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Abstract: This work is part of an ongoing research project to develop an unmanned flying social
robot to monitor dependants at home in order to detect the person’s state and bring the necessary
assistance. In this sense, this paper focuses on the description of a virtual reality (VR) simulation
platform for the monitoring process of an avatar in a virtual home by a rotatory-wing autonomous
unmanned aerial vehicle (UAV). This platform is based on a distributed architecture composed of
three modules communicated through the message queue telemetry transport (MQTT) protocol: the
UAV Simulator implemented in MATLAB/Simulink, the VR Visualiser developed in Unity, and
the new emotion recognition (ER) system developed in Python. Using a face detection algorithm
and a convolutional neural network (CNN), the ER System is able to detect the person’s face in the
image captured by the UAV’s on-board camera and classify the emotion among seven possible ones
(surprise; fear; happiness; sadness; disgust; anger; or neutral expression). The experimental results
demonstrate the correct integration of this new computer vision module within the VR platform, as
well as the good performance of the designed CNN, with around 85% in the F1-score, a mean of the
precision and recall of the model. The developed emotion detection system can be used in the future
implementation of the assistance UAV that monitors dependent people in a real environment, since
the methodology used is valid for images of real people.

Keywords: flying social robot; autonomous unmanned aerial vehicle (UAV); emotion recognition;
convolution neural network (CNN); virtual reality (VR); unity; MATLAB/Simulink; python

1. Introduction

According to a now classic definition of social robots [1], these are robots that exhibit
human social features including expressing and/or perceiving emotions; communicat-
ing with high-level dialogue; learning/recognising models of other agents; establish-
ing/maintaining social relationships; using natural cues (gaze, gestures, etc.); exhibiting
distinctive personality and character; land earning/developing social competencies.

Within the field of social robots, our research group has opted for the use of au-
tonomous unmanned aerial vehicles (UAVs) as a promising alternative for the home care
of dependent people, mainly elderly people living alone. The role of UAVs in ambient
assisted living for the elderly is a hot topic [2–4]. Such UAVs, equipped with an on-board
camera, provide a novel solution for navigating around the inhabitant and monitoring
them. The aim is to take images for analysis using computer vision techniques to determine
the state of the person and thus, to decide on the possible assistance or help required at
any given moment [5]. For this, we consider emotion analysis as a fundamental tool. This
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is a non-invasive technique, in which computer vision algorithms are used to analyse
facial images and possibly determine the mood of the person or the robot’s intent as a
social signal.

In this way, our UAVs can be considered flying social robots that must incorporate
the capacity of people detection and tracking through perceiving human features, in ad-
dition to the perception required for the localisation, navigation and obstacle avoidance
functions. Moreover, the recognition of facial expressions is also present in these flying
social robots [6–8]. It is our intention to incorporate more human social features in the near
future. For the development of such vision-based assistance UAVs for the monitoring of
dependent people, it is necessary to solve all the technical challenges for the safe navigation
of the UAV in a house, as well as to implement the computer vision algorithms for the
emotion analysis (or other algorithms to add new features or services in the future, such as
a fall detection alarm), in the presence of occlusions; variable illumination; moving camera;
and varying background [1].

Apart from this, to provide a solution that is accepted by the dependent person and can
thus be of real use to them, it is also necessary to approach the design of the assistant UAV
from the point of view of the assisted person [9,10]. Therefore, we have decided to design
a virtual reality (VR) simulation platform that provides a safe and realistic environment to
develop and test the different engineering solutions [11,12], and also allows us to conduct
studies with potential end-users and people who know the problem of care for dependent
people in order to adapt the design to their preferences.

This article focuses on the description of the new implementation of the VR platform,
which initially had two modules [13], the UAV Simulator implemented in
MATLAB/Simulink® and the VR Visualiser developed in Unity, to which a new emo-
tion recognition (ER) system programmed in Python was added. This computer vision
module is the most important novelty of this work and its objective was to analyse the
aerial images received from the UAV camera in order to determine the emotion of the
person. It is worth mentioning that the VR Visualiser has also been updated to add new
functionalities during the monitoring process so that the integration of the ER System is
complete. In this way, through the message queue telemetry transport (MQTT) protocol,
the three modules communicate to exchange the necessary information for the correct
operation of each one, thus emulating the behaviour of an assistant UAV monitoring an
avatar in a virtual home.

The structure of the article is as follows: Section 2 presents an overview of the VR
platform, detailing the architecture and the MQTT communication used. Sections 3 and 4
briefly describe the UAV Simulator and the VR Visualiser, respectively. The new ER System
is detailed in Section 5, while the experimental results are discussed in Section 6. Finally,
Section 7 presents the conclusions and future work.

2. General Description of the VR Platform

This work is framed in an ongoing research project aimed to improve the quality of
life of dependent persons by means of the design of a social flying robot for the home
care of dependants. The main task of the UAV is to monitor the patient at home, that
is, to carry out flights to capture images of the person from the on-board camera. These
photographs will be sent to a base station for analysis in order to determine the person’s
condition and based on this, be able to provide the necessary assistance in each case or
situation. The operation of this proposed assistance system is illustrated in Figure 1.

In this context, we developed a VR platform, of which the initial version has already
been presented [13], capable of providing a realistic simulation environment for the vali-
dation of the different algorithms required for the operation of the assistance UAV, both
at the level of navigation and control of the aircraft itself during the monitoring of the
patient, as well as those related to image processing to determine the person’s state. These
computer vision features added by means of the new ER System are the main novelty of
this work. In addition, this platform allows us to carry out studies with participants who
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realistically experience the monitoring task performed by the assistance UAV. This means
that it is possible to carry out studies to evaluate different options and adjust the operation
of the UAV to the preferences of the users, thus moving towards total user acceptance,
which is fundamental in any social robot.

RECOGNITION OF EMOTIONS

respond to different situations or 
cases will be determined

UAV monitoring the 
patient at home

SOCIAL FLYNG ROBOT PROCESSING BASE STATION
Analysis of aerial images to determine the person's condition

Figure 1. Schematic diagram of the operation of the proposed flying social robot for the assistance of
dependent people at home.

2.1. High-Level Architecture

The VR simulation platform is based on the distributed architecture detailed in
Figure 2. In its current implementation, this platform is composed of three modules;
UAV Simulator; VR Visualizer; and the ER System, which are, respectively, in charge of:
(i) simulating the UAV’s dynamics, including its control algorithm and the monitoring
trajectory planner; (ii) recreating the virtual environment where the UAV monitors the
dependent person; and (iii) processing the images grabbed by the UAV’s on-board camera
to determine the person’s mood.

UAV 
Simulator

VR 
Visualizer

Real-Time Simulation
• UAV’s Dynamics
• Control Algorithm
• Trajectory Generator

Virtual Reality (3D)
• Home
• Person
• UAV

PERSON’S DATA
UAV’ STATE

PERSON’S DATA

UAV’ STATE

ER 
System

Computer Vision
• Face Detection
• Emotion Recognition

PHOTO

P
H

O
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O
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O
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EMOTION

MQTT
Broker

Figure 2. High level architecture of the virtual reality (VR) simulation platform.

These modules were developed using different software programs according to the
requirements of each one, and they can be executed on the same PC or on different
ones, since all communicate with each other by means of the MQTT protocol as detailed
subsequently. Finally, it is worth mentioning that the distributed architecture used provides
us with versatility during the design phases, and will make it easier in the future to replace
the software modules with the hardware systems that will be developed for the final
implementation of the assistance UAV in real environments.
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2.2. Communication

As mentioned above, the message queuing telemetry transport (MQTT)) message
protocol is used to communicate the different modules that make up the VR platform. It
consists of a simple and light communication protocol based on TCP/IP with a system
of publication and subscription of messages in topics. These topics are essential because
the receivers need to be subscribed to one so that the MQTT server (also called broker) can
send them the information published by the senders. As shown in Figure 2, the Mosquitto
open source server was used for this purpose. Inside the VR platform, there are two
main communication paths (see Figure 2): the first one was used to exchange information
between the UAV Simulator and the VR Visualiser, and the second one between the latter
and the vision-based ER System used in facial emotion analysis.

The UAV Simulator implemented in MATLAB/Simulink® models the dynamic be-
haviour of a quadrotor, including the trajectory planner and the control algorithm. The UAV
will perform the process of monitoring the person, in this case the avatar in the VR ap-
plication in Unity, for which it needs to know the information relating to their pose. This
information is published from Unity in a topic called “Sim_UAV/Person/Data” at which
the MATLAB/Simulink® client is subscribed. Based on this information, the planner
calculates the reference path for the position and orientation of the quadrotor. These
data are used by the control algorithm to determine the input to be applied to the UAV’s
model to minimise the error in tracking the trajectories, and thus be able to guide the
UAV as expected in the monitoring process. On the other hand, the information of the
state of the UAV (position and orientation) is used to represent the flight of the UAV in
the virtual environment, which is published from the MATLAB/Simulink® in the topic
“Sim_UAV/UAV/State”. This way, the Unity client (subscribed to the previous topic)
periodically receives the information published by the UAV Simulator, and updates the
pose of the 3D model of the UAV inside the virtual home.

Regarding the image processing and emotion recognition, it has been established that
the UAV’s camera (within the VR application in Unity) will be taking pictures of the avatar
at one-second intervals. These images are automatically sent to a specific topic (called
“Sim_UAV/UAV/Camera”) to which the ER System is subscribed, so it can receive them at
the moment of their publication. When the ER System finishes classifying the emotion, it
publishes the results in a different topic (called “Sim_UAV/Person/Emotion”) to which
the Unity application is subscribed, receiving the data and showing them.

Finally, the MQTT communication in the VR platform is schematically summarised in
Figure 3.

Real-Time Simulation
• UAV’s Dynamics
• Control Algorithm
• Trajectory Generator

Virtual Reality (3D)
• Home
• Person
• UAV
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Sim_UAV/UAV/state
Data: 𝑥, 𝑦, 𝑧, 𝜃, 𝜙, 𝜓

Topic: 
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Data: 𝑥𝑝, 𝑦𝑝, 𝑧𝑝, 𝛼𝑝

Topic: 
Sim_UAV/Person/data
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Data: 
Emotion Detected 

(Anger, Disgust, Fear, Happiness, 
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MQTT Subscribe Message

MQTT Publish Message
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Visualizer

Figure 3. MQTT communication in the VR platform.
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3. UAV Simulator

This section briefly describes the UAV Simulator module, whose main objective is
to represent the dynamic behaviour of the assistant UAV, a rotatory-wing aircraft of type
quadrotor which is in charge of flying at home to monitor the person. This way, the UAV
Simulator has to calculate at each moment the state of the aircraft, i.e., the position and
orientation, considering its dynamics, the action of the controller and the trajectory planner,
which in the end determine the reference trajectories for the position and orientation of
the UAV in order to perform the monitoring process. To do this, the following three
components were implemented in MATLAB/Simulink software [13]:

• Quadrotor’s Dynamic Model: It mathematically represents how the lift forces of the
quadrotor change when the rotational speed of its four propellers are modified, thus
achieving the three possible motions; pitch, roll and yaw. It was obtained following
the Euler–Lagrange formulation according to [14] and can be consulted in [13,15].
Please note that the output of this component is the state of the UAV, its position and
orientation, information that is sent to the VR Visualiser in order to reproduce the
flight of the UAV by updating the position and orientation of a 3D virtual quadrotor.

• Control Algorithm: It is used to calculate what inputs should be applied to the
quadrotor model in order to follow a specific trajectory reference, thereby ensuring
that the UAV is correctly positioned and oriented during the monitoring flight. For this
component, we designed a generalised proportional integral (GPI) controller based on
the flatness theory that demonstrated good results in both stabilisation and tracking
tasks, even in the presence of atmospheric disturbances and noise measurements,
improving the performance of a traditional PID controller [16–23]. The theoretical
details of the GPI control scheme are described in [15].

• Trajectory Planner: On the basis of the person’s position and orientation, which are
received from the avatar in the VR Visualiser, a state-machine-based planner generates
the references for the position and yaw angle of the UAV for each of the manoeuvres
that make up the monitoring process. In the current implementation of the planner, it
is possible to configure the tracking trajectory to define the height at which the UAV
flies, as well as the trajectory (circular or elliptical) it describes around the person,
to suit the user’s preferences. Details of this planner can be found in [24].

Figure 4 shows the block diagram of the UAV simulator, composed of the three
blocks described above. This diagram also integrates the information exchanged with
the VR visualiser for the correct operation of the VR platform (transmission of the UAV
state, to recreate the flight in the virtual home, and reception of the avatar’s position and
orientation for the calculation of the monitoring trajectory). To complete the description of
the UAV simulator module, we refer the reader to the experimental results (see Section 6.2)
where we present the data provided by this module during the monitoring process to obtain
the images that will be analysed by the new ER system (described in detail in Section 5).

 
 
 

Control 
Inputs

 

References  
Trajectories

 

UAV's
State  

GPI Controller

Sensorial Information 
(Avatar's Data) 

VR Visualizer

UAV Simulator

Quadcopter Model

 

 

 

 
State

Trajectory Planner

Figure 4. Block diagram of the UAV simulator.
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4. VR Visualiser

The game engine Unity (also referred as Unity 3D) was used to develop the VR
Visualiser in which the virtual home, the quadrotor UAV and the user’s representation
(avatar) are rendered. This module was initially included in the VR platform [13] to
reproduce the flight of the assistant UAV by updating the position and orientation of the
quadrotor 3D model according to the information received from the UAV Simulator, which
in turn determines the monitoring trajectory based on the avatar’s information received
from the Unity application.

As described in [13], two main user interfaces were implemented for non-immersive
and immersive VR setups. The former makes use of a keyboard and mouse control mode.
This mode is useful to assess the behaviour of the assistant UAV, since it is easier to visualise
the UAV trajectory on a PC screen and using a third-person perspective with free-camera
movements. The latter uses the HTC VIVE headset and its controllers, so the user can
walk and look inside the virtual house, while the assistant UAV performs the monitoring
process. This mode enables immersive studies with participants to be conducted while
they experiment the labour of the social flying robot in first person.

The traditional interface is divided into three interchangeably frames to display dif-
ferent camera views the first-person view of the avatar, the on-board UAV camera view,
and a selection of camera positions placed around the room. Other features or options
added were: (i) two main selectable characters (avatar of an elderly male or an elderly
female); (ii) the colour representation of the path followed by the quadrotor within the
virtual environment to assess the correct functioning of the system (as this can be compared
with the monitoring trajectory calculated by the UAV Simulator); and (iii) spatial sound to
simulate the buzzing sounds of the UAV, thus increasing the realism of the platform.

Now, with the integration of the new ER System into the VR platform, the VR Vi-
sualiser was updated. Dynamic facial expressions were added to the avatars, as will be
described below (Sections 5.1 and 5.2). In addition, it was established that the UAV’s
on-board camera regularly captures images during the monitoring process. These images
are sent to the ER System for analysis. Once the image processing is finished, the avatar’s
emotion is displayed in the Unity app’s user interface. More details about the bidirectional
communication of these two modules are provided in the experimental results (Section 6.2).

5. ER System

The Emotion Recognition (ER) System is the new computer vision module of the VR
platform that simulates the operation of the assistant UAV for the home care of dependent
persons. This module is responsible for analysing the images received from the camera on
board the UAV to determine the mood of the person by analysing their facial expression. It
is mainly composed of two elements: the set of cascade classifiers that analyse the image to
detect the person’s face (or the avatar’s in this case), and the convolutional neural network
(CNN) that analyses the facial expression to detect the person’s emotion.

This way, the ER System analyses the images captured by the camera on board the UAV.
This has made it necessary to update the application developed in Unity in order to provide
the characters with the ability to express emotions during the simulation. Therefore, we
began by describing the design of the emotions in the avatars, as well as the implementation
of the transition between the different emotions. This is followed by a description of the
face detection algorithm, based on the aforementioned cascade classifiers, and then a
description of the design of the convolutional neural network which classifies the avatar’s
emotion. This section ends with a description of the neural network training process.

5.1. Design of Emotions in Avatars

Two models were designed to represent a male and a female avatar. Figure 5 shows
the faces of the two virtual characters. They initially show a neutral expression.
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Figure 5. The faces of the avatars with a neutral expression (left—old man; right—old woman).

Each model has a series of blendshapes, which consist of a set of coefficients that
allow the modification of specific groups of vertices of their face. They focus on facial
characteristics such as eyebrows, eyelids or lips. In addition, these blendshapes designed
individually can be combined, enabling the generation of facial expressions in a simple
way. The design of the blendshapes that compose the six basic emotions defined by Ekman
and Friesen (anger, disgust, fear, happiness, sadness and surprise) [25] was carried out
following a previously detailed procedure [26], which is based on the well-known Facial
Action Coding System [25]. Figure 6 shows how these emotions are seen in the faces of the
two characters.

(a) Anger (b) Disgust (c) Fear (a) Anger (b) Disgust (c) Fear

(d) Happiness (e) Sadness (f) Surprise (d) Happiness (e) Sadness (f) Surprise

Figure 6. Basic emotions in the avatars (left—old man; right—old woman): (a) anger; (b) disgust;
(c) fear; (d) happiness; (e) sadness; and (f) surprise.

5.2. Transitions Between Emotions

The option to choose the desired emotion was added to the Unity application, and can
be established before starting the simulation. In addition, a drop-down menu has also been
added to the user interface so that it can be changed at any time, even if the simulation has
already started. Apart from the six basic emotions plus the neutral expression, a random
mode that selects a different one every few minutes was also added.

When moving from one emotion to another, a transition was made in which the facial
expression changed little by little so that there was no sudden change. As mentioned
before, each emotion is formed by the combination of a set of blendshapes that modify a
specific area of the face. Therefore, to create a fluid transition between two expressions,
the blendshape values of the previous one are increased or decreased by one unit per frame
until they coincide with those of the following one.

5.3. Face Detection Algorithm

Cascade classifiers are used to recognise a person’s face from a photograph. Then,
the characteristics and operation of the cascade classifiers are described to later specify how
this machine learning methodology was implemented in the emotion recognition module.
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5.3.1. Cascade Classifiers
Description

In machine learning, a classifier is an algorithm that can identify which of several
categories a new example belongs to through pattern recognition, because it was trained
with a set of previously labelled cases. On the other hand, a cascade classifier is a combination
method or ensemble that consists of the concatenation of several classifiers, where the
information produced by each one of them as output is used as additional information for
the next entry.

Cascade classifiers were initially proposed by Viola and Jones [27], and they supposed
a new way of detecting objects in machine learning that is characterised by processing
images extremely quickly and with a high detection rate. This approach can be divided
into three parts: (i) Transformation of the original image into a new representation called
“integral image”, which allows the identification of features to be computed very quickly;
(ii) A machine learning algorithm based on AdaBoost, which consists of selecting a few of
the most important characteristics to reduce their number and produce much more efficient
classifiers; and (iii) The cascade classifier to quickly discard unnecessary areas of the image
and focus on the regions where the figure to find can be.

Functioning

A cascade classifier has several stages, each of which is a combination of weak classi-
fiers. This is based on the machine learning meta-algorithm called Boosting, which consists
of putting together the results of several weak classifiers to form a robust one. The weak
ones are those predictors with a low precision but slightly higher than a random one (that
is, greater than 50% in a binary classification problem), while the robust ones are those
with a high percentage of correctness.

The operation is as follows: each area of the image is inspected by means of a sliding
window and for each stage of the cascade classifier, it is checked whether the object being
sought is found in that subsection (checking the characteristics of the area). When it fails
in one stage (that is, the value given by one of the weak classifiers does not exceed a
threshold), it no longer goes to the next stage, which greatly saves the calculation. Only
the area that manages to pass all the stages is finally considered positive. The training of a
cascade classifier requires the images of positive and negative cases of the object or figure
to be detected, it being necessary that all the images have the same size. Once trained it
can then be used to detect the same type of objects in other images.

5.3.2. Implemented Solution

For the recognition of the person’s face from a photograph, cascade sorters based
on Haar filters were used. This was done using OpenCV (Open Source Computer Vision
Library) [28], an open source software library with functions and algorithms for use in
machine vision and machine learning, originally developed by Intel and introduced in
1999 [29].

OpenCV provides several trained models of classifiers (available at its GitHub page [30])
that can be loaded through the library itself. Three different models have been used for this ap-
plication in order to maximise the probability of finding the person’s face correctly in the anal-
ysed image. Specifically, the following models were used: “haarcascade_frontalface_default”,
“haarcascade_frontalface_alt”, and “haarcascade_frontalface_alt2”. With them, the probability
of finding the face is practically guaranteed, although some punctual errors can always arise
due to shadows, blurs or turns. In this way, the three models are used to search for a face in
the image, and it is saved if found. Finally, the photo of the face is cropped to keep only the
area of interest and remove everything else. The resulting images are then introduced into
the convolutional neural network for classification into one of the possible emotions.
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5.4. Design of the Convolutional Neural Network (CNN)

After detecting the person’s face in the photograph, the next step focuses on recognis-
ing the person’s emotion based on their facial expression. To do this, the image is analysed
using a convolutional neural network (CNN). The main characteristics and operation of
this type of network are described below, as well as the details of the application of the
neural network in the specific case of detecting the avatar’s emotion.

5.4.1. Convolutional Neural Network
Description

An artificial neural network is a computational model inspired by the behaviour
of networks of neurons in a brain. They consist of a set of units called neurons that
transmit certain data to each other. The most famous type of network is the multilayer
perceptron (MLP), which is divided into several layers of neurons connected one to the
next layer. The initial information enters through the neurons of the input layer and is
transformed through the intermediate or hidden layers. Each link has a value called weight
that is multiplied by the value of the previous neuron and reaches the next one, where an
operation is performed with all the incoming values. Finally, the results are returned in
the output layer. The weights of the links are adjusted during the process to give more
importance to certain inputs that help in the classification.

A convolutional neural network (CNN) is a type of artificial neural network designed
to recognise visual patterns by mimicking the primary visual cortex of the brain. They are
named after the mathematical concept of “convolution”, which is a linear transformation
of two functions into a new one representing the magnitude at which they overlap. This
type of network is similar to MLP, but applied to two-dimensional arrays to classify or
segment images, and is able to capture the spatial dependencies of the image through the
use of various filters. It contains a hierarchy of layers that become more specialised, i.e., the
first layers detect lines and curves while the last ones are able to recognise complex shapes
such as an entire object.

Functioning

In order for a neural network to learn to recognise objects and shapes on its own, it
must first be trained with a large number of images. In this way, it will be able to pick up
the most important features of the sample.

In the first layer, the pixel values of the image are taken as input (it is desirable that they
are normalised between 0 and 1). That is, when entering the value of each one, if the image
is 48 pixels wide and 48 pixels high, it would be necessary to have 48 × 48 = 2304 entries.
This is true for images that have only one colour channel (such as black and white images).
If they have three channels (such as RGB colour images), 48 × 48 × 3 = 6912 entries would
be needed.

Then, groups of neighbouring pixels are taken and operated on with a small matrix
called kernel. Its size can be specified (e.g., 3 × 3) and it is filled with weight values. It cycles
through all input values (from left to right and from top to bottom, moving one or more
units for each step as specified), generating a new matrix which will be the next hidden
layer. For example, for a 48 × 48 image (and with only one colour channel), a 3 × 3 kernel
(with one shift unit) can generate a 46 × 46 matrix. An example of this transformation
can be seen in Figure 7, using a 3 × 3 kernel moving from pixel to pixel in an original
5 × 5 image, resulting in a matrix of size 3 × 3. This process can be applied multiple times
on the same layer, having a set of kernels (called a filter) that will produce several output
matrices (this set is called feature mapping). Thus, a filter of 32 kernels would result in
32 output matrices.
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Figure 7. Example of kernel traversing an image.

It is possible that some values in the matrix turn out to be negative, so an activation
function is used to rectify the data. The most commonly one used is the ReLU (Rectified
Linear Unit) function, which returns the maximum value between those data and 0. It is
defined as f (x) = max(0, x).

Each of these new matrices represents specific features of the original image, which
will help with object distinction later on. If we generated 32 of them and each on was
46 by 46, we would need 46 × 46 × 32 = 67, 712 entries for the next layer. The initial image
is too small and yet too many values are formed in the first layer alone. Many of these
are not even important, so it is advisable to reduce their number in order to lighten the
processing in the next layers. This is done in the subsampling part, where a kernel-like
process is performed by windowing through each matrix and forming a new, reduced
one by keeping a smaller number of values. There are several types, such as MaxPooling
(which takes the highest values from each region) or the AveragePooling (which generates
a new value from the average). In Figure 8, you can see how MaxPooling is performed
with a window size of 2 by 2 (and with 2 displacement units) to a 4-by-4 matrix to reduce it
by half.

0.5 0 0.1 0.8
0 0.2 0 0.4
0 0 0.6 0

1 0 0 0.2

0.5 0.8
1 0.6

Figure 8. Example of subsampling with MaxPooling.

In this way, a convolution is completed. As a summary of the previous steps: the image
values are entered, the kernel filter is applied, and the set of matrices or feature mapping is
obtained, whilst MaxPooling is applied and the reduced matrices are generated as a result.
The values of the latter matrices would be used as input in the next convolution, repeating
the whole process successively according to the number of convolutions carried out.

The output of the last convolution is then linked to another neural network (a fully
connected multilayer perceptron). This is performed by a layer called Flatten, which trans-
forms the matrices into a vector so that their values can be used as inputs. In addition,
a Dropout, a process that randomly discards a percentage of neurons to avoid overfitting
during training, can be performed on each layer of neurons. Finally, in the last layer, an ac-
tivation function called Softmax is run to convert the output into a probability distribution
with as many values as there are classes. Once trained, classification is carried out in this
part. When classifying, the output returns a set of data where each one represents the
probability that the image belongs to that class.

It must be taken into account that the training of a convolutional neural network
requires a lot of memory because a large number of images must be processed. Therefore,
this process has to be done step by step, dividing the set of images into several batches
or batches. Moreover, not only do all data have to be passed once, but multiple times in
order to improve feature capture. Thus, when all batches are passed until an iteration
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is completed, an epoch is said to be completed. Performing too few can cause the model
to underfit the data while too many can lead to overfitting, so the right number must be
found. However, there is no definitive solution as this number can vary greatly depending
on the type of problem and the amount of data in the set.

5.4.2. Implemented Solution

The CNN network for emotion classification was created using Keras [31], the deep
learning application programming interface (API) written in Python. It is the high-level
API of TensorFlow 2 [32] (end-to-end open source machine learning platform developed
by Google) in which the model starts from zero and the layers that will form its structure
must be added one by one. Among the layers that can be included are:

• Convolutional Layers: These are responsible for deriving features from the spatial
dependencies between pixels in the image, generating multiple filters that produce a
feature map. Several of these layers are usually included (sometimes back to back) to
capture as much information as possible. The first layers detect simple shapes such as
lines and curves while the later layers are more specialised and can recognise complex
shapes. However, it is not advisable to add too many layers because, at some point,
they do not significantly improve the model and only increase its complexity and
computational time.

• Subsampling Layers (such as MaxPooling or AveragePooling): These are included
after the convolutional layers to reduce the number of parameters generated and
subsequently reduce the overfitting of the model.

• Flatten Layer: It converts the output of the convolutions into a vector used as the
input of the final stage of the network, the fully connected layers.

• Fully Connected Layers (FCL): These are typically used to calculate probabilities and
have an input layer, one or more hidden layers and an output layer.

• Dropout Layers: These are placed between the fully connected layers to remove a
percentage of their neurons and reduce overfitting.

It was decided to add three sets of convolutional layers (the first with only one layer
and the others with two) so that the model would be able to detect a large amount of
information from the images. After each set, a subsampling layer was attached to reduce
the size of its parameters before they were introduced into the final fully connected layers.
The diagram of Figure 9 depicts the structure of the convolutional neural network with
all the layers that were included, while Table 1 compiles the size of the outputs and the
number of parameters generated in each one.

A short description of the layers that make up the CNN network is given below:

• “Conv (1)”: The first convolutional layer has 64 5 × 5 kernels and uses ReLU as an
activation function. Its input size is 48 × 48 × 1 as the input images are 48 pixels wide
by 48 pixels high with only one colour channel (black and white).

• “MaxP”: A 5 × 5 MaxPooling layer with two displacement units.
• “Conv (2)”: A second convolutional layer with 64 3× 3 kernels and ReLU as activation

function.
• “Conv (3)”: A third convolutional layer just like the previous one.
• “AvgP (1)”: A first 3 × 3 AveragePooling layer with two displacement units.
• “Conv (4)”: A fourth convolutional layer with 128 3 × 3 kernels and ReLU as activa-

tion function.
• “Conv (5)”: A fifth convolutional layer identical to the previous one.
• “AvgP (2)”: A second 3 × 3 AveragePooling layer with two displacement units
• “Flatten”: A layer which takes the output from the convolutional layers and converts

it to an input vector for the fully connected layers where the classification is finished.
• “Input (FCL)”: The first fully connected layer with 1024 neurons which takes the

inputs from the feature analysis and applies the weights to predict the correct label.
• “Drop (1)”: A first Dropout layer to get rid of 20% of the neurons and reduce overfitting.
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• “Hidden (FCL)”: A hidden fully connected layer with the same number of neurons as
the input.

• “Drop (2)”: A second layer of Dropout with the same characteristics as the previ-
ous one.

• “Output (FCL) ”: The output layer where a Softmax function is run to convert the
output into a probability distribution of size 7 (equal to the number of classes to be
classified, i.e., the six basic emotions plus neutral).

. . .

. . .

. . .

1024 1024 7

Input
Image

Fully Connected Layers 
(with Dropout)

Flatten

Convolutional and 
Subsampling Layers

Conv. (1) MaxP.

Conv. (2) Conv. (3) AvgP. (1)

Conv. (4) Conv. (5) AvgP. (2)

Input
(FCL)

Drop. (1) Drop. (2)

Hidden
(FCL)

Output
(FCL)

Figure 9. Structure of the convolutional neural network (CNN) implemented.

Table 1. Details of the layers that make up the CNN.

Label Type Output Size Params

Conv (1) Convolutional 44 × 44 × 64 1664
MaxP MaxPooling 20 × 20 × 64 0
Conv (2) Convolutional 18 × 18 × 64 36,928
Conv (3) Convolutional 16 × 16 × 64 36,928
AvgP (1) AveragePooling 7 × 7 × 64 0
Conv (4) Convolutional 5 × 5 × 128 73,856
Conv (5) Convolutional 3 × 3 × 128 147,584
AvgP (1) AveragePooling 1 × 1 × 128 0

Flatten Flatten 128 0

Input (FCL) Fully Connected 1024 132,096
Drop (1) Dropout 1024 0
Hidden (FCL) Fully Connected 1024 1,049,600
Drop (2) Dropout 1024 0
Output (FCL) Fully Connected 7 7175

5.5. Definition of Neural Network Training

A series of new virtual characters were designed so that the CNN can learn to extract
the basic characteristics of emotions from photos of their faces. If the network was trained
with the characters included in the application (the male and female avatars shown above
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in Figure 5), then the model would end up over-adjusting to them, memorising their faces
instead of learning to obtain the particularities of each expression independently of the
person. It would not serve then to generalise and it would not work well if new characters
were added.

For this reason, 10 new avatars were created exclusively to use their photos in the
training: five male and five female (they can be seen in Figure 10). All of them are very
different from each other, varying in their features and skin colour. For each one, several
photographs of their emotions were taken, slightly modifying some features at random
so that the image was not always the same (although without changing enough to be
considered different emotions). In addition, they were taken in different settings and
varying the intensity of the light. This diverse database will help the network to focus on
the most important features rather than unnecessary areas.

Figure 10. Set of avatars used for convolutional neural network training.

These images were passed through the cascade sorter models to detect the face areas
and cut them out. The size of the photos have a significant influence on the processing
time of the convolutions, so they were resized to 48 pixels wide by 48 pixels high (a small
resolution but sufficient to distinguish the features). The number of colour channels also
affected the processing time, although fortunately this is not a necessary element to detect
facial expressions. Therefore, images are converted to black and white (single colour
channel). This initial transformation of the images considerably lightens the computational
load of the training.

Figure 11 shows the distribution of the samples with the amount of photos available
for each emotion. There was a total amount of 8566 images composing the training set.
The differences in the number of images per emotion are related to problems with the
initial detection of the face. Nevertheless, a similar proportion is maintained between the
classes. This will help the model to learn all emotions in the same way and not undermine
any of them.

From this data set, a stratified sample (with the same proportion of emotions as the
main one) of 10% was taken to be used as a validation of the model during the training
(i.e., to check if it improves or worsens when trying different combinations of parameters).
In this way, the model was trained in batches of 100 images for 40 epochs. A success rate of
98.25% was obtained for the training set and 89.64% for the validation set. Increasing the
number of epochs did not improve the model, and over-adjustment occurred.

The resulting configuration was saved in a file including: its architecture; the values
of the weights learned; training configuration and its status (to follow the training process
where it was left off). This configuration file must be loaded at the start of the emotion
recognition application in order to classify new images.
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Figure 11. Distribution of the samples used for training the convolutional neural network.

6. Experimental Results

After completing the development of the new ER module, several tests were carried
out to check the correct functioning of the module on the VR platform, which are detailed
below. Firstly, a test was presented that focused on the communication between the VR
Visualiser and the ER System where it was verified that the emotion detection system
correctly classified the avatar’s emotion in the image taken from the UAV camera in
the virtual environment, while the second test analysed the performance of the emotion
detection using a set of metrics.

The UAV simulator was paramount for the correct functioning of the platform. There-
fore, Section 6.1 was introduced to provide a detailed description of how monitoring
trajectories are calculated and performed by the quadrotor. This monitoring flight allows
obtaining the facial images of the avatar, which were then sent to the ER system for analysis.

6.1. UAV Simulator Data

The UAV simulator module was described in Section 3, block diagram was illustrated
in Figure 4, is responsible for performing the calculations related to the position and
orientation of the UAV during the monitoring process to capture facial images that will
be analysed to determine the person’s emotional state. As already mentioned, in order
to perform this calculation, this module needs to know the position and orientation of
the person to be monitored at all times, which is received from the VR visualiser through
the MQTT communication. Based on this information, the trajectory planner determines
the route to be taken by the UAV, which commonly starts from the position of the UAV
base station. Then, it approaches the person in order to fly around them and capture
facial images with its on-board camera. As a result, the planner generates the set of
reference signals for the UAV’s position and orientation which are the inputs to the GPI
controller, which finally determines the control inputs to apply to the quadrotor model in
order to minimise tracking errors and thus ensure that the UAV performs the monitoring
flight accurately.

Figures 12–15 represent the data generated by the UAV simulator during the monitor-
ing process of an avatar while they are sitting on a couch, which is the scenario used to
verify the correct integration of the new ER system within the VR platform (see Section 6.2).
The 3D monitoring trajectory calculated by the planner (in blue), versus the real trajec-
tory followed by the quadrotor model under the action of the GPI controller (in red) are
represented in Figure 12. As can be seen, the small differences in the two graphs are only
noticeable at certain points (blue and red lines visible), while when they coincide, only the
red line is visible.

In addition to the position of the UAV, the orientation of the aircraft, and therefore of
its on-board camera, is also represented by arrows (in different colours over time), so that
the alignment of the final orientation of the camera performed by the controller and the one
intended by the planner can be verified. Please note that coloured circles are used to mark
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key points on the trajectory: the base station from which the UAV begins the monitoring
process (and to which it returns after completion), in blue; the safety position to which
the UAV is approaching before starting the circular path around the person, in green; and
finally, the person’s pose information received from the VR visualiser, the avatar’s head
position and where it looks (represented by an arrow), in red.
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Figure 12. Reference monitoring trajectory generated by the planner versus the actual trajectory
followed by the quadrotor model overseen by the GPI controller in the UAV simulator module.

The details of how the quadrotor manages to track the trajectories prescribed by
the planner thanks to the GPI controller can be found in Figures 13 and 14. The former
shows the reference for the XYZ position of the UAV (in blue) versus the actual position
of the model (in red), with minimal differences. The latter shows the orientation of the
aircraft, in the form of the roll (φ), pitch (θ) and yaw (ψ) angles. This figure shows how
the controller achieves adjusting the yaw angle in order to orientate the UAV’s on-board
camera as mentioned before (yaw reference angle in blue, actual in red).
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Figure 13. Position and reference variables of the centre of mass of the quadcopter in the UAV
simulator module.

The GPI control drives the model towards perfectly tracking the reference trajectories
by means of the input control vector applied to the quadcopter model and illustrated
in Figure 15. This way, the total thrust, u, and the angular moments, τθ , τφ , τψ (rolling
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moment, pitching moment and yawing moment, respectively) are represented over time.
As a result of this action, the UAV pose will be able to follow the reference trajectories and
thereby perform the expected monitoring flight.
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Figure 14. Attitude variables of the quadcopter in the UAV simulator module.
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Figure 15. Applied control inputs by the GPI controller in the UAV simulator module.

6.2. Integration of the ER System into the VR Platform

The following is an example to verify that the communication between the VR Visu-
aliser and the ER System works as expected. After receiving the images from Unity and
performing the classification process, the model generates a probability distribution for
all the emotions. An example of the emotion detection interface is shown in Figure 16.
The original image is in the upper left corner, whilst underneath it is the face that was
detected (already transformed to enter the model) and on the right there is a graph with
the percentages for each emotion. At the end of the classification, the recognition system
returns a message with the detected emotion together with its percentage of certainty.
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Figure 16. Test results displayed on the emotion detection interface.

Figure 17 shows the VR simulator implemented in Unity when the message with
the information of the emotion is received. It is divided into different sections that show
various views of the environment. On the UAV’s camera section, the data received from the
detection system are shown on the purple panel at the bottom. The application correctly
displays the detected emotion together with its percentage, so the communication between
both programs works as expected.

Layout 1 Reorder panels Happiness Back to main menu Close applicationEnglish

Stand up [space]

Corner 1Camera Room

UAV Camera First Person View

Emotion:     Happiness    -    99 % 

Figure 17. Test results displayed on the VR Visualiser interface.

6.3. Performance Test of the Emotion Detector

From an initial set of 616 images (44 images per seven classes per two avatars),
502 images with faces of the male and female avatar emotions were correctly identified by
the face detection algorithm and were used to test the emotion classifier. It is important
to remember that no images of these two characters were used for the training of the
convolutional neural network, so it will be the first time the CNN finds them. If they are
correctly classified, it means that the neural network has successfully extracted the most
important features from the training images and can generalise to new cases.

Confusion matrices have been used in order to analyse the performance of the classifier.
The rows of the matrix represent the real classes (to which each case really belongs) and
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the columns indicate the classification done by the model. The main diagonal represents
correct classifications, while other cells are classification errors. Thus, Figure 18 shows
the confusion matrix for the test performed with a combination of the man and woman
images. In addition, the right side of this image shows the recall or true positive rate (TPR)
and the false negative rate (FNR). They are the percentages of images classified correctly
(left column) and incorrectly (right column) for each emotion, respectively. Regarding
anger, 100% of the images were correctly classified, while this percentage drops to 53% for
the case of fear, the worst case. On the other hand, the precision or positive predictive value
(PPV) and the false discovery rate (FDR), that is, the percentages of correct (first row) versus
incorrect (second row) predictions are shown at the bottom. In this case, the best result
is for surprise, as 98.1% of the predictions about this emotion were correct, compared to
73.2% and 74.7% for the cases of anger and disgust, respectively.
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Figure 18. Confusion matrix for the tested image set.

To complete the data analysis, several metrics are summarised in Table 2; the accuracy
(ACC), the aforementioned recall (TPR) and precision (PPV), the specificity or true negative rate
(TNR), and the F1 score, the harmonic mean of precision and recall. All these parameters
were calculated for each class (emotion), and also globally, using the arithmetic mean and
the weighted average (taking into account the number images of each class). According to
the metrics, over 84% in all average parameters, it can be concluded that the model works
satisfactorily and it is able to correctly classify the emotions in a high percentage of cases.
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Table 2. Model metrics for the tested image set.

Class Images Accuracy, ACC Recall, TPR Precision, PPV Specificity, TNR F1 Score
TP+TN

TP+TN+FP+FN
TP

TP+FN
TP

TP+FP
TN

TN+FP
2·PPV ·TPR
PPV+TPR

0-Anger 52 96.22% 100.00% 73.24% 95.78% 84.55%
1-Disgust 70 93.82% 84.29% 74.68% 95.37% 79.19%
2-Fear 83 92.03% 53.01% 97.78% 99.76% 68.75%
3-Happiness 77 98.01% 93.51% 93.51% 98.82% 93.51%
4-Sadness 77 96.81% 94.81% 85.88% 97.18% 90.12%
5-Surprise 60 98.21% 86.67% 98.11% 99.77% 92.04%
6-Neutral 83 94.62% 89.16% 80.43% 95.70% 84.57%

Total 502 - - - - -
Average (AVG) - 95.67% 85.92% 86.23% 97.48% 84.68%
Weighted AVG - 95.53% 84.86% 86.71% 97.53% 84.32%

TP—true positive; FP—false positive; TN—true negative; FN—false negative.

7. Conclusions and Future Work

The main long-term objective of our research project is the development of an assistant
aerial vehicle for monitoring dependent people at home. This social robot will have the
mission of flying every so often to take snapshots of the person in order to determine
their state and based on this, whether assistance or help is needed. To determine the
person’s state, emotion analysis was selected as the main technique in our proposal. In
the development of this project, we designed a VR platform that allowed us to have a safe
environment in which to develop and validate the different solutions at an engineering
level, as well as to carry out studies with participants in a realistic environment in order to
adapt the solutions to the preferences of future users and their families. This VR platform is
based on the real-time communication of three modules using the MQTT message protocol;
the UAV Simulator implemented in MATLAB, the VR Visualiser developed in Unity and
the new ER System programmed in Python.

The computer vision ER module is the great novelty of this work and is composed
of two main parts: a set of cascade classifiers used to detect the face of the person in the
image received from the camera on board the UAV, and a CNN designed for classifying
the person’s emotion in one of the six plus one basic emotions (surprise; fear; happiness;
sadness; disgust; anger; or neutral expression). At this point, we would like to highlight
the manifold possibilities to use this proposal for other applications based on facial cues
detection, such as assisting drivers (e.g., driver attention detection, sleeping detection,
yawning detection, mobile phone detection [33]) and biometric surveillance (e.g., video-
based face recognition [34]), among others.

The integration of the new ER System within the VR platform was evaluated and
fulfilled the expected function. The VR Visualiser sends the images captured by the on-
board camera of the virtual quadrotor to the ER System, while the latter sends back the
information about the avatar’s emotion after the image analysis is finished. Apart from
this, within the VR platform, the UAV Simulator and the VR Visualiser need to exchange
information for the correct navigation of the UAV during the monitoring process. In this
sense, the results showed that the trajectory planner correctly determines the references for
the UAV’s position and yaw angle according to the position and orientation of the person,
while the 3D virtual quadrotor reproduces the flight based on the UAV state information
received from the UAV Simulator. More details about the trajectory planner operation can
be found in our previous works [13,24].

On the other hand, the results of the tests carried out to evaluate the behaviour of
the CNN demonstrate that the system is able to correctly classify the emotions in a great
number of cases. The metrics used to measure the performance are higher than 84% in
all the cases and the F1 score, which is a balance between the precision and recall, near
85%. This way, the results of the CNN can be considered satisfactory, however, it should
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be noted that inaccuracies were observed because the set of cascade classifiers sometimes
fail to correctly detect the face of the person in the aerial images. Therefore, this makes the
overall performance of the ER System decrease.

This is one of the points of improvement for future work: to achieve a higher percent-
age of success in detecting the person’s face so that more images can be analysed by the
CNN. In this regard, in future work we propose to evaluate novel deep learning meth-
ods showing excellent classification results. The inclusion, after the face detection stage,
of novel CNNs such as recurrent CNNs [35] or novel CNNs [36] will probably increase the
percentage of emotions correctly detected.

Other points to debug and refine in order to improve the CNN results will be to
increase the set of CNN training images with new characters, different degrees of emo-
tions and with pictures taken without being fully frontal (with the head slightly rotated).
In addition, it should be mentioned that the ER System could be used in the future im-
plementation of the assistant UAV that monitors dependent people in a real environment,
as the methodology used is valid for images of real people. However, some calibrations
would probably be needed to fine-tune and adapt this module to a real environment.

Apart from future work aimed at improving the ER system, and in relation to the
long-term goal of developing the social robot for the care of dependent people, it is worth
highlighting the need to extend the current functionality of the trajectory planner. It is
essential to add transitions between states in order to enable the monitoring process when
the person moves, as well as to solve the problem of obstacle detection and avoidance.
In addition, energy limitations and possible failures in the communication with the pro-
cessing system must also be considered, so that the UAV returns to its base position in
any circumstance that prevents the monitoring flight to be performed in a completely safe
way. All these challenges will be our main lines of research, and the VR platform will be a
fundamental tool to achieve them.
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The following abbreviations are used in this manuscript:

ACC Accuracy
CNN Convolutional Neural Network
ER Emotion Recognition
FCL Fully Connected Layer
FDR False Discovery Rate
FN False Negative
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FNR False Negative Rate
FP False Positive
GPI Generalised Proportional Integral
MLP Multilayer Perceptron
MQTT Message Queue Telemetry Transport
PPV Positive Predictive Value (or Precision)
TN True Negative
TNR True Negative Rate (or Specificity)
TP True Positive
TPR True Positive Rate (or Recall)
UAV Unmanned Aerial Vehicle
VR Virtual Reality
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