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Abstract: Image super-resolution has become an important technology recently, especially in the
medical and industrial fields. As such, much effort has been given to develop image super-resolution
algorithms. A recent method used was convolutional neural network (CNN) based algorithms.
super-resolution convolutional neural network (SRCNN) was the pioneer of CNN-based algorithms,
and it continued being improved till today through different techniques. The techniques included
the type of loss functions used, upsampling module deployed, and the adopted network design
strategies. In this paper, a total of 18 articles were selected through the PRISMA standard. A
total of 19 algorithms were found in the selected articles and were reviewed. A few aspects are
reviewed and compared, including datasets used, loss functions used, evaluation metrics applied,
upsampling module deployed, and adopted design techniques. For each upsampling module and
design techniques, their respective advantages and disadvantages were also summarized.

Keywords: deep learning; single image; super-resolution; systematic review

1. Introduction

Image super-resolution is a process to recover an image of high-resolution (HR) from
a low-resolution (LR) image [1–4]. In simple terms, it can also be referred to as image
interpolation, scaling, upsampling, zooming, or enlarging [2]. The purpose of image super-
resolution is to obtain a high pixel density and refined details from low-resolution (LR)
image(s) that cannot be seen with the naked eye. Image super-resolution was very useful
in applications that required recognition or detection purposes.

In the past, many image processing-based techniques have been used in image super-
resolution before deep learning-based methods were started. Li et al. [5] and Nasrollahi et al. [6]
classified image super-resolution methods into three different groups, namely, interpolation-
based method, reconstruction-based method, and learning-based method. Several interpolation-
based methods such as linear [7], bilinear [8], or bicubic [9,10] interpolations can be found
in image super-resolution applications. These methods are simple, but the high-frequency
details of the image are not restored and therefore more sophisticated insight may be
required to recover the image [5,6].

The reconstruction-based method includes the sharpening of edge details [11], reg-
ularization [12,13], and deconvolution [14] techniques. Researchers also used these tech-
niques for image reconstruction. The learning-based method has an advantage over the
interpolation-based method by restoring the missing high-frequency details through a
relationship established between the LR image and the HR image. The learning-based
method can also be divided into three categories.

The first category of the learning-based method is known as neighbor embedding
(NE) methods. NE assumed the local geometries property is shared between the LR
image and its corresponding HR image. Therefore, the image in the HR feature domain
can be computed in a form of a weighted average of local neighbors through the NE
method [5]. Chang et al. [15] proposed locally linear embedding (LLE) from manifold
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learning, assuming two manifolds of the LR image and its corresponding HR image are
locally in similar geometrics. Gao et al. [16] introduced sparse neighbor embedding (SNE)
that employed a sparse neighbor scheme for super-resolution reconstruction. The idea of
NE has greatly influenced the subsequent sparse coding method.

The sparse coding method is one of the learning-based methods. Sparse coding
assumes the image as a sparse linear combination of elements, which can be selected
from a pre-constructed and sparse enough dictionary [5]. Zhu et al. [17] demonstrated an
example of using sparse coding via direction and edge dictionary for image resolution.
Yang et al. [18,19] developed a sparse coding network to train a joint dictionary to find a
highly sparse and over-complete coefficient matrix. The drawback of this method is that it
requires memory usage and low computing speed.

With the development of machine learning technologies, research is now being ex-
tended to a new learning-based approach, which is the deep learning method. Deep
learning is often applied to image processing applications, such as bank cheque verifica-
tion [20], medical image processing [21], noise removal [22], and image de-hazing [23]. In
2014, the first convolution neural network (CNN) based image super-resolution algorithm
was developed. Super-resolution convolution neural network (SRCNN) developed by
Dong et al. [24] was the pioneer development in CNN-based algorithms. Since then, many
researchers have put much effort into developing a CNN-based algorithm inspired by the
idea of SRCNN.

The efforts put into the algorithm development include overcoming the model per-
formance issues, such as gradient-vanishing problem, reducing the number of memory
resources consumed, and reducing the running time of the model. From these efforts,
various network design techniques were developed. These techniques include residual
learning, recursive learning, multi-path learning, dense connection, and attention network.

In this paper, a systematic review is done to understand the different strategies used in
previous studies. The strategies considered in this review are the datasets used for training
a model, the loss function used, the evaluation metric deployed, and the network design
approaches. These strategies were taken into account for this review because they are the
key factors that affect the model performance, which will affect the image quality produced.

There are several surveys or reviews that have been published on deep learning-
based image super-resolution algorithms. For example, Li et al. [5], Wang et al. [4], and
Yang et al. [25] did comprehensive literature surveys by comparing the CNN-based method
and evaluated the performance of each algorithm. In the survey done by Wang [3], and An-
war et al. [2], a list of algorithms corresponding to a network design strategy was explained.
However, these reviews only explained the design and compared the performance of each
network. Understanding the network design of each algorithm may not help to produce a
better quality model. It is essential to understand the pros and cons or the characteristics of
each network design approach to provide the correct direction to the developer to choose a
correct method for development. Thus, our review paper will mainly provide:

(1) A brief introduction to each proposed network
(2) Pros and cons of each proposed network
(3) Advantages and disadvantages for each upsampling module used
(4) Pros and cons of each network design strategy deployed

2. Methodology

The systematic review was conducted using the Preferred Reporting Items for Sys-
tematic Reviews and Meta-analyses (PRISMA) standard [26]. PRISMA provided a proper
guideline to select literature corresponding to related work. In this paper, IEEE Xplore
and Google Scholar will be used for a comprehensive search strategy with the aid of the
flowchart shown in Figure 1.
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Figure 1. PRISMA flowchart of the paper selection process. (CNN stands for convolutional neural network, RNN stands for
recurrent neural network, CT stands for computed tomography, MRI stands for magnetic resonance imaging, PET stands
for positron emission computed tomography).

2.1. Search Strategy

The resources used for finding papers related to image super-resolution were IEEE
Xplore and Google Scholar. The search was performed from 2014 to January 2021 with
specific keywords as the searching index. IEEE Xplore (https://ieeexplore.ieee.org/Xplore/
home.jsp) (access on 1 January 2021) is a digital library database that stores several journals,
conference papers, and magazines. The keywords used for the IEEE Xplore searching index
were “image super resolution” AND (“deep learning” OR “CNN”) with the combination
of operator AND. A total of 850 records were found in the IEEE Xplore database using the
condition specified.

As for Google Scholar (https://scholar.google.com/) (access on 1 January 2021), it
is a public platform owned by Google that allows users to search different articles that
correspond to the keywords inserted. The keyword “image super resolution deep learning”
was used as a key index, and a total of 1000 records were found.

https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
https://scholar.google.com/
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2.2. Study Selection

A total of 1850 articles were found, in which 850 records from IEEE Xplore and
1000 records from Google Scholar. Among these articles, 1150 articles were found to be
duplicated and were filtered out. The remaining 700 articles were screened on their title
and abstract. The articles were included in the systematic review if the following conditions
were met: (a) an original article that developed an algorithm; (b) the development was not
restricted to a particular application, such as medical diagnosis, surveillance, biometric
information identification, and so on; (c) it had to follow standard datasets, such as T91,
Set5, Set14, DIV2K, BSDS100, BSDS200, Manga109, and Urban100; (d) article that involved
developing a new algorithm; and (e) it had to be a deep learning-based algorithm.

After the screening process, 660 records were filtered out as they did not meet the
requirements, leaving 40 articles. The articles were further excluded when the following
criteria were not met: (a) unclear model set-up details, such as the number of epochs,
optimizer, and loss function used; (b) no model architecture is shown; (c) non-CNN-based
network. Among the 40 articles, 20 articles were due to unclear model details, one article
was due to model architecture not shown, and another article was due to recurrent neural
network (RNN)-based network was used. Therefore, a total of 18 articles were left to be
included in the systematic review.

From these 18 articles, the network design used by each article will be compared and
reviewed, including the pros and cons of each design deployed. Besides that, the summary
details of datasets, loss function, and evaluation metrics used in the researches will be
reviewed as well.

3. Results

This section will discuss the relevant works on image super-resolution techniques that
have been proposed by researchers. Section 3.1 will discuss the type of datasets being used
by researchers for image super-resolution development. In Section 3.2, the loss function
that is introduced into the model training as learning strategies will be summarized. Next,
the performance metric to evaluate the model performance will be studied in Section 3.3.
Lastly, the algorithm techniques developed by different researchers will be compared and
reviewed in Section 3.4.

3.1. Datasets

A dataset is commonly used in machine learning applications, including deep learning,
to teach a model network to solve a specific problem. In the image super-resolution
development field, there are various types of datasets being used by many researchers
to build a model and to test the model performance. From the 18 articles that have been
reviewed, 11 datasets were discovered.

The T91 dataset that contains 91 images is one of the image datasets used for model
training. The T91 dataset has an average resolution of 264 × 204 pixels and average
pixels of 58,853. The contents in the dataset are made up of car, flower, fruit, human
face, and so on [3]. SRCNN [24], fast super resolution convolution neural network (FSR-
CNN) [27], very deep super resolution (VDSR) [28], deep recursive convolution network
(DRCN) [29], deep recursive residual network (DRRN) [30], global learning residual learn-
ing (GLRL) network [31], deep residual dense network (DRDN) [32] and fast global learning
residual learning (FGLRL) network [33] are the algorithms that used T91 datasets as a
training dataset.

Since the number of images in T91 was insufficient for the training purpose, some
researchers included the Berkeley segmentation dataset 200 (BSDS200). The BSDS200
dataset contains images of animals, buildings, food, landscape, people, and plants as
content. A total of 200 images can be found in this dataset with an average resolution of
435 × 367 pixels, and average pixels of 154,401 [34]. VDSR, DRRN, GLRL, DRDN, and
FGLRL were the models built with BSDS200 as an additional training dataset. However,
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for FSRCNN, this dataset was used as a testing dataset. Dilated residual dense network
(Dilated-RDN) [35] was another algorithm that used BSDS200 for training the model.

Another dataset that is widely used by many researchers is the DIVerse 2K resolution
(DIV2K) image dataset. DIV2K dataset consists of 800 training images and 200 validation
images. The images have an average resolution of 1972 × 1437 pixels and average pix-
els of 2,793,250. Environment, flora, fauna, handmade objects, people, and scenery are
the key items found in the dataset [36]. Enhanced deep residual network (EDSR) [37],
multi-connected convolutional network for super-resolution (MCSR) [38], cascading resid-
ual network (CRN) [39], enhanced residual network (ERN) [39], residual dense network
(RDN) [40], Dilated-RDN [35], dense space attention network (DSAN) [41] and dual-branch
convolutional neural network (DBCN) [42] were the algorithms that used the DIV2K dataset
as their training dataset.

The ImageNet dataset is also used in two algorithms among the 18 articles. Efficient
sub-pixel convolutional neural network (ESPCN) [43] and super resolution dense connected
convolutional network (SRDenseNet) [44] were the two algorithms that use this dataset
to train a model. The ImageNet dataset is one of the largest datasets with more than 3.2
million images that are open publicly for data analytics development purposes [45]. The
ImageNet dataset contains images of mammals, birds, fish, reptiles, amphibians, vehicles,
furniture, musical instruments, geological formations, tools, flowers and fruit.

The DIV2K and BSDS200 datasets were also used as testing datasets to evaluate model
performance. EDSR, MCSR, CRN, ERN, and RDN included DIV2K for model evaluation,
whereas FSRCNN, ESPCN, and DRDN included BSDS200 to evaluate the model. There
are two datasets, which are Set5 and Set14, used by all algorithms, except for MCSR and
DRDN, for model evaluation. The Set5 dataset contained only five images, which are
images of a baby, a bird, a butterfly, a head, and a woman. The images are in PNG format at
an average resolution of 313 × 336 pixels and average pixels of 113,491. The Set14 dataset
consisted of 14 images with key items of humans, animals, insects, flowers, vegetables,
comics, and slides. The average resolution and average pixels of the images in this dataset
were 492 × 446 pixels and 230,203, respectively.

Three more types of datasets were also found to be used for model evaluation. They
were the Berkeley segmentation dataset 100 (BSDS100), Urban100, and Manga109 [46].
BSDS100 was used by VDSR, EDSR, CRN, ERN, DRCN, DRRN, GLRL, FGLRL, SR-
DenseNet, RDN, Dilated-RDN, DBCN, and SICNN as testing dataset. This dataset con-
tained 100 images with key contents of animals, buildings, food, landscapes, people,
and plants. Meanwhile, Urban100 contained 100 images and an average resolution of
984 × 797 pixels with average pixels of 774,314. The contents of the images were related
to objects, such as architecture, cities, structures, and urban. It was used by VDSR, EDSR,
CRN, ERN, DRCN, FGLRL, SRDenseNet, RDN, Dilated-RDN, DBCN, and SICNN.

The Manga109 dataset was a dataset with manga volumes [47]. There were 109 PNG
format images found in this dataset at an average resolution of 826 × 1169 pixels and
average pixels of 966,111. Only RDN and SICNN included Manga109 datasets as testing
datasets for the model. Table 1 summarizes the characteristics of datasets that have been
used in image super-resolution algorithm development. Table 2 lists all the algorithms
with their corresponding training and testing datasets. In Table 2, the label “T” stands for
training dataset, whereas “E” stands for evaluation or testing dataset.

3.2. Loss Function

A loss function is a type of learning strategy used in machine learning to measure
prediction error or reconstruction error, and it provides a guide for model optimization [3].
Two common loss functions were found in the 18 articles. One of the loss functions was
a mean square error (MSE), which is also known as L2 loss. MSE can be expressed as in
Equation (1).

L2 =
1

hwc ∑
i,j,k

(
Îi,j,k − Ii,j,k

)2
(1)
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where h is the height of the image, w is the width of the image, c is the number of channels of
the image, Îi,j,k was the constructed individual pixels value at row i, column j and channel
k, Ii,j,k was the original individual pixel value. L2 loss is good for a model to get a high
peak-signal-to-noise ratio (PSNR) [48], an indicator to evaluate model performance which
will be discussed in Section 3.3. SRCNN, FSRCNN, ESPCN, VDSR, DRRN, GLRL, DRDN,
FGLRL and SRDenseNet were the algorithms that use MSE as learning strategies.

Table 1. Characteristics of datasets (modified from Wang, Chen and Hui [3]).

Datasets Amount Avg. Resolution Avg Pixels Format Key Contents

T91 91 264 × 204 (58,853) PNG car, flower, fruit, human face, etc.
Set5 5 313 × 336 (113,491) PNG baby, bird, butterfly, head, woman

Set14 14 492 × 446 (230,203) PNG humans, animals, insects, flowers, vegetables, comic, slides, etc.
DIV2K 1000 1972 × 1437 (2,793,250) PNG environment, flora, fauna, handmade object, people, scenery, etc.

BSDS100 100 432 × 370 (154,401) JPG animal, building, food, landscape, people, plant, etc.
BSDS200 200 435 × 367 (154,401) JPG animal, building, food, landscape, people, plant, etc.

Manga109 109 826 × 1169 (966,111) PNG manga volume
Urban100 100 984 × 797 (774,314) PNG architecture, city, structure, urban, etc.

ImageNet >3.2 million - - JPG mammal, bird, fish, reptile, amphibian, vehicle, furniture,
musical instrument, geological formation, tool, flower, fruit

Table 2. List of algorithms used in different algorithms (T stands for training datasets whereas E stands for evalua-
tion datasets).

Algorithms T91 Set5 Set14 DIV2K BSDS100 BSDS200 Manga109 Urban100 ImageNet

SRCNN T E E
FSRCNN T E E E
ESPCN E E E T
VDSR T E E E T E
EDSR E E T/E E E
MCSR T/E
CRN E E T/E E E
ERN E E T/E E E

DRCN T E E E E
DRRN T E E E T
GLRL T E E E T
DRDN T/E T/E
FGLRL T E E E T E

SRDenseNet E E E E T
RDN E E T/E E E E

Dilated-RDN E E T E T E
DSAN E E T
DBCN E E T E E
SICNN E E E E E

Another type of loss is the mean absolute error (MAE), also known as L1 loss. Although
L1 loss may not help the model in achieving a better PSNR as compared to L2 loss, L1 loss
provides a powerful accuracy and convergence ability to the model [39]. EDSR, CRN,
ERN, DRCN, RDN, Dilated-RDN, DSAN, DBCN, and SICNN were using MAE as learning
strategies during the model training. MAE can be expressed as in Equation (2).

L1 =
1

hwc ∑
i,j,k

∣∣∣ Îi,j,k − Ii,j,k

∣∣∣ (2)
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MCSR proposed a custom loss function capable of coping with the outliers properly,
which MSE and MAE cannot do. The proposed loss function, L(r,α,β) was defined as in
Equation (3)

L(r, α, β) =



log10

[
1
2

(
r
β

)2
+ 1
]

α = 0

1− exp
[
− 1

2

(
r
β

)2
]

α = −∞

ρ(α)
α

[(
1

ρ(α)

(
r
β

)2
+ 1
) α

2
]

otherwise

(3)

where r is the pixel-wise error between predicted and actual HR images, ρ(α) = max(1,2-α),
α is the shape parameter that controls the robustness of the loss, and β is the scale parameter
that controls the size of the loss’s quadratic bowl. Equation (3) was a generalized equation
that can be represented as L1 loss, L2 loss, Charbonnier loss (L1 − L2 loss) by changing the
value of α [49]. For example, when α = 2, Equation (3) will behave similarly to the L2 loss.
When α = 1, Equation (3) will behave like the L1 loss. Therefore, the tunable parameters
provided a flexibility to the model to minimize the loss value and optimizing the training
process without constraining use to a single type of loss function. As such, MCSR used
α = 1.11 and β = 0.05 as the loss function settings. Table 3 summarized all the algorithms
corresponding to the loss function used.

Table 3. Summary table of algorithms corresponding to their loss functions and evaluation metrics
used.

Algorithms
Loss Functions Evaluation Metrics

MSE (L2) MAE (L1) Custom Loss PSNR SSIM

SRCNN
√ √ √

FSRCNN
√ √ √

ESPCN
√ √

VDSR
√ √ √

EDSR
√ √ √

MCSR
√ √ √

CRN
√ √ √

ERN
√ √ √

DRCN
√ √ √

DRRN
√ √ √

GLRL
√ √ √

DRDN
√ √ √

FGLRL
√ √ √

SRDenseNet
√ √ √

RDN
√ √ √

Dilated-RDN
√ √ √

DSAN
√ √

DBCN
√ √ √

SICNN
√ √ √

3.3. Evaluation Metrics

Evaluation metrics provided an indicator to researchers to evaluate the model perfor-
mance developed. It is also a standard benchmarking so that the performance between the
different models can be compared. Two types of metric indicators were found, which were
the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).

PSNR was used to measure the quality of the reconstruction image [3]. It was defined
as the ratio of the maximum pixel value over the mean squared error between the original
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image and the reconstructed image. In simple expression, PSNR can be expressed as in
Equation (4):

PSNR = 10 log10

(
L2

1
N ∑N

i=1
(

I(i)− Î(i)
)2

)
(4)

where L was the maximum pixel value (equals to 255 when an 8-bit pixel value was used), N
was the number of images, I(i) was the original image, and Î(i) was the reconstructed image.

SSIM measured the structural similarity between images in terms of luminance, con-
trast, and structures [3]. The comparison expression for luminance and contrast denoted as
Cl
(

I, Î
)

and Cc
(

I, Î
)

can be obtained from Equations (5) and (6), respectively:

Cl
(

I, Î
)
=

2µIµ Î + C1

µI + µ Î + C1
(5)

Cc
(

I, Î
)
=

2σIσÎ + C2

σI + σÎ + C2
(6)

where µI is the mean value of the original image intensity, µ Î is the mean value of the
reconstructed image intensity, σI is the standard deviation of the original image intensity,
and σÎ is the standard deviation of the reconstructed image intensity. C1 and C2 were the
constants for avoiding instability, which were expressed as C1 = (k1L)2 and C2 = (k2L)2,
respectively, where k1 << 1 and k2 << 1.

Image structure was related to the correlation coefficient between the original image
I and the reconstructed image Î. Therefore, for structure comparison, it can be obtained
from Equation (7):

Cs
(

I, Î
)
=

σI Î + C3

σIσÎ + C3
(7)

where σI Î was the covariance between I and Î that can be expressed as Equation (8) and C3
was the constant for stability.

σI Î =
1

N − 1

N

∑
i=1

(I(i)− µI)
(

Î(i)− µ Î
)

(8)

From Equations (5)–(7), SSIM can be calculated as in Equation (9):

SSIM
(

I, Î
)
=
[
Cl
(

I, Î
)]α·

[
Cc
(

I, Î
)]β·

[
Cs
(

I, Î
)]γ (9)

where α, β, and γ were the control parameters for adjusting the importance of luminance,
contrast, and structure, respectively. Table 3 visualized the evaluation metrics used by
different algorithms.

3.4. Algorithms

In this subsection, a total of 18 algorithms will be reviewed. Their network design
deployed and the results obtained will be compared.

3.4.1. Super-Resolution Convolutional Neural Network (SRCNN)

SRCNN was the pioneering work of using a convolutional neural network (CNN)
in image super-resolution reconstruction development [24,48]. The idea of SRCNN was
inspired by sparse coding-based super-resolution methods. SRCNN consisted of three
main parts, namely patch extraction, non-linear mapping, and image reconstruction, which
can be observed in Figure 2. The patch extraction extracts features from the bicubic
interpolation. Extracted features were then passed through non-linear mapping, where
each of the high-dimensional features was mapped on another high-dimensional feature.
Finally, the output feature from the last layer of non-linear mapping was reconstructed into
the HR image through the convolution process.
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When comparing SRCNN with sparse coding-based methods, they have similar
operations, which include patch extraction, non-linear mapping, and image reconstruction.
The difference observed between them was that the filters in SRCNN were available for
optimization through end-to-end mapping, but in a sparse coding-based method, only
certain operations were. Another advantage observed from SRCNN was that different filter
sizes can be set in non-linear mapping, and therefore the whole operation can utilize the
information obtained. These two advantages have shown that the PSNR value of SRCNN
was greater than the sparse coding-based method.

3.4.2. Fast Super-Resolution Convolutional Neural Network (FSRCNN)

Dong et al. [27] later discovered that SRCNN required more convolutional layers in
the non-linear mapping to get a better result. However, increasing the number of layers
increases the running time, and is difficult for the PSNR value to converge during the
training process. Therefore, FSRCNN was proposed to overcome these problems. FSRCNN
contained five major parts, shown in Figure 3, namely, feature extraction, shrinking, non-
linear mapping, expanding, and image reconstruction. One of the differences in FSRCNN
from SRCNN was the addition of a shrinking layer and an expanding layer in FSRCNN.
The shrinking layer reduces the dimension of extracted features from the previous layer.
Meanwhile, the expanding layer works in reverse to the shrinking process, where it
expands the output feature of the last layer in non-linear mapping. Besides, FSRCNN used
deconvolution as an upsampling module.
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FSRCNN was significantly proven that its PSNR value achieved a 1.3% improvement
compared to SRCNN. Besides, FSRCNN also achieved an average 78% reduction in run-
ning time compared to SRCNN. The improvements were due to the following changes:
(a) deconvolutional kernel was used instead of bicubic interpolation which proved that
deconvolutional kernel outperformed the bicubic kernel; (b) shrinking layer was used,
which reduced the overall number of parameters in the model, which saved training time
and reduced memory consumption; (c) number of filters used in FSRCNN was less than
that in SRCNN, which in turn improved the model performance and reduced running time;
(d) filter size in FSRCNN was smaller than SRCNN, resulting in fewer parameters and the
network was able to train more efficiently in a shorter time.
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3.4.3. Efficient Sub-Pixel Convolutional Neural Network (ESPCN)

ESPCN was developed to overcome the complexity issue in SRCNN as it grew quadrat-
ically. This drawback in SRCNN caused high computation cost with a factor of n2 when
upscaling factor, n, was applied to LR image using bicubic interpolation. Besides, the inter-
polation method did not bring additional information to solve the ill-posed reconstruction
problem [43]. The design of ESPCN is shown in Figure 4. The design was the same as that
in SRCNN, exception for the upsampling module. In ESPCN, sub-pixel convolution was
used instead of bicubic interpolation.
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The deployment of sub-pixel convolution in ESPCN has demonstrated a positive
result in PSNR value compared to SRCNN. It was observed that the weight of the first
layer filter and the last layer filter in ESPCN after using sub-pixel convolution has a strong
similarity in terms of their features. Shi et al. [39] performed an additional experiment to
compare the effect of using a tanh function and rectifier linear unit (ReLU) as activation
functions after the sub-pixel convolution. As a result, the tanh activation function showed
better results when compared to the ReLU activation function.

3.4.4. Very Deep Super Resolution (VDSR)

The network design of VDSR is shown in Figure 5. It was proposed by Kim et al. [28] to
overcome the problem of requiring more mapping layers to get better model performance
in SRCNN. VDSR introduced residual learning between the input and output of the final
feature mapping layer. Residual learning added output features from the final layer to the
interpolated features through a skip connection. Since low-level features and high-level
features are highly correlated, the skip connection helped to utilize the features from the
low-level layer by combining them with the high-level features and improved the model
performance. Therefore, the skip connection was able to solve the vanishing gradients
problem caused by the increasing number of layers in the model. The deployment of
residual learning in VDSR has two benefits over SRCNN. First, it helped the network to
achieve convergence in a shorter time since the LR image has a high correlation with the
HR image. A total of 93.9% reduction in running time was observed in the VDSR model.
Second, VDSR provided a better PSNR value than SRCNN.
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3.4.5. Enhanced Deep Residual Network (EDSR)

Inspired by the residual network in VDSR and network architecture in SRResNet,
EDSR was proposed to overcome the problem of heavy computation time and memory con-
sumption due to the application of bicubic interpolation as an upsampling technique [37].
EDSR as showed in Figure 6 contained three major modules, which were feature extraction,
residual block module, and upsampling module. The idea of the residual block came from
SRResNet, whereas the skip connection idea was from VDSR. Within the individual resid-
ual block, residual learning was also applied between the input and output features. The
difference between VDSR and EDSR was that some of the layers in VDSR were replaced
with residual blocks. Besides, EDSR used sub-pixel convolution as an upsampling module
while VDSR used bicubic interpolation. As compared to SRResNet, batch normalization
(BN) layers were removed in the residual block in the EDSR model.
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EDSR utilized the information from each residual block by introduced residual learn-
ing within the block, and this significantly improved the PSNR value by about 3.84%
compared to VDSR. Besides, the adoption of sub-pixel interpolation also helped model
performance improvement, other than computation time and memory consumption re-
duction. By comparing with SRResNet, removing BN that contained the same amount of
memory as the preceding convolution layer also saved about 40% of memory usage during
the training process. Besides, removing BN can improve model performance as BN will get
rid of the range of flexibility after normalizing the features.

3.4.6. Multi-Connected Convolutional Network for Super-Resolution (MCSR)

Chu et al. [38] mentioned that EDSR failed to utilize the low-level features although
it reduced the vanishing-gradient problem, in which EDSR still has the potential to get
better performance. Besides, the residual learning in VDSR is only adopted in between the
first layer and last layer of non-linear mapping in which the performance may degrade.
Therefore, MCSR, with network design shown in Figure 7, was developed to overcome the
problems. Instead of using a single path network in the residual block from EDSR, MCSR
modified it to a multi-connected block (MCB) that used a multi-path network. In MCSR,
the residual learning used the concatenation technique to concatenate features instead of
adding the features as in EDSR.

The custom design loss function used in MCSR provided flexibility to the model
to minimize loss value and optimized the training process. As a result, MCSR showed
an improvement of 0.79% in PSNR value compared to EDSR. Besides the help from the
loss function, the improvement made was also due to rich information in local features
(feature in multi-connected block) being extracted and combined with high-level features
via concatenation.
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3.4.7. Cascading Residual Network (CRN)

Recently, Lee et al. [39] designed CRN, as shown in Figure 8, to overcome the massive
parameters in the EDSR network structure caused by increasing depth substantially to
improve the performance of the EDSR model. The network design of CRN was also
inspired by the EDSR network by replacing the residual block in EDSR with a locally
sharing group (LSG). The LSG consisted of a number of local wider residual blocks (LWRB).
LWRB were the same as the residual block in EDSR except that the number of the channel
used in the convolutional layer before ReLU activation was bigger, whereas a smaller
channel was used in the second convolutional layer. Each LSG and each LWRB were
adopted with the residual learning network, which can be observed in Figure 8.
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The experiment showed that the performance of the CRN model was comparative
with the EDSR model. Although the PSNR value of CRN was slightly lower than that
in EDSR, CRN performed four times faster than EDSR. This is because CRN utilized
all the features, including LWRB, with the aid of residual learning. As a result, CRN
required smaller depth to achieve the close performance to EDSR, and thus shorter time
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was required to achieve convergence in PSNR value. For example, EDSR used 32 residual
blocks; while CRN used 4 LSGs with each LSG made up of 4 LWRBs, which is equivalent
to 16 residual blocks.

3.4.8. Enhanced Residual Network (ERN)

Lee et al. [39] also proposed another network called ERN, which performed slightly
better than CRN. The structure of ERN was also an idea coming from EDSR with an
additional skip connection between LR and output of the last LWRB via multiscale block
(MSB), which has been illustrated in Figure 9. The purpose of MSB was to extract low-level
features directly from the original image at different scales. Instead of using LSG, ERN
deployed LWRB in non-linear mapping.
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By comparing ERN with EDSR, ERN’s performance still has some small gaps to
achieve the same performance as EDSR. However, ERN worked better than CRN. Since
ERN only used 16 LWRBs in the model, which was a significantly smaller depth compared
to EDSR, CRN has a shorter running time, which is four times faster than EDSR. As both
CRN and ERN adopted residual learning to utilize all the feature information from low
levels in the network, this also became one of the benefits over FSRCNN and ESPCN.

3.4.9. Deep-Recursive Convolutional Network (DRCN)

DRCN was the first algorithm that applied a recursive method for image super-
resolution [29]. As shown in Figure 10, DRCN consisted of three major parts, namely
embedding net, inference net, and reconstruction net. The embedding net extracted features
from the interpolated image. Extracted features were then passed through an inference net
in which all the filters sharing the same weight. All the intermediate outputs from each
convolutional layer in the inference net and interpolated features were convoluted before
they were added together to form an HR image.

DRCN was designed to overcome the problem of requiring many mapping layers
to achieve better performance in SRCNN. Since the recursive method was used, shared
weight allowed the network to widen the receptive field without increasing the model
capacity, and therefore, fewer resources were required during the training process. Besides,
the assembling of all intermediate outputs from the inference net significantly improved
the model. The residual learning was also included in the network, which gave additional
benefit to the model to achieve better convergence. Overall, an improvement of 2.44% was
observed in DRCN compared to SRCNN.



Electronics 2021, 10, 867 14 of 33Electronics 2021, 10, x FOR PEER REVIEW 14 of 33 
 

 

 
Figure 10. DRCN network structure. 

DRCN was designed to overcome the problem of requiring many mapping layers to 
achieve better performance in SRCNN. Since the recursive method was used, shared 
weight allowed the network to widen the receptive field without increasing the model 
capacity, and therefore, fewer resources were required during the training process. Be-
sides, the assembling of all intermediate outputs from the inference net significantly im-
proved the model. The residual learning was also included in the network, which gave 
additional benefit to the model to achieve better convergence. Overall, an improvement 
of 2.44% was observed in DRCN compared to SRCNN. 

3.4.10. Deep-Recursive Residual Network (DRRN) 
Two drawbacks were observed from DRCN; one of them was that DRCN requires 

supervision on every recursion, which was a burdening process. Second, there was only 
a single type of weight being shared among all convolutional layers in the inference net. 
With these drawbacks observed, DRRN was developed with the network structure shown 
in Figure 11a. By using the basic idea from DRCN, the inference net was replaced with the 
recursive block. The recursive block consisted of multiple residual units, with each resid-
ual unit having two convolutional layers. One of the convolutional layers in each residual 
unit (light blue block in Figure 11b) shared the same weight, while the other convolutional 
layers (light green block in Figure 11b) shared the other same weight. 

Figure 10. DRCN network structure.

3.4.10. Deep-Recursive Residual Network (DRRN)

Two drawbacks were observed from DRCN; one of them was that DRCN requires
supervision on every recursion, which was a burdening process. Second, there was only
a single type of weight being shared among all convolutional layers in the inference net.
With these drawbacks observed, DRRN was developed with the network structure shown
in Figure 11a. By using the basic idea from DRCN, the inference net was replaced with the
recursive block. The recursive block consisted of multiple residual units, with each residual
unit having two convolutional layers. One of the convolutional layers in each residual
unit (light blue block in Figure 11b) shared the same weight, while the other convolutional
layers (light green block in Figure 11b) shared the other same weight.
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The PSNR value of DRRN showed a 0.7% improvement compared to DRCN. The
improvement made was observed for the following points. First, the involvement of
residual learning in the residual block helped to solve the degradation problem affecting
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the model performance. Second, many computation resources can be saved as many layers
share the same weights. Besides that, DRRN relieved the burden of supervision on every
recursion by designing a recursive block with a multi-path structure.

3.4.11. Global Learning Residual Learning Network (GLRL)

Inspired by the work in SRCNN, DRCN, and DRRN, GLRL was developed by
Han et al. [31] with the network structure illustrated in Figure 12. GLRL combined the
basic design from SRCNN, intermediate output design from DRCN, and recursive block
design from DRRN. In non-linear mapping, a local residual block (LRB) was used, and each
residual block has a similar structure with the recursive block in DRRN. Some modifications
have been made for the residual block. First, a parameter rectifier linear unit (PReLU) was
applied after the convolutional layer. Second, an additional process was made to the input
feature before they were added to each residual unit. All the intermediate outputs from
each local residual block performed a similar step as in DRCN for reconstruction purposes.
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A comparison has been made between SRCNN and GLRL in terms of their PSNR value.
The results showed that GLRL achieved a 0.8% improvement as compared to SRCNN. An
additional experiment was carried out to compare the effect of the number of LRB on the
model performance. The greater the number of LRBs, the better the performance of the
model. The adoption of the PReLU layer consisted of a learnable negative coefficient able
to avoid the “death structure” caused by zero gradients in the ReLU.

3.4.12. Fast Global Learning Residual Learning Network (FGLRL)

Han et al. [33] later extended their work to modify the network structure in GLRL, and
FGLRL was created. In GLRL, SRCNN design was used as a base design, but in FGLRL,
FSRCNN was used as a base design. Therefore, FGLRL consisted of five parts, as shown in
Figure 13, which were patch extraction, shrinking, non-linear mapping, expanding, and
reconstruction. PReLU was used as an activation function in this network. In GLRL, bicubic
interpolation was used as upsampling kernel, whereas, in FGLRL, the deconvolutional
layer was used in the upsampling module.

FGLRL worked better in the Set5 dataset at the scale factor when compared to the
DRCN model. When compared to GLRL, FGLRL showed a 1.3% improvement in PSNR
value. Although the model performance of FGLRL may not be satisfactory, the model
running time still got the advantage over DRCN and GLRL. FGLRL was running two times
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faster than DRCN and GLRL. This is because the shrinking layer that reduced the dimension
of patch extraction features helped to reduce memory resources and running time.
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3.4.13. Deep Residual Dense Network (DRDN)

In DRRN, the skip-connection is only applied between the input feature and the
output of the residual unit. DRRN was modified for further improvement, and DRDN was
created. DRDN’s structure is illustrated in Figure 14. DRDN consisted of shallow feature
extraction, residual dense network, and fusion reconstruction. Since the dense connection
was introduced within the residual block, the residual block in DRDN was also known as
a dense block (DB). Fusion reconstruction concatenated all the intermediate output from
each dense block before the HR image was reconstructed.
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Dense connection brought all the input features to all inputs of each convolutional
layer. Besides, every output from each convolutional layer will also be brought to the input
of the subsequent layer. Therefore, a dense connection linked all the features from each
of the convolutional layers within the DB. DRDN benefitted in terms of computing cost
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and ran faster than DRRN because the number of network layers used in DRDN was less
than that in DRRN. Besides, the combination of all intermediate outputs from the dense
block at different depths helped the model to converge faster, which was two times faster
than DRRN.

3.4.14. Super Resolution Dense Connected Convolutional Network (SRDenseNet)

In SRCNN and VDSR, these two networks did not fully utilize all the features, espe-
cially only involving the high-level features at the very deep end for reconstruction. This
may be caused by loss of rich information, and the model performance will be limited.
Therefore, SRDenseNet, as shown in Figure 15, was proposed to overcome the problem.
SRDenseNet design was inspired by the idea of DenseNet that has the capability of im-
proving the flow of information through the network. Five major parts were performed
in the network design, namely, feature extraction, residual dense network, bottleneck
layer, upsampling module, and reconstruction module. In the residual dense network,
the individual dense block contained a series of convolutional process with deployed
dense connections.
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SRDenseNet improved the PSNR value by about 4.3% when compared to SRCNN.
The model also improved the PSNR value by 2.0% when compared to VDSR and DRCN.
Therefore, the adoption of dense connection in dense blocks significantly showed that
it was able to solve the gradient vanishing problem, which often happens when the
network becomes deeper. Besides, the adoption of the deconvolutional layer also helped in
improving the reconstruction process since the layers are able to learn the upscaling filters.

3.4.15. Residual Dense Network (RDN)

SRDenseNet still had a minor disadvantage, although it performed well compared
to SRCNN, VDSR, and DRCN. The disadvantage was that the mode will be hard to train
when it got wider with dense blocks. Thus, RDN [40] was proposed, with its network
design shown in Figure 16. In RDN, residual dense block (RDB) was used instead of DB.
Other than dense connection, residual learning is also adopted within RDB. The residual
learning in RDB is also known as local residual learning. Other than that, the intermediate
output from each RDB was fused through concatenation before global residual learning
was applied.

The combination of global residual learning, local residual learning, and dense connec-
tion have shown that RDN performed better compared to SRDenseNet. An improvement
of 1.3% was achieved compared to SRDenseNet. The improvement can be explained by the
contiguous memory mechanism used in the network, which allowed the state of preceding
RDBs to direct each layer of the current RDB, which strengthens the relationship between a
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lower feature and a high feature. Besides, the local feature fusion in RDB allowed a larger
growth rate while maintaining the stability of the network.
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3.4.16. Dilated Residual Dense Network (Dilated-RDN)

Dilated-RDN as shown in Figure 17 was developed by Shamsolmoali et al. [35]. The
network design was inspired by the idea from DenseNet and RDN, and therefore the overall
structure was very similar to the RDN network. One of the unit parts in this network was
the introduction of an optimized unit (OUnit) activation function. OUnit was a learnable
activation function that was better than ReLU activation that depended on the threshold
settings of the function. RDB structure was the same as that in RDN. One of the major
differences between Dilated-RDN and RDN was the upsampling module. Dilated-RDN
used bicubic interpolation, while RDN used sub-pixel convolution for upsampling.
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An improvement of about 3.0% was observed in the PSNR value when compared to
RDN and DRRN. By looking at running time as well, Dilated-RDN also ran faster than
RDN and DRRN. The secret behind the improvement achieved was the use of dilated filters
for all convolutional layers. Shamsolmoali et al. mentioned that removing striding was
able to improve the image resolution, but it reduced the receptive field in the subsequent
layers, which resulted in a lot of rich information possibly being lost. Therefore, dilated
convolution was used to increase the receptive field in higher layers and in removing
the striding.

3.4.17. Dense Space Attention Network (DSAN)

A recent algorithm called DSAN [41] was developed with inspiration from RDN. Both
DSAN and RDN have a similar structure except in the residual block. In RDN, the residual
dense block (RDB) was used, whereas, in DSAN, dense space attention block (DSAB) was
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used. The difference between DSAB and RDB was the addition of the convolution block
attention module (CBAM) in DSAB, which can be observed in Figure 18. CBAM was an
attention mechanism that adaptively amplified and shrank features from each channel.
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The PSNR value of DSAN when compared to SRDN, SRCNN and VDSR showed an
improvement of 1.2%, 5.5%, and 2.5%, respectively. The improvement result showed that
the adoption of SBAM gave a great advantage to the network by giving more attention to
the useful channel of the features and enhances its discrimination abilities. Besides, both
global residual learning and local residual learning also helped to utilize all features from
low feature till the end of the network to improve the model performance. Other than that,
the deployment of dense connection further utilized the features within DSAB, which gave
an additional benefit to the model.

3.4.18. Dual-Branch Convolutional Neural Network (DBCN)

For most of the algorithms that have been reviewed in the previous section, they
have simply stacked convolution layers in a chain way. This has increased the running
time and memory complexity of the model. Therefore, a dual branch-based image super-
resolution algorithm was proposed by Gao et al. [42], named DBCN. Figure 19 showed
the network design of a DBCN. In DBCN, the network split into two branches, where one
branch adopted a convolutional layer with Leaky ReLU as the activation function, while
the other branch adopted dilated convolutional layer with Leaky ReLU as the activation
function. The output from each branch would then be fused through the concatenation
process before it was upsampled. Another point that showed that DBCN was different from
other networks was the combination of both bicubic interpolation with other upsampling
methods, such as deconvolutional kernel for the reconstruction process.

A few beneficial aspects can be observed from the DBCN network perspective. First,
the dual-branch structure solved the complex network problem that is often observed in
chain-way-based networks. Second, the adoption of a dilated convolutional filter enhanced
image quality during the reconstruction. Third, residual learning gave additional benefit to
the model to achieve convergence faster. From these aspects mentioned, DBCN improved
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at a rate of 0.68% compared to DRCN, whereas 0.74% improvement was made compared
to VDSR.
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3.4.19. Single Image Convolutional Neural Network (SICNN)

Another type of dual-branch-based network was proposed, known as SICNN, as
shown in Figure 20. The operation of SICNN was slightly different from DBCN. In SICNN,
one of the branches was processed using deconvolutional kernel as upsample kernel;
meanwhile, the other branch was processed using a bicubic interpolation kernel. The
output from each branch was then fused through concatenation. Similar to DBCN, features
from the bicubic interpolated image were added to the fused features before an HR image
was reconstructed.
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Figure 20. SICNN network structure.

SICNN achieved about 2.0% improvement in PSNR value compared to RDN, while
it achieved about 4.4% improvement when compared to SRCNN. The contribution to the
improvement was due to the following behaviors. First, a different scale from the LR image
was extracted through different branches, which allowed useful information to be included
during the model training. Besides, the deconvolutional layer enlarged the feature map
and simplified the calculation, and sped up the convergence. Finally, the adoption of
residual learning gave an additional point to the model by making the model converge
faster. Table 4 summarizes the quantitative results obtained by authors for each of the
algorithms developed.
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Table 4. Mean PSNR and SSIM for each of the algorithms. The “-” indicates no result found in the study.

Scale Algorithms
Set5 Set14 BSD100 BSD200 Urban100 DIV2K Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

2

SRCNN 36.66 0.9542 32.45 0.9067 - - - - - - - - - -
FSRCNN 37.00 0.9558 32.63 0.9088 - - 31.80 0.9074 - - - - - -
ESPCN - - - - - - - - - - - - - -
VDSR 37.53 0.9587 33.03 0.9124 31.90 0.8960 - - 30.76 0.9140 - - - -
EDSR 38.11 0.9601 33.92 0.9195 32.32 0.9013 - - 32.93 0.9351 35.03 0.9695 - -
MCSR - - - - - - - - - - 35.09 0.9702 - -
CRN 38.17 0.9610 33.84 0.9203 32.30 0.9012 - - 32.69 0.9334 - - - -
ERN 38.18 0.9610 33.88 0.9195 32.30 0.9011 - - 32.66 0.9332 - - - -

DRCN 37.63 0.9588 33.04 0.9118 31.85 0.8942 - - 30.75 0.9133 - - - -
DRRN 37.74 0.9591 33.23 0.9136 32.05 0.8973 - - 31.23 0.9188 - - - -
GLRL 36.54 0.9550 32.56 0.9102 31.41 0.8890 - - - - - - - -

FGLRL 37.75 0.9633 33.11 0.9133 32.30 0.8842 - - 29.99 0.9102 - - - -
DRDN - - - - - - - - - - - - - -

SRDenseNet 32.02 0.8934 28.50 0.7782 27.53 0.7337 - - 26.05 0.7819 - - - -
RDN 38.30 0.9616 34.10 0.9218 32.40 0.9022 - - 33.09 0.9368 - - 39.38 0.9784

Dilated-RDN 38.33 0.9619 34.15 0.8223 32.44 0.9026 - - 33.13 0.9372 - - - -
DSAN - - - - - - - - - - - -
DBCN 37.66 0.9586 33.15 0.9135 31.94 0.8961 - - 31.10 0.9169 - - - -
SICNN 33.76 0.9017 33.23 0.8524 33.21 0.8309 - - 32.65 0.8301 - - 32.91 0.8164

3

SRCNN 32.75 0.9090 29.30 0.8215 - - - - - - - - - -
FSRCNN 33.16 0.9140 29.43 0.8242 - - 28.60 0.8137 - - - - - -
ESPCN 33.13 - 29.49 - - - - - - - - - - -
VDSR 33.66 0.9213 29.77 0.8314 28.82 0.7976 - - 27.14 0.8279 - - - -
EDSR 34.65 0.9282 30.52 0.8462 29.25 0.8093 - - 28.80 0.8653 31.26 0.9340 - -
MCSR - - - - - - - - - - 31.36 0.9359 - -
CRN 34.60 0.9286 30.48 0.8455 29.20 0.8081 - - 28.62 0.8620 - - - -
ERN 34.62 0.9285 30.51 0.8450 29.21 0.8080 - - 28.61 0.8614 - - - -

DRCN 33.82 0.9226 29.76 0.8311 28.80 0.7963 - - 27.15 0.8276 - - - -
DRRN 34.03 0.9244 29.96 0.8349 28.95 0.8004 - - 27.53 0.8378 - - - -
GLRL 33.09 0.9124 29.59 0.8705 28.59 0.7891 - - - - - - - -

FGLRL 32.95 0.9105 29.51 0.8325 28.66 0.7870 - - 27.30 0.8280 - - - -
DRDN - - - - - - - - - - - - - -

SRDenseNet - - - - - - - - - - - - - -
RDN 34.78 0.9300 30.67 0.8482 29.33 0.8105 - - 29.00 0.8683 - - 34.43 0.9498

Dilated-RDN 34.83 0.9304 30.68 0.8481 29.35 0.8109 - - 29.06 0.8686 - - - -
DSAN 34.39 - 30.28 - - - - - - - - - - -
DBCN 33.97 0.9232 29.95 0.8345 28.91 0.7993 - - 27.45 0.8350 - - - -
SICNN 31.25 0.7869 30.97 0.7792 32.62 0.7902 - - 31.87 0.8133 - - 31.98 0.7902
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Table 4. Cont.

Scale Algorithms
Set5 Set14 BSD100 BSD200 Urban100 DIV2K Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

4

SRCNN 30.49 0.8628 27.50 0.7513 - - - - - - - - - -
FSRCNN 30.71 0.8657 27.59 0.7535 - - 26.98 0.7398 - - - - - -
ESPCN 30.90 - 27.73 - - - - - - - - - - -
VDSR 31.35 0.8838 29.77 0.8314 27.29 0.7251 - - 25.18 0.7524 - - - -
EDSR 32.46 0.8968 28.80 0.7876 27.71 0.7420 - - 26.64 0.8033 29.25 0.9017 - -
MCSR - - - - - - - - - - 29.44 0.9020 - -
CRN 32.34 0.8971 28.74 0.7855 27.66 0.7395 - - 26.44 0.7967 - - - -
ERN 32.39 0.8975 28.75 0.7853 27.70 0.7398 - - 26.43 0.7966 - - - -

DRCN 31.53 0.8854 28.02 0.7670 27.23 0.7233 - - 25.14 0.7510 - - - -
DRRN 31.68 0.8888 28.21 0.7720 27.38 0.7284 - - 25.44 0.7638 - - - -
GLRL 30.37 0.8635 27.53 0.8102 26.97 0.7190 - - - - - -

FGLRL 31.44 0.8846 28.05 0.7688 27.26 0.7244 - - 25.13 0.7501 - - - -
DRDN - - - - 26.92 - - - 24.53 - - - - -

SRDenseNet - - - - - - - - - - - - - -
RDN 32.61 0.9003 28.92 0.7893 27.80 0.7434 - - 26.82 0.8069 - - 31.39 0.9184

Dilated-RDN 32.64 0.9008 28.91 0.7892 27.84 0.7436 - - 26.87 0.8073 - - - -
DSAN - - - - - - - - - - - - - -
DBCN 31.78 0.8885 28.27 0.7733 27.40 0.7291 - - 25.55 0.7656 - - - -
SICNN - - - - - - - - - - - - - -
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In terms of qualitative evaluation, the characteristics of the images produced by each
algorithm were observed. By comparing SRCNN with the bicubic interpolation method,
it can be seen that the image produced by the interpolation method was blurry, and a
lot of details cannot be observed clearly as compared to SRCNN. Not much difference
can be observed from the outputs of FSRCNN and ESPCN when these outputs are being
compared with the output from SRCNN. However, FSRCNN and ESPCN have a better
running speed compared to SRCNN.

With the introduction of residual learning in VDSR, the texture of the image was better
than SRCNN. The enhancement of the model through residual learning, such as EDSR,
MCSR, CRN, and ERN made the image texture better. DRCN that deployed both recursive
and residual learning produced sharper edges with respect to patterns. When compared
to SRCNN, the edge of SRCNN was blurred. DRRN achieved even better and sharper
edges when compared to DRCN. Both GLRL and FGLRL produced much clearer images
than DRCN. However, the texture of the images in GLRL and FGLRL were not as good
as DRCN.

The image produced by DRDN achieved a better texture compared to VDSR. SR-
DenseNet reconstructed images with a better texture pattern and was able to avoid the
distortions, which DRCN, VDSR, and SRCNN could not surpass. RDN and dilated-RDN
suppressed the blurring artifacts and recovered sharper edges which DRRN could not do
better. DSAN recovered high-frequency information in both texture and edge areas; thus,
the texture and edge were better compared to SRCNN and VDSR. DBCN showed a better
restoration of collar texture without extra artifacts, thus having a better visual result than
DRCN. SICNN had better ability to restore edges and textures when compared to SRCNN
and RDN.

3.4.20. Summary

Table 5 summarizes the type of upsampling strategy and network design strategy
used by each of the algorithms that have been reviewed in the previous section. Meanwhile,
details of the advantages and disadvantages of each algorithm are also summarized in
Table 6.

Table 5. Summary table of algorithms corresponding to the upsampling module and network design strategies.

Year Algorithms Upsampling Module Linear
Network

Residual
Learning

Recursive
Learning

Dense
Connection

Dual-branch
Learning

2014 SRCNN [24] Bicubic
√

2016 FSRCNN [27] Deconvolution
√

2016 ESPCN [43] Sub-pixel
√

2016 VDSR [28] Bicubic
√

2017 EDSR [37] Sub-pixel
√

2018 MCSR [38] Sub-pixel
√

2021 CRN [39] Sub-pixel
√

2021 ERN [39] Sub-pixel
√

2016 DRCN [29] Bicubic
√ √

2017 DRRN [30] Bicubic
√ √

2019 GLRL [31] Bicubic
√ √

2019 DRDN [32] Bicubic
√ √

2020 FGLRL [33] Deconvolution
√ √

2017 SRDenseNet [44] Deconvolution
√

2018 RDN [40] Sub-pixel
√ √

2019 Dilated-RDN [35] Bicubic
√ √

2020 DSAN [41] Sub-pixel
√ √

2019 DBCN [42] Bicubic + Deconvolution
√ √

2020 SICNN [50] Bicubic + Deconvolution
√ √

‘+’ indicated the combination particular module used.
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Table 6. Advantage and disadvantage of each algorithm.

Algorithms Advantages Disadvantages

SRCNN [24]

• Simple structure.
• Filters were available for optimization through end-to-end mapping.
• Able to set different filter sizes and utilize the information in the

whole operation.

• The complexity of SRCNN grows quadratically, e.g.,
computational cost increased n2 times when applying an
upscaling factor of n to LR using bicubic interpolation
during pre-processing.

• Interpolation method as upsampling module does not bring
additional information to solve the ill-posed
reconstruction problem.

• Required more non-linear mapping layer to get higher
accuracy, but high running time cost and hard to converge.

• Only high-level features at the last layer used for reconstruction.
• Fail to extract rich and meaningful features by limiting LR

pixels and lack of local features, which results in
performance degradation.

FSRCNN [27]

• Deconvolution layer was used instead of bicubic interpolation, achieving
high running speed and better performance.

• The non-linear mapping layer of SRCNN was split into a shrinking layer,
non-linear mapping layers, and an expanding layer. Parameters used
reduce and therefore save memory resources.

• Number of filters used was lower, thus significantly reduced
memory consumption.

• The filter size used was smaller, which helped in removing some
redundant parameters, and the network can be trained more efficiently.

• Only high-level features at the last layer used for reconstruction.
• Does not make full use of feature information from

low-level layers.

ESPCN [43]

• Faster than SRCNN, because the number of convolutions used becomes
smaller, resulting in a model 2.5 times smaller than that in SRCNN

• ReLU activation used in ESPCN gave a better performance in this model.
• Tanh activation used in ESPCN is better compared to that of using

ReLU activation.

• Does not make full use of feature information from
low-level layers.

VDSR [28] • The deployment of a residual network observed converged much faster
and obtained superior performance.

• Apply bicubic interpolation as upsampling, which leads to
heavier computation time and memory.

• The vanishing-gradient problem happens as the network
becomes deep.

• Only high-level features at the last layer used for reconstruction.
• Failure to extract rich and meaningful features by limiting

LR pixels and lack of local features, which results in
performance degradation.

EDSR [37]

• Remove the BN layer, which has the same layer size as the previous layer,
resulting in a 40% saving of GPU memory.

• Removal of BN layer upgrades the model performance as the range of
flexibility after normalizing the features by BN layer will cause
performance degradation.

• The deployment of residual learning helped the network converge fast
and obtained superior performance.

• Used sub-pixel convolution as upsampling module, which reduced the
computation time and memory consumption.

• Fail to extract rich and meaningful features by limiting LR
pixels and lack of use of local features, which resulted in
performance degradation.

• Too concentrated on improvements obtained via
substantially increasing the depth, causing massive
parameters and consuming more computational resources.

EMCSR [38]

• Rich and meaningful features in local features are extracted and
combined with high-level features via concatenation operation, which
enables providing a better performance in the model.

• Using custom loss that is capable of coping with outliers properly.

-

CRN [39]

• Introduced a cascading connection structure and globally dual residual
path to solve the problem of requiring massive parameters to gain
high performance.

• Performance is comparative with EDSR, but the number of parameters is
almost four times lower than EDSR, thus saving a lot of memory.

-

ERN [39]

• Expanding the feature maps before ReLU leads to good performance
while reducing parameters.

• A dual global structure is introduced because this approach is more
effective to catch long-distance spatial features from the original LR input
and promote the propagation of the gradient.

• Performance is comparative with EDSR, but the number of parameters is
almost four times lower than EDSR, thus saving a lot of memory.

-

DRCN [29]

• Solving the problem of SRCNN, which required more weight layers,
more data, and more parameters to prevent overfitting by using a
recursive network to widen the receptive field without increasing
model capacity.

• Assembling all the intermediate outputs from each recursive unit
significantly improved the performance of the model.

• The importance of picking the optimal number of recursions is reduced
since supervision utilizes prediction from all intermediate layers.

• Including skip-connection, which gave benefits on saving network
capacity to store the input signal during recursions, and the input signal
can be used during target prediction.

• Required supervision on every recursion, which is a
burdening process.

• Only one single type of weight is shared among all
convolution layers.

• The vanishing-gradient problem happened as the network
becomes deep.
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Table 6. Cont.

Algorithms Advantages Disadvantages

DRRN [30]

• Local residual learning helped to solve the performance degradation
problem in most of the very deep networks.

• The recursive block consisting of several residual units and weight set is
shared among these residual units, thus able to improve accuracy by
increasing depth without adding weight parameters

• Relieved the burden of supervises every recursion, which occurred in
DRCN by designing a recursive block with a multi-path structure.

• Not utilizing all the output from each residual unit.

GLRL [31]
• Adoption of PReLU layer that consisted of the learnable negative

coefficient to avoid the “death structure” caused by zero gradients in
the ReLU.

-

DRDN [32]

• Less computing cost required compared to DRRN, thus much faster
than DRRN.

• Faster convergence rate than DRRN (2 times faster than DRRN).
• The intermediate output from each dense block from different depths

combined so that the final image has clearer and rich information.

-

FGLRL [33] • Average running time is faster than DRCN and VDSR but slower
than SRCNN.

-

SRDenseNet [44]

• Overcomes the vanishing-gradient problem using a dense connection
network which helped the flow of information and gradient.

• Fast computing because it used a deconvolution as an upsampling module.
• Since the size of the receptive field is proportional to the depth, a large

amount of contextual information in LR images can be utilized to infer
the high-frequency information in HR images.

• It would be hard to train a wider network with dense blocks.

RDN [40]

• Contiguous memory (CM) mechanism introduced, which allows the state
of preceding RDB to have direct access to each layer of the current RDB.

• RDB allows a larger growth rate by using local feature fusion (LFF),
which stabilizes the training of a wide network.

• Local residual learning (LRL) is utilized in RDB to further encourage the
flow of information and gradient.

• Global feature fusion (GFF) and global residual learning to extract global
features, because our RDBs with contiguous memory fully extracted
features locally.

• Too concentrate on improvements obtained via
substantially increasing the depth, causing massive
parameters and consumes more computational resources.

Dilated-RDN [35]

• OUnits (learnable activation unit) replacing the ReLU boosts the
performance with only the use of a smaller number of layers.

• Dilated convolutional was used to increase the receptive field in higher
layers and removing the striding to raise the resolution.

-

DSAN [41]

• The adoption of CBAM gave a very great advantage to the network by
giving more attention to the useful channel of the features and enhanced
its discrimination abilities.

• Utilized all feature layers and dependency among channels through
dense connection.

• Deployment of residual learning enhanced the model performance.

-

DBCN [42]

• Solves the problem of most SRCNN, which just simply stack
convolutional layers in a chain way, which resuls in longer time and
memory complexity.

• Combines both features from the bicubic kernel and deconvolution
kernel that enhance model performance.

-

SICNN [50]

• Deconvolutional layer used to enlarge the feature maps simplify the
calculation and speed up the convergence of the loss function.

• Different scale from LR image can be extracted through multiple
branches, which allows more useful information to be included in the
model training.

• The adoption of residual learning helped in correlating the low-level
features with high-level features better, which in turn make the model
converging faster.

-

4. Discussion

In this section, an overall review of the upsampling technique and network design
strategies used for all the algorithms discussed in Section 3.4 will be presented. Section 4.1
will summarize all the upscale modules, and their pros and cons will be stated. Meanwhile,
Section 4.2 will review each of the network strategies, and their benefits will be discussed.

4.1. Upsampling Modules

Upsampling modules were used to enlarge an image to a higher resolution image
through a scale factor. A total of three different techniques were found in the 18 arti-
cles read to upscale an image. They were the bicubic interpolation, deconvolution, and
subpixel convolution.
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Bicubic interpolation was widely used in the pre-upsampling super-resolution frame-
work. Algorithms that adopted bicubic interpolation were SRCNN, VDSR, DRCN, DRRN,
GLRL, DRDN, and Dilated-RDN. The advantage of this technique was that it was able
to produce an HR image with good quality. However, some significant drawbacks were
observed as well. First, it cost high computational cost and memory when it was deployed
as pre-upsampling because low-level features were expanded by r2, where r represented
the scale factor, resulting in the subsequent mapping layer requiring more memory to
store the weight and more time required to calculate the weight. Besides, since the bicubic
kernel was not learnable, expanding the LR image through this technique may lose some
useful information.

With these disadvantages observed in bicubic interpolation, some researchers used
deconvolution as an upsampling module. Deconvolution was also known as transposed
convolution, which was a reverse process of the convolution process. The deconvolution
process was observed in FSRCNN, SRDenseNet, and FGLRL models. These models adopt
a deconvolution layer as a post-upsampling module and the model out performed that
of using bicubic interpolation. Tong et al. [44] also proved that the use of deconvolution
accelerated the image super-resolution process. This was because upsampling was done after
the feature mapping, and therefore the computational cost was reduced by a factor of r2.

Another technique that was widely used was the sub-pixel convolution. Sub-pixel
convolution was a process of reshaping the convoluted features into a new feature. A
convolution process was taken on an input feature and forming a new feature with the
shape of width, W, height, H, and channels, r2C. After that, the newly formed features will
be reshaped or transformed into a shape of width, rW, height, rH, and channels, C. The
algorithms that used this technique as the upsampling module proved that the result was
better than using the bicubic interpolation.

4.2. Network Design Strategies

Many researchers have taken a different design approach to improve the image super-
resolution model. A total of five different designs were found from 18 articles. The most
fundamental design was the linear network, as illustrated in Figure 21a. The design idea
came from the residual neural network (ResNet), which is widely used for object detection
in an image. SRCNN, FSRCNN, and ESPCN were examples that used the linear network
technique. Although these three networks used the same design technique, the interior
design and the upsampling module used may be different. For example, SRCNN only
has feature extraction, non-linear mapping, and upsampling module. Whereas FSRCNN
has feature extraction, a shrinking layer, non-linear mapping, an expanding layer, and
an upsampling module. SRCNN, FSRCNN, and ESPCN applied bicubic interpolation,
deconvolution, and sub-pixel convolution, respectively, to upscale an image.

However, the linear network technique did not utilize all the feature information
from the input feature. Low-level features, such as the input feature from the LR image
contained rich information which was highly correlated to the high-level feature [3,38].
Therefore, only utilizing a linear network may lose some of the useful information. As
a solution to counter this problem, residual learning was introduced, which can be seen
in Figure 21b. VDSR, EDSR, MCSR, CRN, ERN, and GLRL adopted residual learning in
their network. The adoption of residual learning helped the model to achieve training
convergence faster. Besides, it also helped to alleviate the degradation problem caused by
the increment of network depths. Two types of residual learning were observed among
the algorithms read, namely, local residual learning and global residual learning. All the
algorithms except VDSR have implemented both local residual learning and global residual
learning. Local residual learning mainly connecting the input and the output of the residual
block, whereas global residual learning connecting the input feature from the LR image to
the final high-level feature of the network. VDSR only adopted local residual learning in
the network.
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Recursive learning, as shown in Figure 21c, was also introduced in some algorithms for
model improvement. According to Huang et al. [51], the parameters for each convolutional
layer were very similar when CNN was trained to converge. Therefore, convolutional
layers are able to share the same parameters. The sharing of parameters allowed the
network to learn more by increasing the number of layers or filters without increasing
the number of parameters. Thus, the redundancy to the memory consumption is able to
be reduced. However, recursive learning cannot reduce computational time because the
learning process will be longer as the depth of the network increases.

Adding a low-level feature from LR to a high-level feature through skip connection
was not sufficient enough in utilizing all the features or information for some researchers.
Therefore, a dense connection was introduced and can be seen in Figure 21d. A dense
connection linked all the feature maps as input for all subsequent layers in a dense block.
SRDN, RDN, Dilated-RDN, and DSAN were found using the dense connection in their
network design. The dense connections have a few benefits to the network design. First,
it helps to alleviate the gradient vanishing problem. Besides, the behavior of feature
reuse in dense connection helped to reduce the model size without reducing the perfor-
mance of the model. This is done by employing a small number of channels in dense
blocks and concatenating the intermediate output from each dense block before squeezing
the channels.

Last but not least, multi-path learning found in DBCN and SICNN was one of the
strategies in network design. The basic multi-path learning design was shown in Figure 21e.
The purpose of multi-path learning was to extract features from different aspects of the
images through the dual-branch network. As seen in the network structure in DBCN and
SICNN, one of the branches extracted features directly from the LR image and expanded the
features through the deconvolution layer. Meanwhile, the other branch extracted features
from the interpolated image. Two extracted features were then fused via concatenation.
The advantage of this type of network has reduced the memory complexity of the model
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without stack convolutional layers in a chain way. Moreover, since the different aspects of
features were extracted, it is able to provide more information to the model, which results
in better performance being achieved. To have a clearer picture of each upsampling module
and network design strategies, Table 7 summarizes the advantages and disadvantages of
each upsampling modules and network design strategies.

Table 7. Advantages and disadvantage of each upsampling modules and network design strategies.

Type Methods Advantages Disadvantages

Upsampling Modules

Bicubic Interpolation • Produces a high-quality HR image.
• Causes high computational cost and memory.
• May lose some useful information as a

bicubic kernel was not learnable.

Deconvolution
• Creates better performance than

bicubic interpolation.
• Less computational cost.

-

Sub-pixel Convolution • Creates better performance than
bicubic interpolation.

-

Network Design Strategies

Linear Network • Simple structure. • Not utilizing all the feature information
from the input feature.

Residual Learning
• Achieves convergence faster.
• Alleviates the problem of degradation problem

caused by the increment of network depths.
-

Recursive Learning
• Allows increasing the number of layers or filters

without increasing the number of parameters,
which reduces the redundancy to
memory consumption.

• Cannot reduce computational time.

Dense Connections
• Alleviates the gradient vanishing problem.
• Able to reduce the model size without reducing

the model performance.
-

Dual-branch Learning
• Reduces memory complexity of the model without

stack convolutional layers in a chain way.
• Able to provide more information to the model

obtained from different aspects of features.

-

4.3. Number of Filter Channel, Number of Filter Sizes, Depth of Network

Many people often will think that increasing the depth of the network helped in
improving model performance. However, Dong et al. [48] have demonstrated the effect of
increasing the number of filter channels and the network depth during the development of
SRCNN, and the observation was not as many people expected. The model with deeper
network depth did not perform as well as compared to that of shallow depth. This was
because as network depth increased, appropriate learning rate will be difficult to set for
the network to achieve convergence.

The incrementing of the filter number was able to help in model performance. In the
experiment done by Dong et al. [48], it was significantly shown that models with more
filters performed better than that of little filters. However, the drawback behind it was that
long-running time was required by the model to reconstruct an HR image. This effect was
also observed when increasing the number of filter sizes.

Today, there is no proper formula or calculation to determine an appropriate number
of filter channels, filter sizes, and depths of the network. Different network designs may
have different optimal settings for filters channel, filter size, and depth of the network.
Thus, this has become another challenge in developing CNN for image super-resolution.
To date, many researchers were still conducting experiments to determine the relationship
between the settings with the performance before identifying a setting. Before training
a model, it is essential to understand the hyperparameters required for a model. Table 8
summarized the hyperparameters required for a model.
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Table 8. List of hyperparameters required to define a deep learning model.

Hyperparameters Description

Epochs The number of iterations required for model training.
Batch size The number of training image used per training step.
Number of filters Refers to channel quantity of the filter in a layer.
Filter sizes Refers to the two-dimensional (2D) matrix size of the filter.
Filter strides Defines the number moving steps of filter in the horizontal and vertical directions.
Network depth The number of layers in a model.
Loss functions Learning strategies used in machine learning to measure prediction error or reconstruction error.

4.4. Domain-Specific Applications

Image super-resolution has been deployed in many different applications in the last
three decades [52]. Applications such as medical, surveillance, and biometric information
identification are examples that adopted image super-resolution techniques. The following
subsection will explain the usage of image super-resolution on each application.

4.4.1. Medical

Medical diagnosis judgment is part of the important skills required in medical fields.
The image obtained from computed tomography (CT), magnetic resonance imaging (MRI),
and positron emission computed tomography (PET-CT) often have low resolution, inherent
noise, and lack of structural information in which it becomes a big challenge in the medical
field to make a correct diagnosis judgment [53]. Thus, the image super-resolution technique
has obtained wide attention to enable zooming into images.

Umehara et al. [54] adopted SRCNN to enhance the image resolution for chest CT
images. The results showed that SRCNN outperformed linear interpolation methods
in enhancing the CT images. Park et al. [55] implemented another type of CNN-based
algorithm, called U-Net, in producing high-resolution CT brain images. As an outcome, the
CNN method has a better result than the traditional method, such as the Richardson–Lucy
deblurring (RL deblurring) algorithm.

A modified FGLRL network was demonstrated by Shi et al. [56] in MRI brain images
for tumor detection. Zhao [57] also implemented channel splitting network (CSN), a
modified network from SRCNN in MRI brain images. Both applications have shown the
advantages of the CNN based algorithm compared to the traditional method, such as
bicubic interpolation in terms of PSNR and SSIM value.

4.4.2. Surveillance

Surveillance systems have been widely used worldwide for security monitoring and
recording. The video from the surveillance system is often used to help in criminal case
solving. However, in some scenarios, the video from the surveillance system is unclear
due to small image size or poor quality of closed-circuit television (CCTV). Therefore,
the image super-resolution technique was used to overcome poor image quality from the
video. The deep convolutional neural network proposed by Shamsolmoali et al. [58] for
surveillance record super-resolution has demonstrated the benefit of CNN-based algorithm
over random forest learning (RFL) and self-exemplars (SelfEx), which were traditional
machine learning techniques. The application of image super-resolution in the surveillance
system is still a big challenge today due to various factors, such as complex motion and
large feature data from video data, the varying image quality produced by CCTV, and
so on [52].

4.4.3. Biometric Information Identification

Face recognition, fingerprint recognition, and iris recognition are examples of bio-
metric identification. The resolution of face, fingerprint, and iris images is essential for
recognition and detection purposes. SRCNN was used by Rasti et al. [59] to enhance facial
images, which is required for surveillance monitoring. Another example demonstrated
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by Deshmukh and Usha [60] which used deep CNN to enhance facial image resolution.
The resolution of fingerprint images was enhanced by Shen, Xu, and Lu [61] through
progressive feature extraction network (PFE-Net), a type of CNN-based algorithm for
pore detection. Ribeiro et al. [62] performed the CNN algorithm for iris super-resolution,
and the results also showed that the CNN method outperformed the bilinear and bicubic
interpolation methods.

4.5. Benefit of CNN-Based Method over Traditional Method

Before the CNN-based method was used, many traditional methods that have been
mentioned in Section 1, like the interpolation method and reconstruction, were used widely
in image super-resolution applications. It was observed that the CNN-based method
results obtained were better than that of the traditional method, especially in terms of
PSNR and SSIM values. By taking the CNN-based method’s pioneer algorithm, SRCNN,
and comparing it with the traditional methods, several points can be observed as beneficial
in the CNN-based method.

First, the CNN-based method extracted a lot of features from the input source com-
pared to the other three methods mentioned. The number of features, which can also
be represented as the number of parameters, can vary according to the number of filters
used during feature extraction. With a large number of parameters available for feature
extraction, this provided the model with the flexibility in optimize the parameter values so
that the relationship between the reconstructed output and actual output can be as close as
possible. Unlike the interpolation-based method, it relies on a neighbor point value and
calculates the value at a certain point only.

Second, the CNN-based method has a feedback loop mechanism that allows param-
eter fine-tuning. For every iteration of model training, the loss difference between the
reconstructed output and actual output will be calculated and fed back to the model net-
work to fine-tune the parameter values. The ultimate purpose of parameter fine-tuning is
to get minimal loss in the model prediction. However, in the interpolation method and
reconstruction method, the output was calculated based on a certain parameter, which was
often fixed based on a particular scenario only.

5. Conclusions

Image super-resolution technology has received great attention in different application
fields. The development of deep learning inspired many researchers to develop CNN-
based image super-resolution to achieve a better model with lower running time and
memory consumption. Since the first CNN-based method, SRCNN, was born; many
different techniques, such as upsampling modules and network design strategies have been
deployed in image super-resolution algorithm development. A total of three upsampling
modules and five different network strategies were used by researchers in this study.

Looking at the method or techniques used by researchers may not be helpful in model
development. It is important to understand the characteristics, like the advantages and disad-
vantages behind each method. The understanding of the characteristics will help a developer
to wisely choose a correct design towards improving a model. Based on all these reviews,
it is believed that it will be useful for developers who wish to improve the performance of
the image super-resolution model in terms of running time and quality performance. This
review will serve as guidance for future image super-resolution development.
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