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Abstract: This paper presents a low-cost and high-quality, hardware-oriented, two-dimensional
discrete cosine transform (2-D DCT) signal analyzer for image and video encoders. In order to
reduce memory requirement and improve image quality, a novel Loeffler DCT based on a coordinate
rotation digital computer (CORDIC) technique is proposed. In addition, the proposed algorithm
is realized by a recursive CORDIC architecture instead of an unfolded CORDIC architecture with
approximated scale factors. In the proposed design, a fully pipelined architecture is developed to
efficiently increase operating frequency and throughput, and scale factors are implemented by using
four hardware-sharing machines for complexity reduction. Thus, the computational complexity
can be decreased significantly with only 0.01 dB loss deviated from the optimal image quality of
the Loeffler DCT. Experimental results show that the proposed 2-D DCT spectral analyzer not only
achieved a superior average peak signal–noise ratio (PSNR) compared to the previous CORDIC-
DCT algorithms but also designed cost-efficient architecture for very large scale integration (VLSI)
implementation. The proposed design was realized using a UMC 0.18-µm CMOS process with a
synthesized gate count of 8.04 k and core area of 75,100 µm2. Its operating frequency was 100 MHz
and power consumption was 4.17 mW. Moreover, this work had at least a 64.1% gate count reduction
and saved at least 22.5% in power consumption compared to previous designs.

Keywords: CORDIC; Loeffler DCT; Huffman entropy encoder; image compression; Joint Photo-
graphic Experts Group (JPEG); very large scale integration (VLSI); video encoder; wireless sensor
networks (WSN)

1. Introduction

The Internet of Things (IoT) has drawn lots of research and business attention, which
makes connecting everything possible, and it can be applied in the fields of human-to-
human, human-to-machine, and machine-to-machine communications [1]. The most
important applications of the IoT are wireless sensor networks (WSNs) [2–5]. WSN devices,
including mobile phones, have achieved up to 26 billion nodes by 2020 and are set to
reach 100 billion nodes by 2025 [6]. Therefore, it is without a doubt that WSNs may
bring massive business opportunities and provide momentum for upgrading industry
technology. The WSN is a promising candidate for the application of wireless personal
area networks with low transmission data rates [7]. When the nodes of WSNs increase,
network management and heterogeneous node networks might be challenging to the
WSN. To overcome the problem, the software-defined network (SDN) approach was
proposed for the WSN to improve its efficiency and robustness [7]. Moreover, sensor
data must be transmitted via wireless, and the importance of the biomedical signals, such
as electroencephalography (EEG), needs lossless data compression to save not only the
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data bits but also the power. Chen et al. [8] proposed an efficient method of lossless EEG
compression by using dynamic voting prediction for WSNs.

Regarding the communication of multi-nodes in WSNs, both the bandwidth and the
power are major parameters to be considered for wireless transceivers. A novel antenna
with power efficiency and multiband is proposed in [9] with four designed loops. Further-
more, a synchronous data line is always required in any data transmission. Chen et al. [10]
provided a chip design for low-power specifications and a preamble data synchronizer in
case the data were from different frequency domains.

The purpose of developing the WSN not only provides the platform for data and
multimedia exchange [11] but also constructs smart and safe cities, including video surveil-
lance [12], safe transportation [13], medical imaging [14], search and secure systems [15],
and smart museums [16]. Therefore, it is essential to develop smart cities with low-
complexity smart security systems. Considering the application for an outdoor image
system with lower power consumption, seven important image compression methods for
binary images were investigated for the WSN [10] and were used to detect the number of
objects (cyclist or pedestrian) to ensure traffic safety. As for the application of requiring
high-quality color images, Kouginos et al. designed the platform with a digital camera
and better portable graphics (BPG) format for transmitting security images of search and
secure operations over the WSN [15]. Then, the robotic camera network was introduced to
monitor the environment [17]. In [16], the authors designed the WSN system of a smart mu-
seum that can automatically provide visitors with the cultural contents of related observed
artworks. Moreover, in [14] the authors proposed the very large scale integration (VLSI)
implementation of wireless capsule endoscopy with low-complexity and a high image
quality algorithm for the wireless body sensor network. To this end, high-quality and
low-complexity image compression processing techniques are a priority to be developed in
the future.

For the WSN system, the critical issue is focusing on how to reduce the size of the
transmitted images for storage and still maintain high image quality. To this end, image
compression is a widely used method applied to images before transmission to efficiently
reduce the image data. Existing image compression techniques such as joint photographic
experts group (JPEG) [18], JPEG-2000 [19], BPG [15], and Secure BPG (SBPG) [20] are em-
ployed in the WSN. The JPEG standard is the most popular still image compression method
and is widely used in the business and industry areas. JPEG converts each image to its
equivalent frequency domain using discrete cosine transform (DCT). After doing so, JPEG
keeps the important information with lower-frequencies and discards the less important in-
formation with higher-frequencies to attain the image compression. Finally, the compressed
data can be further boosted by a compression ratio when an entropy-coding algorithm
is subsequently applied. Recently, several documents were published to study machine
learning and deep learning techniques on the JPEG standard [21–23]. First, MalJPEG, a
machine learning-based solution for detecting malicious JPEG images, was proposed [21]
to avoid the harmful actions of cyber attacks. Next, in [22], a novel deep learning-based
approach for double JPEG compression detection was proposed that used spatial and
frequency domain information and a multi-column convolutional neural network (CNN)
architecture for block classification. Moreover, the authors proposed a generic hybrid
deep-learning framework for JPEG steganalysis, which combined the domain knowledge
behind rich steganalytic models with compound deep neural networks [23]. In doing
so, the deep-learning framework for JPEG steganalysis was insensitive to JPEG blocking
artifact alterations.

In image compression, two-dimensional discrete cosine transform (2-D DCT) is widely
used for signal analysis of the image data. In [24], the authors proposed the hardware ar-
chitecture of 2-D DCT with Loeffler factorization and algebraic integer representation. The
design was completely error-free and eliminated the use of multipliers. The efficient hard-
ware architectures of the 2-D DCT suitable for H.265/HEVC were further proposed [25–27].
Figure 1 depicts the flow chart of the standard image compression technique, which pri-
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marily contains a 2-D DCT signal analyzer and an entropy encoder. The former is used
to spectrally analyze image data; the latter is used to improve the spectral efficiency. In
this paper, the focus is to improve the image compression technique with low computing
complexity for WSN applications. In this study, the low-complexity VLSI architecture of
the 2-D DCT signal analyzer is realized.
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To realize real-time WSN systems, many high-performance discrete cosine transform
(DCT) algorithms of JPEG were proposed for VLSI implementation [28–30]. To reduce
hardware costs, Loeffler proposed an efficient one-dimension (1-D) DCT algorithm, which
utilized 11 multipliers and 29 adders only [28]. In turn, the coordinate rotation digital
computer (CORDIC)-based Loeffler DCT algorithm was proposed to avoid using mul-
tipliers and to achieve a power consumption of only about 20% akin to Loeffler’s work.
CORDIC is the algorithm used to evaluate sinusoidal/hyperbolic functions and can be
used for intelligent robots [31,32], along with the application of communication systems
and signal processing [33]. In [30], a low complexity CORDIC-DCT algorithm was pro-
posed to implement 2-D DCT based on the row-column method by using 1-D DCT twice.
In previous studies, [29,30], the efficient unfolded CORDIC-based algorithms for DCT
were proposed when allowing small indispensable accuracy errors. On the other hand,
the low-complexity fully parallel hardware architecture for DCT, called FPAX-CORDIC,
was proposed to avoid using the memory register of the Para-CORDIC [34]. Recently,
a high-performance CORDIC-based algorithm that included a square root and inverse
trigonometric operator for biped robots was realized on a field-programmable-gate array
(FPGA) device. A high-accuracy CORDIC-based algorithm for biped robots was pro-
posed in [35], in which a pipeline and hardware sharing techniques were used to improve
performance and reduce hardware costs efficiently.

As mentioned above, it is necessary to develop a high-performance, high-quality, and
low-complexity image compression technique for image and video encoders. In this paper,
an efficient, low-complexity, and high-quality hardware-oriented Loeffler DCT algorithm
with recursive CORDIC architecture for image and video encoders is proposed. The re-
maining parts of the paper are organized as follows: In Section 2, the image compression
algorithm is described. Section 3 shows the VLSI architecture for the proposed cost-efficient
hardware-oriented Loeffler DCT algorithm with recursive CORDIC for image and video
encoders. In Section 4, experimental results of the proposed Loeffler DCT algorithm with
recursive CORDIC are demonstrated. Finally, concluding remarks are made in Section 5.

2. The Image Compression Algorithm
2.1. JPEG

JPEG is a widely used method of lossy image compression for digital data, images,
and digital photos. This method discards some minor information to achieve image com-
pression. JPEG can provide different levels of data compression by considering the tradeoff
between storage space and image quality. In general, digital image pixels in neighboring
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regions are highly correlated with each other, and, thus, high data compression can be
achieved. The image-coding algorithm is composed of data correlation reduction, value
quantization, and entropy coding, as shown in Figure 1. To reduce correlation, DCT is one
of the most well-known methods. After manipulating the DCT on the digital data, the
resulting DCT coefficients are uniformly quantized using the quantization table. The pur-
pose of quantization is to achieve a higher compression ratio by obtaining DCT coefficients
with adequate precision, which is enough to achieve the desired image quality. JPEG [18]
uses the standard quantization table in Figure 2, which is the example quantization table
for luminance components.
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Entropy coding is the final step of DCT-based encoder processing. In this step, addi-
tional compression by encoding the quantized DCT coefficients can be obtained. The most
widely known and the most widely used algorithm for entropy coding is the Huffman
coding algorithm.

As mentioned above, most operations were focused on DCT design for hardware
cost reduction.

2.2. DCT

The DCT algorithm is widely used in data/video compression, which allows un-
equal computation on the spatial domain data to generate the frequency–domain outputs.
Some DCT computations are crucial to image quality while others are not. The two-
dimensional DCT in Equation (1) transform an N × N block sample from spatial domain
f (x, y) into frequency domain F(k, l).

F(k, l) =
2
N

C(k)C(l)
N−1

∑
x=0

N−1

∑
y=0

f (x, y) cos
[
(2x + 1)kπ

2N

]
cos
[
(2y + 1)lπ

2N

]
(1)

where normalization factors C(0) = 1/
√

2 and C(k) = C(l) = 1 for k, l 6= 0. The 2-D DCT
has a disadvantage, that is, the hardware cost. In [28], Loeffler used only 11 multipliers to
implement the 1-D DCT. The following subsection presents how the 1-D DCT is utilized to
implement the 2-D DCT.

2.3. 2-D DCT Using Row-Column 1-D DCT Architecture

In this section, we adopt the row–column method based on the 1-D DCT to implement
the 2-D DCT to reduce complexity. As shown in Figure 3, the row–column method applies
the 1-D DCT to the image block twice. Given the image block X with size N × N, the 1-D
DCT is performed on the rows of X, and then the 1-D DCT is performed on the columns
of X. Between the two 1-D DCTs is the N × N transposition memory. The matrix C is
defined as the orthonormal matrix of 1-D DCT with size N × N, where C(m, n) is the
(m, n)-th element of C defined by

C(m, n) =

√
2
N

c(m) cos
(

πm(2n + 1)
2N

)
, m, n = 0, 1, · · · , N − 1. (2)
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where normalization factors c(0) = 1/
√

2 and c(m) = 1 for m 6= 0. According to the
row-column method, the 2-D DCT performed on the image block X is given by

Y = C(CXT)
T
= CXCT (3)

where the superscript T denotes the matrix transpose. In this paper, the value of N is set to
eight according to the JPEG standard.
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1-D DCT.

2.4. CORDIC Algorithm

The CORDIC algorithms for the rotation mode were summarized in [31]. Four impor-
tant equations (Equations (4)–(7)) of the CORDIC algorithm are shown as follows:

xi+1 = xi − σi · 2−i · yi (4)

yi+1 = yi − σi · 2−i · xi (5)

ωi+1 = ωi − σi · αi (6)

K(n) =
n

∏
i=1

1√
1 + 22(i−1)

⇒ lim
n→∞

K(n) ≈ 0.60725 · · · (7)

where x and y denote the x-axis and y-axis components in the rectangular coordinates
system, respectively; ω is the accumulated rotation angle; σ is the signum symbol; 1 or −1
defines the rotation direction; i denotes the ith iteration step; and α is the predefined angle
value of each rotation step. The output data of CORDIC are amplified by a scaling factor
K, which depends on the number of iteration steps. Therefore, the final values from the
CORDIC algorithm have to be multiplied by 1/K. When index n in K is large enough, a
constant number (1/K) will approximately be 0.60725.

2.5. Loeffler DCT Algorithm with Recursive CORDIC

Based on the work of the CORDIC-based Loeffler DCT [29], a novel Loeffler DCT
algorithm with recursive CORDIC is proposed in this study. The proposed architecture
of the 8-point Loeffler DCT algorithm with iterative CORDIC is shown in Figure 4. The
improvement of this work over the previous algorithms lies in its four features. First, the
quality of image compression is improved without using any further approximation and
ignoring iteration compensation on the CORDIC algorithm. Second, recursive architecture
is applied to the proposed CORDIC algorithm to reduce complexity. Third, the algorithm
in [29] is optimized as illustrated in Figure 4, highlighted with a red box, where the pipeline
structure for a hardware-sharing machine for the VLSI implementation is applied to reduce
hardware costs. Fourth, the hardware-sharing machine technique is also applied to the
three scale-factor circuits.
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3. VLSI Architecture

Figure 5 illustrates the VLSI architecture of the proposed 2-D DCT design. According
to the row–column method, it only contains a 1-D DCT hardware-sharing machine and
a transposition memory to implement a 2-D DCT. The transposition memory requires 64
12-bits to temporarily store the 1-D DCT coefficients.
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Figure 6 depicts the VLSI architecture of the proposed 9-stage pipeline 1-D DCT circuit,
where a hardware-sharing machine is applied to reduce hardware costs. A 1-D CORDIC
DCT in the proposed design contains four hardware-sharing machines and 20 adders. The
proposed design is implemented by 9-stage pipeline architecture to increase the operating
frequency. It is used to calculate eight DCT coefficients given in (2).
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Figure 6. Very large scale integration (VLSI) architecture of the proposed 9-stage pipeline 1-D DCT circuit.

Table 1 lists an efficient and high precision way to develop a scaling factor generator.
The design only used adders and shifters, as many as possible, to replace multipliers
and dividers. Moreover, this paper utilized a hardware-sharing machine to decrease
hardware complexity. Using hardware-sharing machines might somewhat increase the
executing cycles. To tackle this problem, in the proposed design, a fully pipelined ar-
chitecture was developed to increase throughput and reduce cycle time. The third row
(scale factor = 1/2

√
2) in Table 1 represents the 9-stage process Hardware-Sharing Scale fac-

tor_1 in Figure 6 and is shown in Figure 7. In a similar way, the fourth row
(scale factor = 1/3.1694) in Table 1 expresses the Hardware-Sharing Scale factor_2 in
Figure 6 and is shown in Figure 8. The proposed hardware-sharing scaling factors are more
accurate and more cost-efficient than those of the scaling factors used in Sun et al. [29].
To conclude, the proposed scaling-factor design can provide a cost-efficient, high-precision,
and high-performance structure in designing the CORDIC-based DCT.

Table 1. Scale factors used in the work of Sun et al. [29] and in this work.

Scale
Factor Quantization Value Quantization

Erorr Add Shift

1
2 2−1 0 0 1
1

2
√

2
2−2 + 2−4 + 2−5 + 2−7 + 2−9 1.68× 10−4 4 5

1
3.1694 2−2 + 2−4 + 2−9 + 2−10 2.77× 10−4 3 4
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The proposed CORDIC was realized by an iterative structure in a recursive CORDIC
architecture, as shown in Figure 9, instead of the unfolded CORDIC architecture with an
approximated scale factor. According to the experiment, the output data from CORDIC
require 11 iterating cycles to be stable. This design also allows a flexible accuracy ap-
proximation where a lookup table is employed to reduce hardware area and improve
performance. Users can control the iterating cycles.

The hardware-sharing machine recursive CORDIC was realized by an iterative archi-
tecture, as shown in Figure 9. Figure 10 is the hardware-sharing CORDIC scaling factor
generator, which only uses adders and shifters. With the increase in the iterating cycles, K
≈ 0.60725, this architecture is realized as illustrated in Figure 10. In addition, pipeline and
operation simplification techniques were used to improve the executing performance and
reduce hardware costs further.
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The proposed design was composed of adders and shifters only and realized by 9-
stage pipeline architecture, which can enhance the performance and reduce the hardware
costs efficiently. Table 2 lists the rotation direction σ (sign-bits) of the angle at the ith stage
for the CORDIC-DCT. Figures 9 and 10 show the architecture of the proposed hardware-
sharing machine, where Equations (4)–(7) can be realized by using only adders, shifters,
and Table 2 for VLSI implementation.

Table 2. Iteration (i) and rotation direction (σ) for the CORDIC-DCT.

Iteration (i) Angle = 3π/8 Angle = 3π/16 Angle = π/16

0 σ = 1 σ = 1 σ = 1
1 σ = 1 σ = −1 σ = −1
2 σ = −1 σ = 1 σ = −1
3 σ = 1 σ = 1 σ = 1
4 σ = 1 σ = −1 σ = −1
5 σ = −1 σ = −1 σ = 1
6 σ = 1 σ = −1 σ = 1
7 σ = 1 σ = 1 σ = 1
8 σ = −1 σ = −1 σ = 1
9 σ = −1 σ = 1 σ = −1
10 σ = 1 σ = 1 σ = 1
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4. Experimental Results of the Proposed Loeffler DCT Algorithm with
Recursive CORDIC

In this section, the experimental results are evaluated for the peak signal–noise ratio
(PSNR) of the proposed Loeffler DCT algorithm with recursive CORDIC. The PSNR of the
three layers (R-G-B) 256-color image with size H-by-V is defined as

MSE =
1

3HV ∑u∈{R,G,B}∑
H−1
x=0 ∑V−1

y=0 [Iu(x, y)− Ku(x, y)]
2

(8)

PSNR = 20 · log10

(
255√
MSE

)
(9)

where Iu is the original image in the uth layer, and Ku is the reconstructed image in the
uth layer for u ∈ {R,G,B} corresponding to the colors red, green, and blue, respectively.
Moreover, the image size of each image in Table 1 is 512 × 512 pixels in which each pixel is
24-bits. The image size of each image in Table 2 is 768 × 512 pixels in which each pixel is
24-bits. Taking the image compression of Table 1 for example, the procedure of obtaining
the reconstructed image Ku is conducted by following these four steps: (1) the original
images are divided into the 4096 8 × 8 image sub-blocks; (2) the value of each pixel in the
image is shifted to [−128,127] from [0,255] to reduce the dynamic range requirements of the
2-D DCT; (3) after performing the 2-D DCT and quantization matrix on the shifted-version
image block, the 2-D frequency contents for the image data are obtained, in which high-
frequency components are relatively small or equal to zero; (4) the reconstructed image is
obtained by using the opposite operations of the above first three steps, steps (1)–(3).

In the above procedure, the luminance quantization matrix recommended by the JPEG
standard was used to evaluate the value of PSNR in the image compression. Moreover, the
number of CORDIC iterations in the proposed design was defined to attain the average
PSNR of Loeffler DCT work [28] within 0.01 dB performance loss.

In the following experimental results, the image compression algorithm was con-
ducted, and the image quality and compression ratio were computed to evaluate the
performance of the proposed image compression algorithm. The same image datasets
from previous work [28–30] are used in this work for PSNR comparison and are shown in
Figures 11 and 12. Tables 3 and 4 list the obtained PSNR values using the different image
datasets. In addition, Table 5 lists the comparison results of the computing resources for
the three aforementioned landmark DCT algorithms.
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Table 3. Peak signal–noise ratio (PSNR) (dB) comparison of previous DCT algorithms and this work
using the first image dataset shown in Figure 11.

Loeffler [28] Sun [29] Lee [30] This Work

Airplane 35.85 34.83 35.48 35.84
Splash 37.72 37.02 37.42 37.70
Lena 34.51 33.96 34.37 34.50

Mandrill 27.61 27.13 27.40 27.60
Girl 34.68 34.29 34.48 34.67

House 33.74 32.76 33.31 33.72
Peppers 33.25 32.82 33.07 33.24
Sailboat 31.04 30.49 30.85 31.04
Average 33.55 32.91 33.30 33.54

Table 4. PSNR (dB) comparison of previous DCT algorithms and this work using the second image
dataset shown in Figure 12.

Loeffler [28] Sun [29] Lee [30] This Work

Kodak01 28.57 27.99 28.33 28.56
Kodak02 32.93 32.58 32.81 32.92
Kodak03 34.33 33.86 34.17 34.32
Kodak04 33.10 32.55 32.96 33.09
Kodak05 28.87 27.91 28.57 28.86
Kodak06 30.02 29.49 29.81 30.00
Kodak07 33.94 32.93 33.71 33.93
Kodak08 28.35 27.37 27.86 28.34
Kodak09 33.84 33.01 33.59 33.83
Kodak10 33.62 32.86 33.36 33.61
Kodak11 30.81 30.27 30.61 30.80
Kodak12 33.96 33.32 33.71 33.94
Kodak13 26.25 25.67 26.02 26.24
Kodak14 30.12 29.51 29.94 30.19
Kodak15 32.88 32.33 32.62 32.87
Kodak16 32.32 31.99 32.19 32.31
Kodak17 32.73 32.13 32.52 32.72
Kodak18 29.52 28.93 29.32 29.51
Kodak19 31.35 30.59 31.02 31.34
Kodak20 32.72 32.03 32.42 32.71
Kodak21 30.40 29.78 30.16 30.40
Kodak22 31.39 30.92 31.23 31.38
Kodak23 35.84 34.95 35.57 35.82
Kodak24 29.27 28.61 29.00 29.26
Average 31.55 30.90 31.31 31.54

Table 5. Comparison of computing resources of previous DCT algorithms and this work showing
the multiply, add, and shift operations.

DCT Type Multiply Add Shift

Loeffler DCT [28] 22 58 8
Sun [29] 0 120 92
Lee [30] 0 192 172

This work without
hardware sharing

machine
0 108 96

This work with
hardware sharing

machine
0 28 11
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In Table 5, the computing resources of 2-D DCT were evaluated by doubling the
computing resources needed for 1-D DCT. Moreover, the required resources of the scale-
factor of the CORDIC and the normalization factor of the 1-D DCT were also included
for fair comparison of consistency following the work of Lee et al., which counted the
resources of the two types of factors [30]. Thus, the required resources of scale factors used
in the work of Sun et al. [29] and this work are listed in Table 1. Moreover, the complexity
of the shifter and the complexity of the adder are assumed to be the same.

From Table 5, two observations are made. First, this work without a hardware-sharing
machine achieves the lowest computing complexity. Second, this work with a hardware-
sharing machine can significantly reduce the computing complexity. The lookup tables
(LUTs) used for different rotation angles are listed in Table 2. According to Tables 3–5, the
proposed work exhibits a high-quality and low-complexity hardware-oriented 2-D DCT
algorithm for VLSI implementation. Finally, Table 6 compares the image quality between
previous DCT algorithms and this work. It can be observed from Table 6 that the proposed
novel recursive Loeffler DCT algorithm can achieve almost the same image quality as the
original image. The two testing images, Lena and Kodak03, were widely applied to the
image processing realm.

Table 6. Image and PSNR comparisons between previous DCT algorithms and this work.

Original Loeffler [28] Sun [29] Lee [30]

Lena
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The 24 images from the Kodak dataset were used to run the image processing, includ-
ing the 2-D DCT based on the proposed design, quantization (quantized with the standard
quantization table), zig-zag coding, and Huffman entropy coding. At the end of processing
the 24 images, the compression ratio was obtained with a value of 9.86. Significant compar-
isons of the previously proposed designs and this work of 2-D DCT VLSI design are listed
in Table 7. The synthesized gate counts of [29,30,36,37] and for this work are 27.3 k, 22.4 k,
24.6 k, 31.5 k and 8.04 k, respectively. These were obtained from the results of [30], exclud-
ing the memory. The synthesized gate count for this work is 8.04 k, while the core area of
the proposed design is 75,100 µm2. Compared with previous works, the proposed design
in this study achieved a 64.1% gate count reduction. Moreover, its operating frequency and
power consumption are 100 MHz and 4.17 mW, respectively. Thus, the proposed design
can save at least 22.5% power compared to that of the previous designs.
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Table 7. Comparison of previous DCT algorithms and this work, where the unit is dB.

Performance Metric Sun et al.
[29]

Lee et al.
[30]

Kim et al.
[36]

Wu et al.
[37] This Study

PSNR (dB) 30.90 31.31 31.49 31.55 31.54

Compression Ratio 9.86 9.86 9.86 9.86 9.86

Process (µm) TSMC
0.13

TSMC
0.13

TSMC
0.13

TSMC
0.13 UMC 0.18

Operating Frequency (MHz) 100 100 100 100 100

Gate Count (k) 27.30 22.40 24.60 31.50 8.04

Power (mW) 6.54 5.11 5.42 5.62 4.17

Core Area (µm2) 255 k 209.2 k 229.8 k 294.2 k 75.1 k

Memory 96 96 96 96 96

Normalized Gate Count 3.40 2.79 3.06 3.92 1.00

FOM 11.16 13.78 12.62 9.88 38.68
Note: The gate counts are defined as the NAND-equivalent gate counts. The normalized gate counts are defined
as the NAND-equivalent gate counts of the previous work normalized by the NAND-equivalent gate counts of
this work.

The proposed image algorithm has significant improvements with low complexity,
lower memory required, low hardware costs, and reduced power consumption. Moreover,
the resulting image quality of the proposed algorithm is better than that of previous
works [29,30,36,37]. Considering the combined effect of the PSNR, compression ratio (CR),
and gate counts, a figure of merit (FOM) is introduced and defined as

FOM =
PSNR× CR
Gate Count

(10)

The FOM of this work is 38.68, where the Huffman entropy coding with the CR of
9.86 is employed. To fairly evaluate the FOMs of previous works, the same entropy coding
and the same CR are used in Table 7. From Table 7, it can be observed that the FOM
of this work is superior to those of previous works. Finally, given the improvements of
this design, including low costs, high compression ratios, low power consumption, low
memory requirements, and high performance, the design is appropriate for WSN and
IoT applications.

5. Conclusions

This paper proposed a new hardware-oriented VLSI design with low costs and re-
duced memory requirements. A high accuracy 2-D DCT spectral analyzer with a hardware-
sharing recursive Loeffler CORDIC and novel scaling-factor generation were developed.
Compared with the previous DCT algorithm, the proposed algorithm has the benefits of
high-quality and low computing resources for VLSI implementation. Moreover, with its
characteristics of low memory requirements, low complexity, and high image quality, the
proposed design is suitable for wireless sensor networks and IoT applications.
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