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Abstract: Human pose estimation finds its application in an extremely wide domain and is therefore
never pointless. We propose in this paper a new approach that, unlike any prior one that we are
aware of, bypasses the 2D keypoint detection step based on which the 3D pose is estimated, and
is thus pointless. Our motivation is rather straightforward: 2D keypoint detection is vulnerable to
occlusions and out-of-image absences, in which case the 2D errors propagate to 3D recovery and
deteriorate the results. To this end, we resort to explicitly estimating the human body regions of
interest (ROI) and their 3D orientations. Even if a portion of the human body, like the lower arm, is
partially absent, the predicted orientation vector pointing from the upper arm will take advantage
of the local image evidence and recover the 3D pose. This is achieved, specifically, by deforming a
skeleton-shaped puppet template to fit the estimated orientation vectors. Despite its simple nature,
the proposed approach yields truly robust and state-of-the-art results on several benchmarks and
in-the-wild data.

Keywords: 3D human pose estimation; part affinity field; robust; pointless

1. Introduction

Human pose estimation aims at recovering the coordinates of a human body captured
from one or multiple images, and therefore plays a vital role in an exceptionally broad
spectrum of applications. Thanks to the recent development of deep learning, 2D human
pose estimation has witnessed unprecedented advances [1-3]. Despite the encouraging
progress, estimating 3D poses from a single image, being an ill-posed problem by nature,
remains a challenging task.

Traditional 3D pose estimation methods depend on first detecting 2D body keypoints
from the input image, followed by mapping the 2D detections back to the 3D world. The
advantage of building 3D pose estimation basing on 2D keypoint detection is that the latter
is a mature technique with high generalization capacity, which means that if a 3D pose
estimation method only requires 2D keypoint locations as input, it would automatically
inherit the generalization capacity. However, depth information, which is crucial to 3D
pose estimation, is completely lost in the 2D keypoint estimation process, making the
subsequent 2D-to-3D regression ill-posed and thus ambiguous. Estimating the depth along
with 2D keypoint can solve this problem in theory, but this is a task of almost the same
level of difficulty with 3D pose estimation. Some methods [4-10] tried to estimates the
relative depth simultaneously with 2D keypoints. However these methods require camera
parameters in post-processing, which greatly limits the range of application. In addition,
the 2D keypoints may be in most cases robustly detected, only if the keypoints are present
in the image. Such prerequisite is unfortunately too strong for real-world application
scenarios, where heavy occlusions and out-of-image absences of body joints frequently
occur and thus collapse the 3D estimation results.

We propose in this paper an end-to-end pointless 3D pose estimation approach, by-
passing the 2D keypoint-detection step to avoid those problems mentioned above. We
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substitute the detection of the only intermittently visible 2D points, with the estimation of
regions of body parts, and the corresponding 2D, 3D orientations, which are represented
by part affinity fields (PAFs) [3], as shown in Figure 1c. The PAF encodes both region and
orientation information at the same time. This PAF-based body regions and orientations
learning makes our method robust to the cases with visually absent keypoints. The ra-
tionale behind is, the vectorized ROIs and orientations enable the 3D pose recovery by
utilizing the estimated directional vector oriented from a neighboring body part, even if
the part of interest is visually incomplete and hence the keypoints are absent.
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Figure 1. The pros and cons of 2D keypoint based pipelines (a,b) and the proposed pointless one (c).
Our method bypasses 2D pose estimation process, by directly estimating from images 1D, 2D and 3D
part affinity fields, which represent the regions, 2D and 3D orientations (encoded in color) of different
body regions, respectively. This fully part affinity fields (PAFs)-based estimation proves to be robust
to keypoint absence. In addition, the proposed new pipeline achieves outstanding generalization
ability to in-the-wild images with a simple semi-supervised approach. Our method does not require
any camera parameters, which means it can be easily applied to other testing images.

An overview of the proposed method is illustrated in Figure 2. Specifically, we use a
fully convolutional neural network (FCNN) to simultaneously predict 1D, 2D and 3D PAFs,
which represent the regions, 2D and 3D orientations (encoded in color) of different limbs,
respectively. To improve the generalization ability of the network, we train the FCNN on
the mixture of a 2D pose dataset MPII [11] and a 3D pose dataset Human3.6M [12] in a
semi-supervised approach. Once the PAFs are predicted by the FCNN, we first refine the
3D PAFs to remove the noises in it. The estimated PAFs are then aggregated to form the 3D
orientation vectors over the human body, which are further aligned with a skeleton-shaped
puppet template to produce the final 3D pose estimation result. The puppet adopted here
features limbs of fixed sizes and adjustable body joints and is, in this process, deformed
in a way that exactly fits the estimated 3D orientation vectors. The reason we choose to
freeze the limb lengths of the puppet lies in that, the absolute length estimation from a
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single color image is in many cases unreliable, given that persons of different heights could
have identical 2D projections. It is worth noting that all the post-processing steps are
differentiable, which makes end-to-end training possible.

Despite its very simple nature, the proposed approach yields truly encouraging
performances on lab-monitored benchmarks as well as in-the-wild images where large
portions of human bodies are absent in the scene. To gain deeper insight into the behavior
of the approach, we also introduce a new orientation-based evaluation metric for 3D
pose estimation, which explicitly accounts for the angle between the estimated and the
ground truth 3D limb vectors. Under both the keypoint- and orientation-based metrics,
the proposed approach accomplishes state-of-the-art 3D pose estimation results.

3D Orientation
Injection

(a) Input Image (b) Predicted PAFs (c) Refined 3D PAFs (d) The Human Model (e) 3D Pose Output

Figure 2. The pipeline of our method. The system takes a color image (a) as input and simultaneously predicts 1D/2D/3D
PAFs (b). Then it refines the 3D PAFs by denoising and 2D /3D PAFs ensemble (c) (see Section 3.3.1). Finally, the 3D
directional vectors are extracted from the refined 3D PAFs and injected into a skeleton-shaped puppet (d) (see Section 3.3.2)
to produce the 3D pose prediction (e).

In summary, our contribution is an end-to-end pointless approach towards the never-
pointless 3D human pose estimation. Our method bypasses the error-prone 2D keypoint
detection step by substituting it with an orientation-based estimation to recover the 3D
orientations of a subject, and then deforms a fixed-size puppet template to fit the predicted
directional vectors so as to produce final 3D pose estimation. Such orientation-based
estimations allows us to in many cases remedy the partially absent body parts that occur
frequently in real-world scenarios. Experiments on several benchmarks and in-the-wild
data show that the proposed approach, despite simple, achieves state-of-the-art results in
terms of both the conventional keypoint-based and the newly proposed orientation-based
evaluation metrics.

2. Related Work

In this section, we briefly review here approaches related to ours. We categorize
them into two overlapping groups—methods relying on 2D keypoint detection and those
explicitly using part affinity fields, where all methods in the latter group, in fact, utilize 2D
keypoint detections as well.

2.1. 2D Keypoint Estimation Based Methods

There are two most widely used pipelines as shown in Figure 1a,b. Methods that
follow pipeline (a) divide the 3D pose estimation task into two steps, 2D pose estimation
and 3D pose inference. These methods comprise a 2D keypoint detector and a subsequent
optimization [13-15] or regression [16-26] step to estimate 3D pose. Early efforts on 3D pose
estimation used dictionary learning, with the assumption that a 3D pose can be represented
by a linear combination of a set of base poses [13-15]. Recently, many researchers have
begun to use neural networks for 3D pose regression. For instance, Moreno-Noguer [21]
used a Convolutional Neural Network (CNN) to regress the 3D joints distance matrices
instead of 3D poses. Sun et al. [19] proposed to regress the bones instead of joints by
re-parameterizing the pose presentation. Lee et al. [24] proposed a long short-term memory
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(LSTM) architecture to reconstruct 3D depth from the centroid to edge joints through
learning the joint inter-dependencies. Chen et al. [27] proposed improve 3D human pose
estimation by synthesizing human images [28,29]. Hossain et al. [30] designed an LSTM-
based sequence-to-sequence network to estimates a sequence of 3D poses from a sequence
of 2D poses. Given fact that 2D-to-3D inference is an ill-posed problem, methods along this
line are prone to ambiguities in the 2D-to-3D regression at the second stage of this pipeline,
if no addition image evidences are utilized.

The major difference between pipeline (a) and (b) is that the latter learns addition im-
age evidences, like depths on joints, to help the 3D inference. Pons-Moll et al. [31] proposed
an extensive set of posebits representing the boolean geometric relationships between
body parts, and designed an algorithm to select useful posebits for 3D pose inference.
Nie et al. [22] used the 2D keypoints and the correpsonding local image patches to predict
the depth of human joints. Zhou et al. [32] proposed to learn the 2D keypoint locations
and the corresponding depth using a weakly supervised approach. Pavlakos et al. [33]
predicted the depth of human joints using manually annotated ordinal depth supervision
by a ranking loss. Wang et al. [34] defined the pose attributes as intermediate image cues to
reduce the ambiguity in lifting 2D pose into 3D space. These methods requires that all the
human keypoints are present in the image, which is unfortunately too strong for real-world
application scenarios, where out-of-image absences of body joints frequently occur and
thus collapse the 3D estimation results.

2.2. Part Affinity Fields Based Methods

The part affinity field is originally proposed by Cao et al. [3]. In their work, 2D
PAFs were used to help linking the kepoints on a person in the multi-person 2D pose
detection problem. After that, several early attempts have been made to use 3D PAFs
for 3D pose estimation. Luo et al. [35] and Xiang et al. [36] followed Cao et al. ‘s idea to
predict 2D keypoint heatmaps and 3D PAFs. In their method, the 3D orientations were
extracted according to the predicted 2D keypoint locations. Unfortunately, this step is non-
differentiable making end-to-end training infeasible. In Liu et al. ’s work [37], 3D PAFs is
used as additional image evidence to improve the 2D-to-3D regression. All these methods
actually still rely heavily on 2D keypoint detections. As a result, these methods actually
are still fragile to keypoints absences.

2.3. Our Approach

Our pointless 3D pose estimation method substitutes the detection of the only inter-
mittently visible 2D points, with the estimation of 1D PAFs, i.e., the regions of limbs. This
replacement not only makes our method robust to the cases with visually absent keypoints,
but also provides us a simple and differentiable way to extract 3D vectors from PAFs,
making end-to-end training possible. Lastly, we introduce an auxiliary task, the 2D PAFs
estimation, which enables us to train the network on 2D pose dataset for better general-
ization ability. Compared to prior PAF-based methods, our method is end-to-end, robust
to partial absence of body parts from the image, and achieves excellent generalization
capacity to in-the-wild images.

3. Method

Our method takes as input a 256 x 256 color image and predicts three groups of part
affinity fields simultaneously. Then the predicted 3D PAFs, which could be noisy, are
refined by the 1D and 2D PAFs through a parameter-free process. The 3D limb orientations
are obtained by averaging and unitizing each PAF. Then we injected the 3D orientations
into a puppet with fixed limb lengths to obtain the final 3D pose output. The first step,
predicting the PAFs, is the only step with learnable parameters in our method. All the
remaining steps are differentiable, enabling us to end-to-end train the whole model. In the
following sections, we explain these steps in detail.
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3.1. Consistent 1D/2D/3D PAFs Representations

Part affinity field is designed to represent vectorised information such as directional
vectors, in a specific region of interest. In this paper, the 1D PAF is taken to be a binary map
that indicates

whether each pixel is in the region of interest or not. In human pose estimation,
the exact human limb region is unavailable, so we use two adjacent keypoints and a
fixed width d to define a rectangular region of a limb. When the Euclidean distance of
two adjacent keypoint is smaller than 2d, we define the region as a circle centerd at the
mid-point of the two keypoints with a radius of r = 1/2d, to avoid a too small region.
Figure 3 shows two example ROIs. Here a limb is defined as the body part that connects
two adjacent keypoints.

Figure 3. Regions of Interest (ROI) examples.

For 2D and 3D PAF the region is defined the same as 1D PAF. The only difference is
that in an N-D PAF, each pixel represents an N-D vector. In this paper, we use PAFs to
represent 2D and 3D limb directions, so the vectors in PAFs are unitized.

In prior works that adopt PAFs [3,35-37], a two-branch architecture is used to learn
two inconsistent sub-tasks, PAFs and 2D keypoint heatmaps estimation. This inconsistency
leads to a a non-differentiable post-processing, so that end-to-end training is infeasible.
However, the end-to-end training in 3D pose estimation is especially important in orienta-
tion based methods [19], because we need a long term objective to achieve an overall better
pose estimation, otherwise the errors in each part will accumulate and result in large error
to the far end body joints.

In this paper, we propose a three-branch architecture to learn three different but
consistent sub-tasks, 1D, 2D and 3D PAFs estimation, respectively. This design not only
simplifies the post-processing, but also make it differentiable, so that our method is end-
to-end. In addition, in previous works, the networks have to learn two totally different
representations, i.e., Gaussian kernel based keypoint heatmaps and limb region based
PAFs. In our method, the three sub-tasks are more consistent than the previous keypoint
based design, because they are all limb region based and orientation based. The consistency
among the three branches makes it easier for the network to learn domain-independent
features, which is crucial to improving the generalization capacity of the network.

3.2. Simultaneous 1D/2D/3D PAFs Learning

Figure 4 illustrates the core architecture of our FCNN. In stage T' = ¢, the feature map F;
is first fed into an hourglass [2] block, then it flows through three branches simultaneously,
to predict the 1D/2D/3D PAFs . After that, all the PAFs are transformed into features maps
with the same number of channels to F; by 1 x 1 convolutional layers. Then the feature
maps, including F;, are added up to generate a new one F; 1 as the input for the next stage.
At training phase, each stage produces a group of PAFs and a 3D pose. At inference phase,
only the output of the last stage are used as the final predictions.
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Figure 4. The architecture of our fully convolutional neural network (FCNN) for simultaneous
1D/2D/3D PAFs learning.

3.2.1. Semi-Supervised 3D PAFs Training Strategy

Following many previous works [18,21,24,32-34,38,39], we use a 2D pose dataset
MPII [11] and a 3D pose dataset Human3.6M [12] to train the network. In training phase,
each mini-batch is randomly sampled from the two datasets with equal probability.

The 1D and 2D branches are fully-supervised, because both datasets provide 2D
annotations, from which we can generate the ground truth to fully supervise the learning
of the 1D and 2D PAFs. For the 3D branch, on average only half of the training examples,
that is, those come from the 3D dataset, have 3D PAFs supervision, so it is semi-supervised.
We use the average gradient of the 3D training examples in each mini-batch to approximate
the gradient of the whole mini-batch. When there are no 3D examples in a mini-batch,
we simply set the gradients of parameters in this branch to zeros so that the weights in it
are not updated in this single backward. In other words, the 3D branch only sees training
examples from Human3.6M. Surprisingly, the automatically learnt features F;, which is
shared by the three branches, is domain-independent enough. As a result, despite the 3D
branch gets supervisions obtained from a monitored indoor environment, the network
generalizes pretty well to in-the-wild images.

It is worth noting that our method achieves a better generalization ability (See the
results in Section 4.4), without applying any weakly supervised loss or GAN loss to the 2D
training examples [32,33,38,39]. This greatly simplifies the training process and makes it
easier to re-implement.

3.2.2. The Loss Functions

In this paper, the learning of 1D PAFs is taken to be a pixel-wise binary classification
problem. The value at each pixel in the 1D PAF indicates the probability of this pixel lies
inside the region of interest. In other words, the predicted 1D PAFs are also the limb region
confidence maps, which can simplify the post-processing and make it differentiable. We
use the Binary Cross Entropy (BCE) loss for 1D PAFs learning as follows:

£y =YY lgulogpy + (1 - ;) log(1 = p},)], (1)

where pi, and g/, represents the predicted and ground truth probability at pixel 7 in training
example i.

The 2D /3D PAF learning is taken to be a regression problem. As we mentioned above,
the 2D /3D PAFs represent both limb regions and 2D /3D limb orientations. In orientation
learning based 3D pose estimation, the major target is to learn the directions, rather than
the regions, which means a PAF with correct orientation estimation but inaccurate region
detection is absolutely acceptable. However, the Mean Squared Error (MSE) loss, used by
previous PAF-related works, will give a large penalty to these acceptable prediction cases.
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To this end, we propose a boundary-insensitive loss function for N-D PAF learning.
The basic idea is that, we impose small weights to the pixels where the region prediction is
incorrect, to reduce the impact of wrong region prediction. This is achieved by utilising
the 1D PAF predictions, which represent region prediction confidence maps, to define a
pixel-wise weight map as follows:

_ [n(p}y+4) ~In2—phy —qi))?

w(pl, qy) =1— (1—wo)e 2?2 ) @)

where wy is the lower bound of weights, ¢ is the standard deviation of the Gaussian
distribution. We set wy = 0.2 in our experiments. The function above can be taken as a
soft exclusive nor (ex-NOR, or XNOR) function. That is, an output weight of 1 is obtained
only if both of its inputs are at the same probability level, either high or low. Otherwise,
if they are at different probability level, the weight approaches to the lower bound wy.
The ground truth probability g/, is binarized so that the case that prediction is correct but
weight is small can never happen. Then the proposed boundary-insensitive loss is an MSE
loss masked with the weight we define above:

Ly =Y Y w(pn )%, — yull2, 3)
i n

where N = 2,3, xil and yil represents the predicted and ground truth N-D directions at
pixel n in training example i. The proposed loss function gives a small penalty to a pixel if
its location prediction is wrong, no matter its direction prediction is correct or not, while
it still gives a large penalty to a pixel if its location prediction is correct but the direction
prediction is wrong. The lower bound w can avoid the loss function £}, being trivially
minimized by taking p = 1 — q. We want to make it clear that, the proposed boundary-
insensitive loss does not boost the 3D pose prediction accuracy, but it could suppress the
oscillation in training and thus speed up the convergence.

3.3. Differentiable Post-Processing

In this section, we introduce how we extract the 3D directions from the noisy PAF
predictions in a differentiable way. Our post-processing consists of two parameter-free
steps, 3D PAF refinement and 3D orientation injection.

3.3.1. 3D PAF Refinement

The 3D PAF refinement is further divided into two steps—denoising and 2D/3D PAF
ensemble. As shown in Figure 2b, the predicted 1D and 2D PAFs are usually nice and clean,
but the 3D PAFs can be very noisy, typically in pixels beyond the body region. This is what
expected, since the 3D branch has never been trained with any in-the-wild images with
3D supervisions. We use the much cleaner 1D PAF predictions, to filter out the noise in
the 3D PAFs by a masking operation. This is the one of our motivations to design the 1D
PAF branch.

As we mentioned in Section 3.1, the directional vector represented by first two dimen-
sions of the 3D PAFs are approximately parallel with that of the 2D PAFs, which can be
used to further refine the 3D PAFs. Specifically, we resize each 2D limb directional vector
so that its L2 norm equals that of the first two dimensions of the corresponding 3D PAFs.
Then we replace the first two dimensions of the 3D directional vector with the average of
the two 2D vectors. The rationale behind this is that we take the 2D PAFs and the first two
dimensions of the 3D PAFs as predictions produced by two separate models. The final
prediction is the ensemble of them, which often improves the prediction by voting.

3.3.2. 3D Orientation Injection

As discussed in Section 1, our method uses a skeleton-shaped puppet for producing
the 3D pose output. The process of combining the predicted 3D directional vectors and the
puppet makes a real 3D pose. We term this process as 3D orientation injection.
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The human model in this paper is an articulated object that consists of several limbs
and joints. A limb is a segment of fixed length, and a joint is the end point of a limb.
Limbs can rotate among a conjunct joint (See Figure 2d). In this way, the human skeleton
forms a tree structure. Usually the root of the tree is taken to be the pelvis, and is fixed
at the origin. Following Human3.6M [12], the human model consists of 17 joints with
16 limbs. A limb has 0 degree of freedom (DOF) as its length is fixed, and a joint has 2
DOFs except for the root. So that there are 32 DOFs in our skeleton-shaped human model.
Unlike Zhou et al. [40] that use a CNN to predict the rotation angle of joints, we estimate
the 3D orientation directly. From the view of limb orientations, each limb 3D direction
vector has 2 DOFs, which sums up to 32 DOFs as well.

3D orientation injection is a step that combines the predicted 3D limb orientations
with the human model to generate the final 3D pose estimation. This process works like
twisting the limbs of the human model to fit the predicted 3D direction vectors. For an
arbitrary child node k in the skeleton tree, its 3D location prediction Y} is determined by its
parent node’s 3D location prediction Xy, the predicted orientation vy, and the limb length
L, in a recursive way as follows:

Y = X + Livg, 4)

where we have Xy = 0. Ls are constant numbers, which are obtained by calculating the
average of the limb lengths of subject S1, S6, S6, S7 and S8 in the training set of Human3.6M.
This process stops when the locations of all the leaf nodes are determined.

During 3D orientation injection, the orientation errors do not accumulate, because
the 3D direction vectors remain unchanged in this process. This is shown in Equation (4),
where the 3D direction vector vy is only scaled by a factor of L and translated by X}, both
of which do not alter the direction of the vector.

3.4. End-to-End training with 3D Pose Loss

In Section 3.2, we discussed that the 3D PAFs are learnt by minimizing the loss
function in Equation (3). In this loss function, each 3D limb orientation is independently
estimated. Although limb orientation errors do not accumulate, joint location errors still
could propagate along the skeleton tree and possibly accumulate into large errors for joints
at the leaf node. For example, a location shift in the left shoulder would lead to the same
amount of location shift to both left elbow and left wrist.

To solve this problem, long-term objectives should be considered so that the 3D
orientations are jointly optimized. In our method, since all the steps are designed to be
differentiable, we can directly use the 3D pose loss as a long-term objective and train the
model end-to-end. Here we use L1 loss for 3D pose:

L:pose = ZZ ‘Yli - Y]H/ ®)
i k

where Y,i and Y,é represents the predicted and GT 3D locations for joint k in training
example i." In experiment, we find that end-to-end training can speed up the convergence,
and improve the accuracy of estimation as well. In all, for a T stage model, the overall loss
function is:

E:

1=

(M ‘Cﬁ + )\Z‘Cé + )\355 + ‘C}t:)ose)/ (6)
t

1

where A1, A; and A3 control the relative importance of each objective. We set A; = 0.1,
Ay =1and A3 = 1in our experiments.

4. Experiments

We provide here details on our experiments, including datasets and protocols used,
training details, quantitative and qualitative results, robust analysis and ablation studies.
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4.1. Datasets and Protocols

We evaluate our method on the following three popular human pose benchmarks.

Human3.6M [12] is a large-scale indoor 3D human pose dataset that comprises 3.6 mil-
lion images and the corresponding 2D pose and 3D pose annotations. It features 7 subjects
performing 15 everyday activities. We follow the standard protocol on Human3.6M to use
S1, S5, S6, S7 and S8 for training, and use S9 and S11 for evaluation. Following [4,13,32,33],
we down-sampled the original videos from 50 fps to 10 fps to remove redundancy in
both training and evaluation.We report qualitative results on this dataset in terms of three
evaluation metrics, i.e., the mean per joint position error (MPJPE), MPJPE after Procrustes
alignment with the ground truth (PA-MPJPE), and the mean per limb orientation error
(MPLORE), a metric for evaluating the 3D orientation prediction error as follows:
1 X]
MPLORE = I Zarccos(m “y1), 7)
1

where x; and y; are the predicted and GT direction vector of a limb /, respectively. L is the
number of limbs.

MPII [11] is the most widely used benchmark for 2D human pose estimation. It
contains 25K in-the-wild images with 2D annotations but no 3D ground truth. As a result,
direct image-to-3D training is not a practical option with this dataset. We adopt this dataset
for the learning of 1D and 2D PAFs, and also use it for the qualitative evaluation of our 3D
pose estimation.

MPI-INE-3DHP [41] is a smaller 3D pose dataset constructed by the Mocap system
with both constrained indoor scenes and complex outdoor scenes. We only use the test
split of this dataset to evaluate the generalization capacity of our method quantitatively,
as done in many prior works.

4.2. Implementation Details

The training of our network is handy and stable. We use a pre-trained Stacked Hour-
glass [2] model to initialize the common modules of our network and the stacked hourglass,
including the first 7 x 7 convolutional layer, the following 3 residual blocks, and the
hourglass sub-modules (see Figure 4). Then the network is trained for 40 epochs with
RMSprop. The initial learning rate is 5 x 10~* and decayed by 0.25 at the epoch of 20
and 30, respectively. The training examples are randomly sampled from Human3.6M and
MPII with equal probability. Augmentations of random scale (1 + 0.25) and random color
jitter (1 £ 0.2), random rotation (£30°, p = 0.6) and random horizontal flipping (p = 0.5)
are used for both datasets. For fair comparison, we do not use multiple crops or flipping
test for possible better performance score. The whole training procedure takes about 20 h
on a single Tesla V100 GPU. The inference speed is about 70fps with a batch size of 6 on
the same architecture.

4.3. Quantitative Results on Human3.6M

We first evaluate our method on Human3.6M using the metric MPJPE and PA-MPJPE
in order to compare our method with state-of-the-art methods. The results are shown in
Table 1. Our method slightly outperforms the state-of-the-art methods in terms of the
average MPJPE and PA-MPJPE over all the 15 activities, even though our method is not
designed in a way that optimizes these metrics.
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Table 1. Detailed results on Human3.6M under the metrics of MPJPE and PA-MPJPE . Methods marked with * use ground
truth camera parameters in post-processing. The results of all approaches are taken from the original papers, except for [5],

which is taken from [42]. We also provide the results evaluated with ground truth limb lengths. Best results are marked

in bold.
MPJPE Direct. Discuss Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT Avg.
Tekin et al. [43] 54.2 614 602 612 794 783 631 8l6 701 1073 693 703 743 518 743 697
Zhou et al. [32] 54.8 607 582 714 620 655 538 556 752 1116 642 661 514 632 553 649
Martinez et al. [18] 51.8 562 581 590 695 784 552 581 740 946 623 591 651 495 524 629
Sun et al. [19] 52.8 548 542 543 618 672 531 536 717 867 615 534 616 471 534 59.1
Fang et al. [23] 50.1 543 570 571 66.6 733 534 557 728 886 603 577 627 475 506 604
Yang et al. [38] 515 589 504 570 621 654 498 527 692 852 574 584 @ 43.6 60.1 477 586
Pavlakos et al. [33] 48.5 544 544 520 594 653 499 529 658 711 566 529 609 447 478 562
Lee et al. [24] 43.8 51.7 488 531 522 749 527 446 569 743 567 664 684 475 456 558
Dabral et al. [39] 46.9 53.8 47.0 528 569 636 452 482 680 940 557 51.6 554 403 443 555
Chen et al. [42] 45.9 535 501 532 615 728 507 494 684 821 586 539 576 411 460 569
Sun et al. [5]* 46.5 481 499 511 473 432 459 570 776 479 549 469 371 498 412 498
Chen et al. [42]* 41.1 442 449 459 465 393 416 548 732 462 487 421 358 46.6 385 463
Ours (T = 2) 51.2 565 540 571 594 633 511 533 652 745 574 546 598 527 479 572
Ours (T = 4) 48.6 545 531 550 572 608 479 530 642 749 568 511 564 491 452 552
Ours (GT Length) 43.6 50.3 502 507 541 588 434 495 618 729 542 475 539 453 419 519
PA-MPJPE Direct. Discuss Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT Avg.
Moreno-Noguer [21]  66.1 617 845 737 652 672 609 673 1035 746 926 696 715 780 732 740
Martinez et al. [18] 39.5 432 464 470 510 560 414 406 565 594 492 450 495 380 431 477
Fang et al. [23] 38.2 417 437 449 485 553 402 382 545 644 472 443 473 367 417 457
Pavlakos et al. [33] 34.7 398 418 386 425 475 380 366 507 568 426 39.6 439 321 365 418
Lee et al. [24] 38.0 391 463 444 490 551 402 411 532 689 510 391 564 339 385 462
Dabral et al. [39] 32.8 368 425 385 424 490 354 343 536 662 465 341 423 300 397 422
Ours (T = 2) 37.3 403 399 412 434 437 373 387 507 569 429 379 437 387 351 418
Ours (T = 4) 36.2 394 391 401 431 436 351 386 507 572 435 365 418 363 339 409
Ours (GT Length) 33.7 375 38.0 377 420 424 327 371 504 564 425 346 406 337 311 394

the 3D pose estimation performance in the setting of limb lengths decoupled.

Since objects with totally different sizes could project into similar 2D images, the ab-
solute length estimation from a single color image is usually not reliable. To this end, we
propose the mean per limb orientation error (MPLORE), defined in Equation (7), to evaluate

The MPLORE results are shown in Table 2. We compare our method with three
state-of-the-art methods [18,32,34]. Our method achieves the best results on 14 of the 15
activities, and the best averaged result. The MPLORE results indicate that our method
predicts much better 3D orientations of limbs.

Table 2. Comparison with state of the arts on Human3.6M in terms of MPLORE (lower the better). The best score is marked
in bold. We achieve the best results across all the activities except for Walking, which is only slightly worse than [34].

MPLORE (°) Direct. Discuss Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT Avg.
Zhou et al. [32] 11.72 13.19 1156 1273 1399 1445 1136 1205 16.05 1586 13.89 1221 1344 10.71 10.63 12.92
Martinez et al. [18]  8.73 9.29 896 920 1085 1186 927 870 1210 1514 1020 998 1082 810 897 10.14
Wang et al. [34] 8.64 8.94 888 9.08 1038 1090 9.01 831 1143 11.84 10.04 928 1014 772 874 9.56
Ours 8.27 8.84 8.65 8.68 9.69 998 813 8.03 10.66 10.34 9.44 8.59 9.63 7.76 833  9.00

4.4. Quantitative Results on MPI-INF-3DHP

This dataset is collected in indoor and outdoor with a multi-camera marker-less
MoCap system. Because of this, the ground truth 3D annotations have some noise. To
quantitatively show the generalization capacity of our method, we evaluate the 3D exten-
sion Percentage of Correct Keypoints (3DPCK) and Area Under Curve (AUC) score on
the MPI-INF-3DHP without training with this dataset, as done in many previous works.
The results are shown in Table 3. Our method achieves the second best score in terms of
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Image

3DPCK, and the best score in terms of AUC, demonstrating its good generalization capacity
to unseen testing images.

Table 3. 3DPCK and AUC on the MPI-INF-3DHP dataset. Higher is better. The results for all
approaches are taken from the original papers. ° represents our method without the auxiliary 2D
orientation task, and r30 and 90 represent using random rotation augmentation of 30 and 90 degrees
in the training. No training data from this dataset have been used. Our method achieves the best
score in terms of AUC, and second best score in terms of 3DPCK.

[41] [32] 1[33] 1[38] 1[44] [42] [35] [45] Ours® Ours,3y Ours,9

3DPCK 64.7 692 719 69.0 69.6 68.7 64.6 679 694 70.5 71.1
AUC 317 325 353 320 355 346 321 - 37.3 374 38.3

Since our method learns the 3D limb orientations, of which the first two dimensions
represent the 2D orientations, using large-angle random rotation augmentation on the
image should help training a network with better generalization capacity. This is in fact
validated by the experiment results in the last two columns in Table 3, in which the model
trained with 90-degree random rotation augmentation has considerable improvement,
compared to the one trained with 30-degree augmentation.

4.5. Qualitative Results on MPII

MPII is the most widely used 2D pose datasets which does not contain 3D annotations.
In this section, we provide some qualitative results in Figure 5 on this dataset especially in
some challenging scenes like images with missing body parts. In Figure 5, the images in
the first two rows are truncated and the occluded in the last two rows. Our method can
produce visually appealing results even in the presence of incomplete body parts, proving
the robustness of the proposed method. These examples on MPII also demonstrate our
method’s generalization capacity on various in-the-wild images.

A

X
A A

A oS3
D .
A i i ,\‘
A
3D PAFs Prediction Image 3D PAFs Prediction

Figure 5. Qualitative results on truncated and occluded images from MPII. Best viewed in color and zooming in.
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In Figure 6, we show four failure examples. In Figure 6a, the pose is rarely-seen as
well as includes self-occlusions. In Figure 6b, the left lower leg is out-of-image and there is
a bag next to it with the similar color, so the network takes the bag as the absent lower leg.
In Figure 6¢, the subject in it wears a black helmet that covers his/her face, in which case
the network gets confused by the left and right side of the body. In Figure 6d, the subject is
occluded by the another person, in which case the network takes the arm of the person in
the front as the subject’s in the back.

Figure 6. Failure cases.

4.6. Robustness Analysis: A Case Study

In Figure 7, we show the qualitative and quantitative results of a testing image under
5 synthetic disturbances including edge-erasing, rectangle-erasing, circle-erasing, partial-
blurring and a composition of the above. To explain how the performance deteriorates, we
also visualize the predicted 2D keypoint heatmaps and the 3D PAFs. Here only the four
limbs are included for better visualization. In this case, our method is much less sensitive
to these disturbances than those 2D keypoint detection based methods. The synthetic
disturbances are generated at random. Our method achieves consistent better performance,
which indicates that our method has the potential in improving the robustness of 3D human
pose estimation.

The robustness of our method can be attributed to two aspects. First and foremost,
the pointless method design enables us to predict the ROI and 3D orientation of a limb even
when the limb is partially out-of-image or occluded. Second, the final 3D orientation of a
limb is extracted by averaging all the predicted vectors in the ROL The averaging operation
in this step can be treated as an average filter, which suppresses noises and disturbances in
the predicted vectors, making the prediction more stable.
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Figure 7. A case study on images with various geometric occlusions. We compare the results with three state-of-the-art
methods: (a) [18], (b) [32], and (c) [34]. Our method is robust under missing key points, rectangular and circle-occlusions,
as well as partial-blurring.

4.7. Ablation Study

To analyze the effectiveness of different steps in our method, we conduct ablation
study on Human3.6M in terms of MPJPE. The results are reported in Table 4. Baseline
refers to the approach that uses the original 3D PAFs without refinement. Denoising refers
to using 1D/2D PAFs to remove the noise in the predicted 3D PAFs. Flip refers to using
horizontal flipping test.

Table 4. Ablation study on Human3.6M in terms of MPJPE.

Methods MPJPE
Baseline 59.3
Baseline + Denoising 58.9
Baseline + Denoising + Lpose 56.7
Baseline + Denoising + Lpose + Flip 55.2

The performance gain by denoising might seem minor on Human3.6M. The reason is
that the 3D branch is trained in a fully supervised manner on Human3.6M so that there is
little noise in the predicted 3D PAFs on images from this dataset. However, when testing on
in-the-wild images, there could be a lot noise in 3D PAF predictions (see Figure 2), making
the denoising an indispensable step.
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5. Conclusions

We propose in this paper a simple and effectual 3D human pose estimation method,
termed pointless 3D pose estimation. Unlike prior methods that rely on 2D keypoint
detection, which is prone to errors in the absence of body parts and joints, the proposed
approach bypasses this stage and substitutes it with estimations that explicitly account for
both the ROIs and 3D orientations. This allows us to robustly recover the poses, by taking
advantage of the estimated 3D vector pointing from a neighboring body part, even when
some 2D keypoints are out of scene or occluded. State-of-the-art results, in terms of both
keypoint-based and angle-based evaluation metrics, have been achieved on standard
benchmarks as well as in-the-wild data. Possible future work includes multi-person 3D
pose estimation, person limb length estimation and so on.
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