate pedestrian detector, a rich of features dataset is needed.
Features could be described as situations where the image was captured for example during
severe rain. Also, it is important to have various pedestrians poses like walking people in
the group, crossing the street, or riding an bicycle.

There are up to ten datasets dedicated for pedestrian detection application in the FIR
domain: CVC-09 [59], CVC-14 [24], FLIR-ADAS [60], KAIST [53], KMU [55], LSIFIR [61],
OTCBVS [62], RISWIR [63], Terravic Motion IR [64], SCUT [65], and ZUT-FIR-ADAS
(ZUT) [66]. The biggest thermal dataset is SCUT, containing up to 211k frames, captured
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with 384 × 288 resolution sensor and having more than 448k pedestrian annotations col-
lected in Guangzhou, China. The dataset has a strictly predefined labeling protocol and
has six classes (walk person, squat person, ride person, people, person, and combined an-
notation person/people). The second biggest dataset is the ZUT dataset. It contains widest
variety of fine-grained annotated images (110k frames and 122k annotations), which were
captured in the four biggest European Union countries with a 320 × 240 resolution sensor
during severe weather conditions. The dataset also provides a synchronized Controller
Area Network (CAN bus) data, including driving speed, brake pedal status, and outside
temperature for further driver assistance system development.

However, the existing dataset does not cover all possible situations and data di-
versification could reveal possible deficiencies of detectors or rather improve existing
performance.

3.2. Fusion of the Two Biggest Datasets

To train a mathematical model of the detector, we decided to merge ZUT [66] and
SCUT [65] datasets into one. From ZUT, we took an 8bit+low pass version frames, contain-
ing only “Pedestrian”, “Occluded”, “Cyclists”, “Motorcyclist”, and “Scooterist” classes
and merged them into one class. Such aggregation of the classes was needed because the
SCUT FIR dataset includes only pedestrian-related classes (walk person, ride person, etc.).

The preparation of the SCUT dataset was performed in three stages. Firstly, we iterated
through all SCUT training dataset and removed frames containing annotations of people
groups and people annotations similar to the square shape. This step was needed because
ZUT annotation methodology differs from SCUT annotation methodology. Secondly, we
merged all classes into a single People class. Finally, we scaled down all the images to
resolution of 640 × 480 pixels since SCUT dataset images have interpolated resolution of
720 × 576 pixels.

The summary of the number of video frames and a total number of annotations
in selected datasets is given in Table 1. From ZUT dataset we extracted 69,455 frames
(88,624 annotations) for training and 40,103 frames (33,808 annotations) for testing. From the
SCUT dataset, we took 78,942 frames (118,377 annotations) for training and 76,381 frames
(122,537 annotations) for testing. To show the spatial distribution of image annotations
among these datasets, We have generated a heat map (see Figure 2) representing annotation
location and size in image. From this heat map, it is visible, that most annotations are
located on right side of the road (red and dark red color)—this is because China and Europe
(where these FIR images were collected) are left-side drive countries. Also, we illustrate
in Figure 2 that the spatial distribution of annotations remains similar in the train and
test subsets.

(a) SCUT training (b) ZUT training (c) SCUT testing (d) ZUT testing

Figure 2. Annotation distribution per dataset.

Table 1. Dataset used for the training sample distribution.

Dataset Training Frames Traininig
Annotations Testing Frames Testing

Annotations

ZUT 69,455 88,624 40,103 33,808
SCUT 78,942 118,377 76,381 122,537
Total 148,397 207,001 116,484 156,345
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3.3. Selection of the Detector Architecture

Six well-known convolutional neural network architectures were selected to investi-
gate the most accurate and real-time ready pedestrian detector: a conventional TinyV3 [26],
a TinyV3 with additional head (TinyL3 [67]), YOLOv3, YOLOv4, ResNet50 [27,68] and
Cross Stage Partial Network (CSPNet) [25] applied on ResNeXt50 [28,69]. Also, we made
the following modifications to the neural network configuration:

1. the input was set to 640 × 480;
2. annotations were auto-rotated by 5 degrees;
3. contrast and brightness left unchanged;
4. filter sizes were recalculated for single class use;
5. anchor ratios were recalculated using the k-means algorithm.

For selecting the best detector, we trained each detector until 300,000 steps by saving
training weights every 1k step. After the training, we measured mAP at IoU = 50 for each
saved step and the best result was used for further evaluation. The same methodology was
used after augmentation, but the training steps were increased to 500,000 steps.

For evaluation of the detector performance we decided to measure Frames Per Second
(FPS), mAP, average mAP, Average IoU, Re-call, Precision, and F1-score metrics. Also, we
calculated True Positive (TP), False Positive (FP), and False Negative (FN) rates, using 50%
of the IoU threshold. The FPS measurements were performed on Intel i7-8750H eighth-
generation processor and NVIDIA RTX2070 8 GB graphics card. Training and validation
were performed on Darknet Deep Neural Network (DNN) framework [70].

3.4. Dataset Augmentation

The manual collection of additional images in severe weather conditions is com-
plicated and time-consuming process, especially the annotating phase. We decided to
investigate a synthesis option for FIR images.

By investigating the spatial distribution of annotations on the left side is less intensive
on a heat map (see Figure 2), we flipped images and their annotations horizontally. After
mirroring the dataset images, the next step was to enrich a training dataset with severe
weather samples.

A typical way to generate a wider variety of samples would be by using a Generative
adversarial network (GAN). However, we have investigated an alternative approach.
Since we are aiming to generate a severe weather features into an image that is visually
close to noise and contains linear predefined features, we tried to invert the functionality
of denoising DNN. DnCNN [71], DRU-net [72], FDnCNN [73], and DDP [74] are well
known DNN-based denoisers, providing excellent Gaussian denoising, super-resolution
transformation capabilities. For this reason we took DnCNN architecture, given in Figure 3,
and performed a modification of training input function y = x + v to y = x, where x is an
input image and v is a random Gaussian noise.

To train a neural network dedicated to adding severe weather-related FIR image
distortions, we took naturally distorted FIR images from the ZUT dataset. These natural
images contain sequences of heavy rain, drizzle, and fog. We trained the slightly modified
DnCNN until the loss function stopped converging. We applied DnCNN to generate
distorted samples from images in the combined dataset, including the flipped ones.
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Figure 3. A structure diagram of the Denoising Convolutional Neural Network (DnCNN)-based
image denoiser.

The generated samples are visually similar to original situations where rain and dirt
distort captured image. In Figure 4 we have provided samples used for the training: in-
put images (Figure 4c,d), real images captures in heavy rain with wet and dirty sensor
(Figure 4a,b) and the output, modified by the DnCNN (Figure 4e,f). From the sample,
shown in Figure 4c, we see that the pedestrian is cold and there is not much thermal radia-
tion visible, but the corresponding sample in Figure 4e, generated by DnCNN, shows that
features of a cold pedestrian are kept. Similar behavior is noticed with warm pedestrians:
Figure 4d shows input image and Figure 4f shows the generated output.
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(a) Image during heavy rain (ZUT dataset) (b) Wet and dirty sensor (ZUT dataset)

(c) FIR image with a cold pedestrian (d) FIR image with a warm pedestrian

(e) Sample (c) modified with DnCNN (f) Sample (d) modified with DnCNN

Figure 4. Comparison of captured and samples, augmented with DnCNN.

4. Results

In Table 2 we have presented initial results on a fused dataset. The most accurate
detector, tested on initial dataset was YOLOv4. It reached 86.05 mAP and achieved
15.97 fps on average. The second highest precision was received by ResNet50, with reached
81.00 mAP and achieved 19.82 fps on average. Detector structures with a minimized Back-
bone, such as TinyL3, outperformed YOLOv3 (the predecessor of YOLOv4) by 0.34 mAP
and reached 43.1 fps on average. The fastest detector was based on TinyV3 architecture. It
worked at 55.57 fps on average. However, it was the least accurate and showed 73.25 mAP.
ResNext50 have not outperformed tested detectors in any metrics. Looking from the train-
ing overview, the fastest was ResNext50 where only 27,000 training steps were needed to
get decent accuracy. The longest time for the training took YOLOv3, where 209,000 steps
were needed.

Figure 4. Comparison of captured and samples, augmented with DnCNN.

4. Results

In Tables 2 and 3 we have presented initial results on a fused dataset. The most accu-
rate detector, tested on initial dataset was YOLOv4. It reached 86.05 mAP and achieved
15.97 FPS on average. The second highest precision was received by ResNet50, with
reached 81.00 mAP and achieved 19.82 FPS on average. Detector structures with a min-
imized Backbone, such as TinyL3, outperformed YOLOv3 (the predecessor of YOLOv4)
by 0.34 mAP and reached 43.1 FPS on average. The fastest detector was based on TinyV3
architecture. It worked at 55.57 FPS on average. However, it was the least accurate and
showed 73.25 mAP. ResNext50 did not outperform the other detectors in any metrics.
Looking from the training overview, the fastest was ResNext50 where only 27,000 training
steps were needed to get decent accuracy. The longest time for the training took YOLOv3,
where 209,000 steps were needed.
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Table 2. Comparison of investigated detectors’ efficiency using different scores.

Detector FPS mAP Aver. IoU Recall Precision F1-Score Step

TinyV3 55.57 73.25 66.57% 0.63 0.89 0.74 172,000
TinyL3 43.1 80.14 62.52% 0.71 0.84 0.77 31,000

YOLOv3 17.88 80.48 68.95% 0.70 0.91 0.78 209,000
YOLOv4 15.97 86.05 59.28% 0.84 0.78 0.81 170,000
ResNet50 19.82 81.00 62.34% 0.75 0.82 0.78 194,000
ResNext50 17.70 77.07 65.57% 0.65 0.86 0.74 27,000

Table 3. Comparison of recognition rates for investigated detectors.

Detector FPS mAP TP FP FN

TinyV3 55.57 73.25 86,009 11,109 49,604
TinyL3 43.1 80.14 96,265 18,311 39,348

YOLOv3 17.88 80.48 95,201 8978 40,412
YOLOv4 15.97 86.05 113,778 32,318 21,835
ResNet50 19.82 81.00 101,059 21,578 34,554

ResNext50 17.70 77.07 87,850 13,755 47,763

In the Table 4 we present detectors’ performance with the augmented dataset. The best
performance was observed by YOLOv4, reaching an accuracy of 87.02 mAP. The next most
accurate detector is ResNext50, which reached 86.45 mAP and gained the highest accuracy
boost with the augmented dataset (9.38 mAP). YOLOv3 is the third most accurate detector
(83.87 mAP), which outperformed ResNet50 by 1.15 mAP and TinyL3 by 1.89 mAP. The
ResNet50 is the fourth most accurate detector (82.72 mAP), which outperformed TinyL3
by 0.74 mAP. The TinyL3 detector showed 81.98 mAP and is more accurate than TinyV3
by 3.73 mAP. Finally, the training process revealed that ResNext50 was one of the first
detectors to achieve results the fastest. YOLOv3 took the longest time to train, where
416,000 steps were needed.

Table 4. Retrained results.

Detector mAP TP FP FN Aver. IoU Recall Precision F1-Score Step

TinyV3 78.22 98,158 19,810 37,455 61.98% 0.72 0.83 0.77 308,000
TinyL3 81.98 98,603 14,445 37,010 65.84% 0.73 0.87 0.79 307,000

YOLOv3 83.87 101,814 13,676 33,799 67.50% 0.78 0.88 0.81 416,000
YOLOv4 87.02 114,212 32,051 21,401 58.95% 0.84 0.78 0.81 300,000
ResNet50 82.72 103,827 20,451 31,786 63.89% 0.77 0.84 0.80 344,000

ResNext50 86.45 112,292 31,797 23,321 59.37% 0.83 0.78 0.80 54,000

Furthermore, a spatial detector confidence distribution of FP and FN, visible in
Figure 5, revealed locations where the detector is failing to identify pedestrians or rather
makes a false positive detection. This information could be a powerful way to dynamically
adjust the detector’s confidence threshold based on the image object location. For this
reason, we slightly modified the detector’s head to adjust the confidence threshold based
on combined FP and FN heatmaps visible in Figure 6, which we call confidence heat-map.
A decision to accept or reject detection is made by taking a detected pedestrian rectangle
center coordinates and compare probability in the confidence heat-map. If detected object
probability is lover than heat-map value—we skip detection, but if it is bigger or equal—we
accept detection. As the Table 5 shows we additionally gained from 0.18 to 1.02 mAP where
the most significant boost was observed by YOLOv3 detector.

Table 5. Retrained results with confidence heat-map.

Detector mAP

TinyV3 78.74
TinyL3 82.73

YOLOv3 84.91
YOLOv4 87.20
ResNet50 83.44

ResNext50 86.67
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accept or reject detection is made by taking a detected pedestrian rectangle center coordi-
nates and compare probability in the confidence heat-map. If detected object probability
is lover than heat-map value—we skip detection, but if it is bigger or equal—we accept
detection. As the Table 5 shows we additionally gained from 0.18 to 1.02 mAP where the
most significant boost was observed by YOLOv3 detector.

(a) YOLOv4 FN (b) SCUT train (c) YOLOv4 FP (d) YOLOv3 FP

(e) ResNet50 FN (f) ResNet50 FP (g) SCUT train (h) ResNext50 FN

(i) TinyV3 FN (j) TinyV3 FP (k) TinyL3 FP (l) TinyL3 FN

Figure 6. Spatial detector confidence distribution of FP and FN.Figure 5. Spatial detector confidence distribution of False Positive (FP) and False Negative (FN).

Figure 6. A confidence heatmap.

In addition, we were interested to see how well detectors perform in severe weather
conditions before augmentation and after. In Figure 7 we present how well detectors
recognize pedestrians and cyclist during the rain. As shown, YOLOv4, ResNet50 recognize
all pedestrians with a probability larger than 50%. However, ResNext50, YOLOv3, TinyV3,
and TinyL3 miss one or two pedestrians. Figure 8 shows the results after augmentation and
YOLOv4, TinyV3, ResNet50, and ResNext50 recognize all pedestrians where YOLOv3 and
TinyL3 miss only one pedestrian. Also after augmentation we see increased probabilities
for pedestrians, which identifies more accurate detectors.
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(a) YOLOv4 (b) YOLOv3

(c) TinyV3 (d) TinyL3

(e) ResNet50 (f) ResNext50

Figure 7. Comparison of detector performance before augmentation. Frame taken from ZUT dataset
during the rain.

In addition, we were interested to see how well detectors performing in severe weather
conditions before augmentation and after. In Figure 7 we have presented how well detectors
recognise pedestrians and cyclist during the rain. As it is visible, YOLOv4, ResNet50
recognise all pedestrians with probability larger than 50%. However,ResNext50, YOLOv3,
TinyV3 and TinyL3 miss one or two pedestrians. In Figure 8 it is presented the results after
augmentation and YOLOv4, TinyV3, ResNet50 and ResNext50 recognise all pedestrians
where YOLOv3 and TinyL3 miss only one pedestrian. Also after augmentation we see
increased probabilities for pedestrians, which identifies more accurate detectors.

Figure 7. Comparison of detector performance before augmentation. Frame taken from ZUT dataset
during the rain.
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(a) YOLOv4 (b) YOLOv3

(c) TinyV3 (d) TinyL3

(e) ResNet50 (f) ResNext50

Figure 8. Comparison of detector performance after augmentation. Frame taken from ZUT dataset
during the rain.

Table 4. Retrained results.

Detector mAP TP FP FN Aver. IoU Recall Precision F1-Score Step

TinyV3 78.22 98,158 19,810 37,455 61.98% 0.72 0.83 0.77 308,000
TinyL3 81.98 98,603 14,445 37,010 65.84% 0.73 0.87 0.79 307,000

YOLOv3 83.87 101,814 13,676 33,799 67.50% 0.78 0.88 0.81 416,000
YOLOv4 87.02 114,212 32,051 21,401 58.95% 0.84 0.78 0.81 300,000
ResNet50 82.72 103,827 20,451 31,786 63.89% 0.77 0.84 0.80 344,000

ResNext50 86.45 112,292 31,797 23,321 59.37% 0.83 0.78 0.80 54,000

Figure 8. Comparison of detector performance after augmentation. Frame taken from ZUT dataset
during the rain.

5. Discussion

The main idea behind this paper was to propose an efficient data augmentation
solution for simulating bad weather conditions that impact the image received from the
FIR sensor. Fortunately, our expectations that DnCNN will perform augmentations with
inverted functionality and cause experimental investigation results confirmed more efficient
detector training. The performed research also showed that DnCNN could help solve
histogram equalization tasks, brightness and contrast auto-tune, and contour segmentation,
essential for pedestrian detection in the FIR domain.

The analysis of annotations’ heat-map in our fused FIR dataset with an exceptional
amount of labeled frames and pedestrians gave us an idea to add a nonlinear decision
threshold for the detector. This comparatively simple upgrade of detectors increased mAP
for all tested state-of-the-art detectors (ready for real-time applications) without noticeable
processing speed degradation.
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The confidence heat-map could be extended for advanced driver-assistance system
(ADAS) application usage in situations when severe weather conditions occur. For example,
a dedicated confidence heat-map could be designed for rain, fog, frost, and snow conditions
and applied to minimize false detections. In this way, a single neural network could benefit
in multiple situations.

6. Conclusions

In the paper, we proposed a new field of DnCNN application. We demonstrated a
novel approach of severe weather feature extraction and augmentation using DnCNN.

In our investigations, we merged the two biggest FIR domain datasets, ZUT and SCUT,
into one. We analyzed the heat-maps taken from these datasets and employed them to
identify the properties of annotations. Heat-maps, estimated from the combined dataset,
revealed the detectors’ locations with errors. We have successfully applied this information
for detector accuracy investigations, allowing us to modify a detector Head to minimize a
false detection. Finally, accuracy increased by 9.38 mAP.

The DnCNN application for efficient severe weather feature extraction and existing
sample transformation proved its value in pedestrian detection using state-of-the-art de-
tectors, evaluated under wide variety of situations. The detectors’ training on merged
and augmented SCUT and ZUT datasets demonstrated high potential. A wider variety of
annotations resulted in a more robust detector capable of working in a broader range of
weather conditions and situations, providing up to 87.2 mAP, ready for real-time applica-
tions. From the results presented, it can be concluded that data synthesis could contribute
to other distortions generation, reflecting different weather conditions.
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