
Article

CoLL-IoT: A Collaborative Intruder Detection System for
Internet of Things Devices

Hani Mohammed Alshahrani

����������
�������

Citation: Alshahrani, H.M.

CoLL-IoT: A Collaborative Intruder

Detection System for Internet of

Things Devices. Electronics 2021, 10,

848. https://doi.org/10.3390/

electronics10070848

Academic Editors: Tawfik

Al-Hadhrami, Faisal Saeed, Mukesh

Prasad, Yue Cao and Korhan Cengiz

Received: 16 February 2021

Accepted: 31 March 2021

Published: 2 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia;
hmalshahrani@nu.edu.sa

Abstract: The Internet of Things (IoT) and its applications are becoming popular among many
users nowadays, as it makes their life easier. Because of its popularity, attacks that target these
devices have increased dramatically, which might cause the entire system to be unavailable. Some of
these attacks are denial of service attack, sybil attack, man in the middle attack, and replay attack.
Therefore, as the attacks have increased, the detection solutions to detect malware in the IoT have
also increased. Most of the current solutions often have very serious limitations, and malware is
becoming more apt in taking advantage of them. Therefore, it is important to develop a tool to
overcome the existing limitations of current detection systems. This paper presents CoLL-IoT, a
CoLLaborative intruder detection system that detects malicious activities in IoT devices. CoLL-IoT
consists of the following four main layers: IoT layer, network layer, fog layer, and cloud layer. All of
the layers work collaboratively by monitoring and analyzing all of the network traffic generated and
received by IoT devices. CoLL-IoT brings the detection system close to the IoT devices by taking the
advantage of edge computing and fog computing paradigms. The proposed system was evaluated
on the UNSW-NB15 dataset that has more than 175,000 records and achieved an accuracy of up to
98% with low type II error rate of 0.01. The evaluation results showed that CoLL-IoT outperformed
the other existing tools, such as Dendron, which was also evaluated on the UNSW-NB15 dataset.

Keywords: IoT; collaborative; edge computing; fog computing; malware

1. Introduction

The Internet of Things (IoT) was introduced for the first time by the British scientist
Kevin Ashton in 1999, where he described a system that would allow physical objects to
be connected to the Internet via many sensors [1]. The IoT can be defined as a network
of interconnected devices that can send and receive data while it is in a static or dynamic
state [2]. IoT devices collect data by using some devices, such as sensors and radio-
frequency identification (RFID) tags, for a special event or environment to provide an
intelligent solution for different challenges. This has become possible because of the rapid
development of technologies, such as cloud computing, advanced data analysis algorithms,
and wireless communication [1]. Therefore, the IoT has been used in various applications,
such as smart vehicles, smart homes, healthcare, and industries, to put them on a network
and digitize them. All of the collected data can be exchanged between all the parties in the
IoT; for example, the data can be exchanged between a human and a device, a device and a
device, and a human and all other realistic environments [3].

Edge computing is an emerging technology that aims to deliver various services
and applications close to IoT devices [4]. Edge computing aims to minimize the high
latency in IoT applications, improve network performance, reduce operational cost, ensure
the appropriate use of energy and resources, and efficiently manage data. It has been
implemented by many researchers to detect malicious activities in IoT devices. For example,
Eskandari et al. [5] proposed an intelligent anomaly intrusion detection system for IoT
devices. The proposed method analyzes the network traffic by using an edge device to
detect malicious behavior.

Electronics 2021, 10, 848. https://doi.org/10.3390/electronics10070848 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8799-9448
https://doi.org/10.3390/electronics10070848
https://doi.org/10.3390/electronics10070848
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10070848
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/7/848?type=check_update&version=1

Electronics 2021, 10, 848 2 of 19

Various researchers have proposed different techniques to detect malicious activities
in IoT devices. These techniques range from tools running on edge computing to cloud
computing. Some examples include [6,7]. These tools extract one or more features of
the network traffic. Subsequently, they apply machine learning techniques to classify the
requests as malware or benign. However, some of these tools have high latency, as they
depend on fog computing to capture and analyze requests. Moreover, some of the existing
works only consider a few types of attacks in the IoT in their detection system.

This paper presents CoLL-IoT, a collaborative system that detects malicious activities
in IoT devices. CoLL-IoT consists of the following four main layers: IoT layer, network
layer, fog layer, and cloud layer. All of the layers work collaboratively by monitoring and
analyzing all the network traffic that is generated and received by IoT devices. The first
layer, namely the IoT layer, consists of all the IoT devices and sensors that are connected to
the system. The second layer contains intelligent edge computing devices that observe all
of the network traffic generated by the IoT devices in the previous layer. Managing and
maintaining a list of all the malicious activities is the responsibility of the fog layer. The last
one is the cloud layer; it contains high computational resources to train and update the
detection system in the edge computing devices.

In summary, the main contributions of this research are as follows:

• Present CoLL-IoT, a collaborative system that detects malicious activities that are
targeting IoT devices.

• Implement different machine learning algorithms to achieve the best results in terms
of time and space complexities.

• Evaluate the proposed system on UNSW-NB15 [8] dataset that was recently generated
using the data of real traffic.

• Deploy and execute CoLL-IoT on a low powered device and effectively detect most of
the malicious activities with low type II error rate.

• Achieve a better detection rate than existing tools by using the same benchmark dataset.

The remainder of this paper is organized, as follows: Section 2 discusses the back-
ground of the Internet of Things (IoT) and the edge computing paradigm. Section 3
discusses the related work. Section 4 presents the system design of CoLL-IoT. Section 5
presents the results of the proposed system and a discussion of the results. Finally, Section 6
presents the conclusion of this paper.

2. Background
2.1. Internet of Things (IoT)

The general architecture of the IoT consists of four layers, namely the perception
layer, the network layer, the processing layer, and the application layer, as shown in
Figure 1 [2]. The first layer contains all the IoT sensors, such as image sensors, gas sensors,
and water sensors. The second layer is composed of all the connectivity devices that have a
protocol responsible for exchanging information with the upper layer. The next layer is
responsible for processing all of the data transmitted from the lower layer. This layer is
called the processing layer and it contains all the servers and edge computing devices that
are responsible for executing different tasks, such as decision making and classification
techniques. The top layer in the IoT architecture is the application layer. This layer delivers
different applications to different users on the basis of their needs. The architecture of the
IoT is discussed below.

2.1.1. Perception Layer

This is the basic layer of the entire IoT architecture. It is responsible for gathering all
of the data from various sensors. Furthermore, the devices in this layer are responsible
for sending and receiving data to and from the upper layers. Some information that
could be collected from the sensors in the static or dynamic states are the objects’ state,
the environment of the surrounding areas, and the objects’ characteristics. Therefore, all of

Electronics 2021, 10, 848 3 of 19

the objects that are used for collecting data in the IoT, such as sensors, people, electronics,
and smartphones, are called “things” [3].

Figure 1. Internet of Things (IoT) Architecture and Security Requirements.

2.1.2. Network Layer

This layer is responsible for transmitting data and providing network access to the
Internet. Therefore, all of the information that is collected from the sensors in the upper
layer is transmitted through this layer. Various communication technologies, such as GSM,
WLAN, and IPv6, are used in this layer to achieve the main function of transmitting data.
This layer can contain one or more network devices, such as gateways, edge computing,
and mobile communication network, which are needed to provide the lower layer with
three main functionalities: network communications, software protocol, and communica-
tion security [3].

2.1.3. Processing Layer

This layer contains high computational resources to process the massive amount of
data collected from the sensors in the perception layer. The layer links the upper and
the lower layer by processing the collected information intelligently and presenting this
information in the application layer [3]. Various computational resources, such as high
computing devices, cloud computing devices, and clusters, are utilized in this layer to
achieve the main functionalities of this layer.

2.1.4. Application Layer

The application layer is the top layer of the IoT architecture. It provides users with
many services, such as management devices and the interface of the device’s display. This
layer has an intelligent decision system that responds quickly to the needs of various
businesses, such as healthcare, energy management, and environment monitoring. The ac-
curacy of the response result depends on the latest information that is used to train the
intelligent decision system [3].

2.2. Edge Computing

Edge computing is an emerging technology that aims to deliver various services
and applications that are close to the IoT devices in the lower layer [4]. As discussed
in Section 2.1.1, IoT devices are responsible for collecting a huge amount of data to be

Electronics 2021, 10, 848 4 of 19

processed, which has resulted in the innovation of edge computing to achieve complex
computations near the perception layer. Therefore, all of the collected data are transferred
to the nearest edge computing device for processing through one of the communication
technologies, such as WiFi, cellular communication, and Ethernet cables. Edge computing
devices provide several benefits to the IoT’s context [4]. These benefits are as follows:
minimize the high latency in IoT applications, enhance the privacy, improve network
performance, reduce operational cost, ensure appropriate use of energy and resources,
and manage data efficiently. Therefore, these benefits encourage developers and enterprises
to develop new services for IoT devices. According to Yu et al. [9], the architecture of edge
computing is divided into three ends as follows: front-end, near-end, and far-end; these
aspects are shown in Figure 2 and discussed in the subsections below.

Front-end

Near-end

Far-end

Smart VehiclesSmart City Smart Homes

PC Server

Cloud

Figure 2. Architecture of Edge Computing.

2.2.1. Front-End

The devices deployed in this end are capable of providing real-time services [9]. These
services provide interaction with the end users to enhance their experience while using IoT
devices. If a device in this end cannot process some requests because of certain storage or
computation limitations, then it must send these requests to the upper layer to be processed.
Some examples of devices in this end are the sensors in smart homes and smart cities.

2.2.2. Near-End

To overcome some of the limitations of the previous end, this end is introduced. It
provides better data processing and caching capabilities than the front-end. Therefore, users
will have a better performance experience on data processing [9]. However, the latency
will increase during the computation process.

2.2.3. Far-End

For high computing resources, all of the data are transferred to this end, which has
cloud computing servers. However, transmitting data to this end results in a high latency
in the network [9]. Some resources that can be provided by this end are machine learning,
big data processing, and parallel computing.

Table 1 shows a comparison of the edge computing ends in terms of the edge deploy-
ment, edge network technology, and an example of an existing tool.

2.3. IoT Attacks

IoT attacks are classified into four types, as follows: physical attack, software attack,
network attack, and data attack, as shown in Figure 3 [2]. Each attack targets one or more
of the IoT layers. The first type is the physical attack, which is designed to be executed
physically by attackers while they are close to the IoT devices or the network. This type
targets both the application and perception layers to launch attacks, such as tampering

Electronics 2021, 10, 848 5 of 19

malicious code injection or side channel attack. The second type is the software attack,
which run by attackers by utilizing existing security vulnerabilities in the IoT system. This
attack targets the application and processing layers in IoT architecture. Virus, worms,
spyware, and adware are some examples of this attack. The third type is network attack,
which aims to damage the network system, and it can be achieved by attackers while
they are close to the network or not. This attack targets processing and network layers to
launch an attack, such as denial of service attack, routing information attack, and traffic
analysis attack. Finally, data attack is the fourth type of IoT attack, which targets data
in the application layer and cloud computing resources in the processing layer. Data
inconsistency, data breach, and unauthorized access to sensitive data are some examples of
this type.

Table 1. Comparison of Edge Computing Ends.

Metrics Front-End Near-End Far-End

Deployment
WiFi access points, cel-
lular base station, or ra-
dio access network

Routers, access points,
or mobile nodes

Cloud data centers or
local data centers

Network WiFi, LTE, or any other
technologies

Multiple wireless ac-
cess points including
WiFi, 3G, or LTE

Enterprise networks
and WiFi hotspots

Example Cloudlet [10] Mobile Cloud [11] FUSION [12]

Application Layer

Processing Layer

Network Layer

Perception LayerData Attack

Software Attack

Network Attack

Physical Attack

Attack Examples Attack Type

Side Channel Attack
Virus
Worms
Trojan Horses
Spyware
Adware

Malware
Data Inconsistency
Unauthorized Access
Distributed Denial of Service Attack

Traffic Analysis Attack
RFID Spoofing
Routing Information Attack
Distributed Denial of Services Attack
Data Breach

Tampering Attack
Malicious Code Injection
Fake Node Injection
Denial of Sleep Attack
Permanent Denial of Service

Targeted Layer

Figure 3. Attacks and Targeted Layers in IoT.

3. Related Work

Researchers have proposed a variety of tools to detect different attacks targeting
IoT devices. These attacks are classified into multiple types, as follows: physical attack,
network attack, software attack, and data attack. Ibrahim et al. [6] proposed a detection
tool, called AD-IoT (which stands for anomaly detection of IoT), which analyzes the

Electronics 2021, 10, 848 6 of 19

network traffic and uses a machine learning algorithm to detect malicious traffic in IoT
devices. The proposed system consists of the following three layers: IoT layer, fog layer,
and cloud layer. Moreover, they applied different machine learning algorithms to evaluate
the proposed system by using the UNSW-NB15 dataset [8]. However, their results did
not show the binary classification performance of the proposed system. Furthermore,
the proposed system does not illustrate the capturing process of the network traffic.

Nevertheless, Kasongo and Sun [13] conducted a study to analyze the performance
of intrusion detection systems using UNSW-NB15 [8]. They applied the extreme gradient
boosting (XGBoost) [14] algorithm with a filter-based feature reduction technique. Sub-
sequently, they applied different machine learning algorithms to evaluate the proposed
feature reduction technique and the achieved an accuracy of 90.85% for the binary classifi-
cation part. Therefore, the application of such a technique will improve the classification
results for the selection of the optimal features for the classification. Moreover, Moustafa
and Saly [15] evaluated the different network anomaly detection systems by using different
datasets, namely UNSW-NB15 [8] and KDD99 [16]. Their statistical analysis revealed that
the use of the UNSW-NB15 dataset in anomaly detection systems led to better performance
than that of the KDD99 dataset, as the former contains more than 40 features that are
composed of the network flow between hosts. In the case of the UNSW-NB15 dataset,
the accuracy reached 85.56%; in contrast, when the KDD99 dataset was used, the highest
accuracy was 92.30%. However, the study revealed that the UNSW-NB15 dataset can be
considered to be more complex than the KDD99 dataset, as it contains more behavioral
traffic of modern attacks.

Papamartzivanos et al. [17] proposed new detection rules that were based on a decision
tree (DT) algorithm to classify network attacks and zero-day attacks that target IoT devices.
The proposed tool, called Dendron, was tested on different datasets, namely KDD99,
UNSW-NB15, and NSL-KDD [18]. It achieved an accuracy of 98.85% on the KDD99 dataset,
while achieving an accuracy of 97.55% and 84.33% on the NSL-KDD and UNSW-NB15
dataset, respectively.

Furthermore, Parker et al. [7] utilized a deep learning detection technique to improve
IoT intrusion detection systems. The proposed model combined deep extraction and
mutual information selection elements with a radial basis function classifier. The proposed
model was called DEMISe, and the Aegean WiFi impersonation attack detection (AWID)
dataset was the dataset utilized to evaluate the proposed system [19]. It achieved a
detection rate of 98.04% with the top 10 features using logistic regression (LR) classifier.
However, this method takes a long time for the classification as compared to the previously
discussed methods.

Zhou et al. [20] proposed another detection tool based on machine learning by using
the random forests (RF) algorithm. The proposed method was tested on the KDD99 and
NSL-KDD datasets and achieved an accuracy of 99.8% on the KDD99 dataset. However,
despite the high accuracy, the proposed method could not detect attacks from the network
traffic [21].

Anthi et al. [22] proposed a three-layer intrusion detection system using a supervised
machine learning approach. The proposed system classifies network attacks on IoT devices
in three phases, as follows: (i) profile each normal behavior for each IoT device connected to
the network, (ii) detect malicious packets in the network on the basis of the attack behavior,
and (iii) classify the attack’s type once it has been detected. The detection of malicious
packets in the network achieved an F-score of 90.0%.

Nguyen at al. [23] proposed anomaly detection system, called (DÏoT), for IoT based
on federated learning (FL) approach, which can be defined as multiple devices build a
joint training machine learning model without sharing the data [24]. The proposed system
trained on devices using unlabeled data to detect malicious behavior in the network traffic.
The proposed system achieved a detection accuracy rate of 95.6%. However, despite the
high accuracy rate achieved by DÏoT, some potential vulnerabilities exist in the federated
learning approach, such as model poisoning and inference attacks [25].

Electronics 2021, 10, 848 7 of 19

Ferhat and Ahmet [26] proposed a hybrid malware detection technique that uses
autoencoder and deep neural networks (ANN). The proposed system uses the UNSW-
NB15 dataset that depicts a recent network flow of multiple attacks. The main contribution
of the proposed tool is to use the autoencoder that allows the neural network model to
learn in an unsupervised approach. The evaluation of the proposed system shows that the
best detection accuracy rate of achieved is 97.44% using the relu activation function.

Table 2 shows a comparison of the existing works in terms of the security threat,
detection method, evaluation, utilized datasets, applied machine learning, and limitations.

Table 2. Comparison of Existing Works.

Tool Approach Datasets Algorithm Limitations

[6] ML UNSW-NB15 XGBoost High latency as
traffic analyzed in fog layer

[13] ML UNSW-NB15 XGBoost Low detection rate
[15] ML UNSW-NB15 DT Low detection rate

KDD99
[17] ML KDD99 DT Low detection rate

UNSW-NB15
NSL-KDD

[7] ML AWID LR Time consuming

[20] ML KDD99 RF Does not consider typical net-
work attacks

[22] ML NA J48 Considers only five types of attacks

[23] FL NA GRU Vulnerable to poisoning and infer-
ence attacks

[26] ANN UNSW-NB15 Autoencoder High error rate if features are inde-
pendent on each other

Limitations of Existing Works: as malware is becoming a severe problem in IoT
paradigm, a comprehensive solution is needed to protect users’ data and safeguard the
resources of the IoT devices. Unfortunately, existing solutions suffer from many limitations.
For example, the proposed system by Ibrahim et al. [6] has a major limitation, which is
analyzing network traffic on the fog computing layer, which results in a high latency rate.
Moreover, the solutions proposed by [13,15,17] produce a low detection rate, which might
not be able to detect malicious behavior accurately. Nevertheless, the execution time for
the tool proposed by [19] takes a long time to classify a new sample as benign or malicious
traffic. Additionally, the tool that was proposed by [22] was developed to detect only
five types of the IoT attacks, while CoLL-IoT is designed to detect more type of attacks.
Moreover, some of the existing tools do not consider typical network attack, such as the
proposed tool by [20], which does not consider typical network attacks and it uses the
KDD99 dataset, which does not contain recent attacks.

Therefore, CoLL-IoT overcomes the limitation of existing tools by introducing a collab-
orative system that detects malicious activities that are targeting IoT devices. Furthermore,
it applies several machine learning algorithms to achieve the best results in terms of time
and space complexities whlie using a recent benchmark dataset.

4. Proposed Method

The goal of this research was to design and implement a collaborative system that
detects malicious activities in IoT devices; the proposed system was named CoLL-IoT.
CoLL-IoT consists of four main layers, as follows: IoT layer, network layer, fog layer,
and cloud layer, as shown in Figure 4. All of the layers work collaboratively by monitoring
and analyzing all of the network traffic generated and received by the IoT devices. Figure 5
shows the basic steps of the proposed system.

Electronics 2021, 10, 848 8 of 19

DB
Pre-processing

stage

Training Testing

Extracted Features

Machine
Learning

Model

Fog
Computing

Fog
Computing

Fog
Computing

Edge ComputingEdge ComputingEdge Computing

Zone CZone BZone A

IoT Layer

Network Layer

Fog Layer

Cloud Layer

Figure 4. Architecture of CoLL-IoT Detection System.

Packet Capture

Extract Features

Pre-detector Malware

Block Traffic

Yes

No

Allow Traffic

Block Traffic

Malware Primary
Detector

IoT Sensores

Yes

No

Broadcast to all other
detectors as a zero

day attack

Figure 5. Workflow of CoLL-IoT Detection System.

The first layer, the IoT layer, consists of all the IoT devices and sensors that are
connected to the system. Therefore, all of the network traffic generated or received by the
IoT devices in this layer will be analyzed by an intelligent system in the upper layer.

Electronics 2021, 10, 848 9 of 19

The network layer is the second layer. This layer contains intelligent edge computing
devices that observe all of the network traffic generated by the IoT devices in the lower
layer. All of the traffic will be captured as raw packets to extract the required features that
allow machine learning models to distinguish abnormal traffic. Figure 6 shows the packet
capturing process in this layer and the architecture of the edge computing device. This
layer consists of two detectors, called the pre-detector and the primary detector. The pre-
detector utilizes scanning technique to analyze all samples to detect abnormal activities.
This achieved by sending a query of each incoming and outgoing traffic to VirusTotal [27],
in order to classify each sample as benign or malicious. Incoming and outgoing traffic are
both considered to protect the devices from communicating with attackers or malicious
destinations. Therefore, if a device initiates a new communication or receives an incoming
communication, then the pre-detector will interrupt that request for further investigation.
Therefore, the pre-detector will query the interrupted request to VirusTotal to check the
destination’s or source’s IP address of the request. Thus, if the results from the pre-detector
do not contain any malicious activity, then the extracted features will be presented to the
primary detector model to classify the extracted features as malicious or benign based on
the main model that is trained on the cloud layer. The goal of the primary detector is to
detect zero-day attacks that are not detected by VirusTotal yet. Hence, if the sample is
detected to be abnormal by one of the detectors, then the traffic will be blocked, and the
sample will be sent to the upper layer for further analysis to confirm the malicious activities.
Moreover, the detected sample will be broadcasting to all other primary detector nodes as
a zero-day attack. The primary detector model is stored in the internal storage of the edge
device and it will be updated automatically on the basis of the notification received from
the upper layer. There are two reasons of considering VirusTotal for scanning all packets
in the pre-detector: (1) VirusTotal is a free service that can be accessed online through the
website or the pre-designed API; and, (2) VirusTotal allows users to analyze files or URLs
using different antivirus and scanner systems. Algorithm 1 shows the detection procedures
for CoLL-IoT.

Algorithm 1 CoLL-IoT Detection Procedures
Input: NT: Captured Network Traffic;
Output: Result: 0-Normal; 1-Malicious;

1: C = loadModel()
2: for EachCapturedTra f f ic do
3: C.predict(NT);
4: if Result = 0 then
5: AllowTra f f ic;
6: else
7: BlockTra f f ic;
8: In f ormOtherNodes;

Edge ComputingIoT Layer

Packet
Capturing

Feature
Extraction

Network
Traffic

Network
Traffic

Pre-Detector

Primary Detector

Decision

Figure 6. Architecture of Edge Computing Device in the Proposed System.

The upper layer that is responsible for managing and maintaining a list of all the
malicious activities is the fog layer, as shown in Figure 4. In this layer, a list of all the

Electronics 2021, 10, 848 10 of 19

detected abnormal traffic will be aggregated from the different edge computing devices in
the previous layer. Subsequently, the detected samples will be analyzed again to reduce
the error rates. This step confirms the abnormal behavior of the captured packets in the
lower layer. Figure 7 shows the steps to confirm and broadcast the confirmed malicious
samples in the fog layer.

DB

Lo
ad

 M
L

M
od

el

C
on

fir
m

C
la

ss
ifi

ca
tio

n
R

es
ul

ts

Broadcast the
confirmed sample to

all pre-detector
models as zero-day

attacks

Send confirmed
samples to cloud to
be included in the

dataset

Figure 7. Workflow of the Fog Layer in the Proposed System.

The cloud layer is the top layer in the CoLL-IoT detection system. This layer is
composed of high computational resources. Therefore, all of the new abnormal samples
detected by all the connected nodes in the network layers and confirmed by the fog layer
are sent to this layer. The machine learning model will be trained on all of the samples
in the datasets, including the new detected samples. Once the machine learning model is
trained, the new trained model will be published to all the nodes to update the primary
detector and clear the pre-detector model. This approach will help to reduce the hardware
consumption that is utilized by the pre-detector model.

4.1. Machine Learning

Machine learning is a technique that takes large sets of data and attempts to pre-
dict a value for a new sample after discovering patterns in the previous data. In many
complicated problems, designing a specific algorithm in computer science is extremely
difficult. Therefore, machine learning is often used to solve these complex problems. This
section discusses machine learning algorithms that have been applied to detect suspicious
network traffic.

In this research, several supervised machine learning algorithms that were used for
classification were investigated and tested. They included K-nearest neighbors (K-NN),
logistic regression (LR), random forests, and extreme gradient boosting (XGBoost). All of
the ML algorithms were trained on the top 15, 20, 25, and 30 features that were selected
by the F-test [28] and chi-square [29] feature selection algorithms from the 49 considered
features. Therefore, after training and testing all of algorithms, the algorithm that provides
the best results is saved in a pickled format to be used to classify new samples.

4.1.1. K-Nearest Neighbors (K-NN)

K-nearest neighbors (K-NN) is a machine learning technique that classifies a new
sample by determining the most similar samples in the training dataset. Therefore, it repre-
sents each feature of the inspected sample in an n-dimensional space for classification [30].
The classification of the new sample depends on the distance between all of the samples in
the dimensional area and the order of the neighborhood samples.

4.1.2. Random Forests

The random forests algorithm consists of several decision trees, which sorts new
samples on the basis of the values of its features [30]. The classification results can be
reached by the leaf nodes in the decision trees. Each tree in the decision trees classifies and
selects a set of data randomly from the input data. Once a testing data item is labeled by a

Electronics 2021, 10, 848 11 of 19

tree (also called a vote), the forest can give the classification result based on the most votes
among all of the trees.

Extreme gradient boosting (XGBoost) [14] is another ensemble algorithm that utilizes
decision trees to build a robust learning algorithm. To predict a new sample, XGBoost uses
an arbitrary differential loss function for the result prediction. XGBoost is known for its
efficiency in terms of the computing time and memory utilization.

4.1.3. Logistic Regression (LR)

Logistic regression classifies the data on the basis of an equation that separates the
data points from each other. It utilizes the sigmoid function to predict a new sample by
taking all of the features as an input and multiplying each individual feature by a weight.
The result of the sum of all the features is used for the classification decision once it is
applied to the sigmoid function.

4.2. Feature Selection

Applying the feature selection algorithm on the extracted features is an essential step
to find the best set of features that can be used to classify benign traffic from malicious
traffic. In this research, two features selection algorithms were applied, namely F-test [28]
and chi-square [29].

The F-test feature selection algorithm is utilized by CoLL-IoT to reduce the number of
extracted features. It is one of the filter methods that computes the score of each feature by
considering the relationship between the feature and target variable [28]. The F-test is a
statistical test that is used to compare between the models and check whether there are any
important differences. The score for each feature Xi is calculated using Equation (1) [31].

t(Xi) =
|µi1 − µi2 |√

σ2
i1

n1
+

σ2
i2

n2

(1)

where µi1 and µi2 refer to the mean of the i-th feature for class Cj, where j is equal to 1 or 2,
which denotes the class index; n1 and n2 refer to the sizes of the group for the first class and
second class samples, respectively. Additionally, σi1 and σi1 refer to the standard deviation
of the i-th feature for class Cj. Figure 8 shows the top 20 selected features after applying
the F-test feature selection. Table 3 shows the description of the top 20 features that were
selected by the F-test feature selection algorithm.

Electronics 2021, 0, 0 11 of 19

tree (also called a vote), the forest can give the classification result based on the most votes
among all of the trees.

Extreme gradient boosting (XGBoost) [14] is another ensemble algorithm that utilizes
decision trees to build a robust learning algorithm. To predict a new sample, XGBoost uses
an arbitrary differential loss function for the result prediction. XGBoost is known for its
efficiency in terms of the computing time and memory utilization.

4.1.3. Logistic Regression (LR)

Logistic regression classifies the data on the basis of an equation that separates the
data points from each other. It utilizes the sigmoid function to predict a new sample by
taking all of the features as an input and multiplying each individual feature by a weight.
The result of the sum of all the features is used for the classification decision once it is
applied to the sigmoid function.

4.2. Feature Selection

Applying the feature selection algorithm on the extracted features is an essential step
to find the best set of features that can be used to classify benign traffic from malicious
traffic. In this research, two features selection algorithms were applied, namely F-test [28]
and chi-square [29].

The F-test feature selection algorithm is utilized by CoLL-IoT to reduce the number of
extracted features. It is one of the filter methods that computes the score of each feature by
considering the relationship between the feature and target variable [28]. The F-test is a
statistical test that is used to compare between the models and check whether there are any
important differences. The score for each feature Xi is calculated using Equation (1) [31].

t(Xi) =
|µi1 − µi2 |√

σ2
i1

n1
+

σ2
i2

n2

(1)

where µi1 and µi2 refer to the mean of the i-th feature for class Cj, where j is equal to 1 or 2,
which denotes the class index; n1 and n2 refer to the sizes of the group for the first class and
second class samples, respectively. Additionally, σi1 and σi1 refer to the standard deviation
of the i-th feature for class Cj. Figure 8 shows the top 20 selected features after applying
the F-test feature selection. Table 3 shows the description of the top 20 features that were
selected by the F-test feature selection algorithm.

Figure 8. Top 20 selected features selected by F-test feature selection algorithm.
Figure 8. Top 20 selected features selected by F-test feature selection algorithm.

Electronics 2021, 10, 848 12 of 19

Table 3. Description of the top 20 selected features.

Features Description Features Description

dmeansz The mean of raw packets swin The frame value of
transmitted by the destination
size TCP at the source

proto Protocol of the transaction dwin The frame value of
TCP at the destination

sbytes The size from the source stcpb The base sequence number
to the destination of source TCP

dbytes The size from the dtcpb The base sequence number
destination to the source of destination TCP

dloss Number of packets smeansz The mean of raw packets
dropped or delegated transmitted by the source size

sload Source bits/sec.
response
body
len

The size of the response by the
server

dload Destination bits/sec. sjit Source jitter (ms)

spkts Number of packets at the
source djit Destination jitter (ms)

dpkts Number of packets at sintpkt Arrival time between
the destination source layers (ms)

dintpkt Arrival time between sttl Time from source to
destination layers (ms) destination to live value

Moreover, the chi-square feature selection algorithm is also considered to find the best
features. It calculates the independence between the label and each feature, as shown in
Equation (2).

χ2(t, c) =
N × (AD− CB)2

(A + C)× (B + D)× (A + B)× (C + D)
(2)

where t and c are the feature dimension and label to be evaluated, respectively; N represents
the number of samples; A represents the number of times that t and c co-occur; B represents
the number of times t occurs without c; C represents the number of times c occurs without
t; and, D represents the number of times neither t nor c occur.

4.3. Dataset

CoLL-IoT was evaluated using the UNSW-NB15 [8] dataset that was recently gener-
ated using the data of real traffic. The dataset was created by the Cyber Range Lab of the
Australian Centre for Cyber Security in 2015. It contains nine types of attacks, as shown in
Table 4. These attacks are, as follows: denial-of-service (DoS), fuzzers, backdoors, exploits,
analysis, generic, worms, shellcode, and reconnaissance. These types were analyzed based
on 49 features. There were 175,341 records in the training set and 82,332 records in the
testing set.

4.4. Evaluation Metrics

To evaluate the performance of the detection model, the following metrics were
considered:

• Accuracy: the total number of samples that are correctly classified to the total number
of samples. Accuracy was calculated using Equation (3):

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP refers to true positive. This means that the model correctly classifies mali-
cious samples as malicious. TN refers to true negative, which means that the model

Electronics 2021, 10, 848 13 of 19

correctly classifies benign samples as benign. FP refers to a false positive, which
means that the model could not classify a benign sample as benign. FN refers to
false negative, which means that the model could not classify a malicious sample
as malicious.

• Type I Error or FP Rate: the total number of benign samples that are not classified
correctly to the total number of all the benign samples. This was calculated using
Equation (4):

Type I Error =
FP

TN + FP
(4)

• Type II Error or FN Rate: the total number of malicious samples that are not classified
correctly as compared to the total number of all the malicious samples. This was
calculated using Equation (5):

Type I I Error =
FN

FN + TP
(5)

• F1 -Score: this refers to how discriminative the model is and it was calculated using
Equation (6):

F1− Score = 2 ∗ precision ∗ recall
precision + recall

(6)

where precision represents the ratio of the malicious samples that are classified correctly
to the total number of all samples that are classified as malicious; and, recall represents
the ratio of the malicious samples that are correctly classified to the total number of
malicious samples.

Additionally, sensitivity and specificity metrics were considered to evaluate the perfor-
mance of the detection model. Therefore, sensitivity represents the percentage of malicious
samples that were correctly classified as malicious; and specificity represents the percentage
of benign samples that were classified correctly as benign.

Table 4. Type of attacks in the UNSW-NB15 dataset.

Attack Number of Records

DoS 1167
Fuzzers 5051

Backdoors 534
Exploits 5409
Analysis 526
Generic 7522
Worms 24

Shellcode 223
Reconnaissance 1759

5. Results and Discussion
5.1. Results

The machine learning models were implemented and tested by using Scikit-learn
library in python 3.5 [32] with 64 bits. Table 5 shows the best parameters for each classifier
to obtain the best evaluation results.

Therefore, the best accuracy was 98.35%, which was achieved by the XGBoost algo-
rithm when it was trained on the top features selected by the F-test algorithm, as shown
in Table 6. The type I error rate for XGBoost was 3.16%, and the type II error rate was
1.6%. The lowest accuracy for CoLL-IoT was achieved by the LR algorithm using the top
features that were selected by the chi-square algorithm. It produced an accuracy of 76.21%
with 18.76% and 36.01% for the type I error rate and the type II error rate, respectively.
The other ML algorithms produced average results. For example, random forests (RF)

Electronics 2021, 10, 848 14 of 19

produced a 92.37% accuracy and 9.69% type I error rate with a 1.48% type II error rate.
Moreover, K-NN achieved a 94.95% accuracy, while 3.76% and 4.12% were the results for
the type I and type II error rates, respectively. Figures 9 and 10 show a comparison of the
all algorithm results on the basis of the different sets of features that were selected by the
chi-square and F-test algorithms, respectively. Moreover, Figure 11 shows a comparison of
all the algorithm results, including accuracy, F1-score, precision, and area under a curve
(AUC). Furthermore, Figure 12 shows the receiver operating characteristic (ROC) for all of
the machine learning algorithms applied by CoLL-IoT. Table 6 shows the prediction time
and space complexities for each algorithm.

Figure 9. Accuracy comparison for the top features selected by chi-square.

Figure 10. Accuracy comparison for the top features selected by F-test.

Table 5. Parameters Tuning Using Scikit-learn library.

Classifier Best Parameters

K-NN metric_params = None, n_jobs = 8, n_neighbors = 5, p = 2,
weights = ‘uniform’

Random Forests n_estimator = 8, max_depth = None, max_depth = None,
max_features = ‘auto’, max_leaf_nodes = None

LR intercept_scaling = 1, max_iter = 100
XGBoost colsample_bytree = 1, learning_rate = 0.1, max_depth = 3,

n_estimators = 100, n_jobs = 1

Electronics 2021, 10, 848 15 of 19

Table 6. Comparison of all machine learning results.

Metrics
Algorithm

K-NN Random Forests LR XGBoost

True Positives 30,856 25,985 19,655 32,413
True Negatives 70,253 71,188 60,517 71,053
False Positives 2770 7641 13,971 1213
False Negatives 1326 391 11,062 526
Sensitivity (%) 95.88 98.52 63.99 98.40
Specificity (%) 96.21 90.31 81.24 98.32
Precision (%) 91.76 77.28 58.45 96.39
Type I Error (%) 3.76 9.69 18.76 3.61
Type II Error (%) 4.12 1.48 36.01 1.6
Accuracy (%) 96.11 92.37 76.21 98.35
F1-Score (%) 93.78 86.61 61.09 97.39
AUC (%) 94.95 88.36 71.49 97.82
Time Complexity O(knp) O(pntrees) O(p) O(pntrees)
Space Complexity O(np) O(pntrees) O(p) O(pntrees)

n number of data point; p number of features; k number of nearest neighbours; ntrees number of trees.

Figure 11. Comparison of all ML algorithms’ results.

Figure 12. ROC for the applied algorithms.

Electronics 2021, 10, 848 16 of 19

5.2. Discussion

CoLL-IoT was compared to the other existing state-of-the-art tools, as shown in
Table 7. All of the tools were tested and evaluated on the same benchmark UNSW-NB15 [8].
Kasongo and Sun [13] evaluated their intrusion detection system on the UNSW-NB15
dataset by using different machine learning algorithms, as follows: support vector machine
(SVM), K-NN, LR, artificial neural network (ANN), and decision tree (DT). They achieved
90.85% accuracy using the DT machine learning algorithm while they applied the XGBoost
feature extraction technique. Furthermore, comparing CoLL-IoT to one of the existing tools
that was proposed by Moustafa and Slay [15], I found that CoLL-IoT performed better
than the latter technique. Moustafa and Slay [15] analyzed different machine learning
algorithms using the UNSW-NB15 dataset. The best accuracy that they achieved was 85.56%
using the DT algorithm, while they report a 15.78% type I error rate. Kumar et al. [33]
proposed a detection system that was based on network traffic activities. They evaluated
and tested the proposed system on UNSW-NB15 and achieved an average of 84.83%
accuracy with an average of 2.01% type I error rate. Dimitrios et al. [17] proposed network
intrusion detection system rule while using the decision tree algorithms. They evaluated
the proposed system on the UNSW-NB15 dataset and achieved 84.33% accuracy with 2.61%
type I error rate. Moreover, the performance of CoLL-IoT was compared to that of another
anomaly detection system that was proposed by Souhail et al. [34]. The proposed system
applied two detection stages to classify malicious behavior using the SVM algorithm and
achieved 82.11% accuracy. Moreover, the tool proposed by Ferhat and Ahmet [26] achieved
97.44% using deep neural network using autoencoder.

Table 7. Comparison with existing tools.

Existing Tools
Metrics

Accuracy (%) F1-Score (%) Precision (%) Type I Error (%)

Kasongo & Sun [13] 90.85 88.45 80.33 NA
Moustafa & Slay [15] 85.56 NA NA 15.78
Kumar et al. [33] 84.83 NA NA 2.01
Dimitrios et al. [17] 84.33 48.81 NA 2.61
Souhail et al. [34] 82.11 NA NA NA
Ferhat and Ahmet [26] 97.44 89.85 89.24 NA
CoLL-IoT 98.35 97.39 96.39 3.61

5.3. Hardware Resource Utilization

To evaluate CoLL-IoT on a common edge computing device, we evaluated it on a
Raspberry Pi 3 Model B (https://www.raspberrypi.org/products/) (accessed on 1 March
2021), which has quad core CPU at 1.2 GHz, 1 GB of RAM, and is equipped with on-board
wireless and wired network adapters. The Raspberry Pi run as an edge computing device
that hosted the machine learning model of CoLL-IoT and captured all of the network traffic
to detect any malicious behavior. During the experiment of CoLL-IoT, the value of the
CPU load and the memory utilization were measured. Moreover, the time that was taken
to classify the captured network traffic was analyzed. Therefore, to evaluate the memory
and CPU usage, sysstat [35] was used, which is a package for Linux OS to monitor and
report system performance and activities. It contains different tools to report CPU statistics,
processor statistics, memory statistics, etc.

The CPU and the memory of the edge device was evaluated three times before in-
stalling CoLL-IoT and after the instillation during the analysis stage, as shown in Figure 13.
The average CPU load was increased slightly by 1% while analyzing the network traffic
and running the machine learning model for classification. Moreover, the average memory
utilization for CoLL-IoT only increased by 0.9%. The size of the machine learning model
running on the edge device was 10 MB and, during the evaluation stage, CoLL-IoT took 8
seconds to analyze and classify 10 new samples.

https://www.raspberrypi.org/products/

Electronics 2021, 10, 848 17 of 19

Figure 13. Hardware Resource Utilization.

6. Conclusions

This paper presented CoLL-IoT, a collaborative detection system to detect malicious
activities in IoT devices. The proposed system consisted of the following four main
layers: the IoT layer, network layer, fog layer, and cloud layer. All of the layers worked
collaboratively to analyze the network traffic in order to detect malicious activities. First,
different machine learning algorithms were implemented to achieve the best results in
terms of time and space complexities. Second, CoLL-IOT was deployed and executed on
a resource-constrained device and effectively detect most of the malicious activities with
low type II error rate. Third, CoLL-IoT was evaluated on the UNSW-NB15 dataset that
contains recent IoT attacks, namely: denial-of-service (DoS), fuzzers, backdoors, exploits,
analysis, generic, worms, shellcode, and reconnaissance. The evaluation results showed
that CoLL-IoT achieved up to 98% accuracy with a low type II error rate of 0.01. Finally,
the proposed tool achieved a better detection rate than existing tools by using the same
benchmark dataset.

As future work, we plan to implement deep learning algorithm using LITNET-2020
benchmark dataset [36]. This dataset has more features of the network flow than UNSW-
NB15. Moreover, it has 12 types of attacks, which will help to build a model that can detect
recent attacks in this area.

Funding: The author would like to express his gratitude to the Ministry of Education and the
Deanship of Scientific Research—Najran University—Kingdom of Saudi Arabia for its financial and
technical support under code number (NU/ESCI/17/088).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rose, K.; Eldridge, S.; Chapin, L. The internet of things: An overview. Internet Soc. (ISOC) 2015, 80, 1–50.
2. Sengupta, J.; Ruj, S.; Bit, S.D. A Comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT. J.

Netw. Comput. Appl. 2020, 149, 102481. [CrossRef]
3. Chen, M.; Miao, Y.; Humar, I. OPNET IoT Simulation; Springer Nature: Singapore, 2019.
4. Hassan, N.; Gillani, S.; Ahmed, E.; Yaqoob, I.; Imran, M. The Role of Edge Computing in Internet of Things. IEEE Commun. Mag.

2018, 56, 110–115. [CrossRef]
5. Eskandari, M.; Janjua, Z.H.; Vecchio, M.; Antonelli, F. Passban IDS: An intelligent anomaly-based intrusion detection system for

IoT edge devices. IEEE Internet Things J. 2020, 7, 6882–6897. [CrossRef]

http://doi.org/10.1016/j.jnca.2019.102481
http://dx.doi.org/10.1109/MCOM.2018.1700906
http://dx.doi.org/10.1109/JIOT.2020.2970501

Electronics 2021, 10, 848 18 of 19

6. Alrashdi, I.; Alqazzaz, A.; Aloufi, E.; Alharthi, R.; Zohdy, M.; Ming, H. AD-IoT: Anomaly Detection of IoT Cyberattacks in Smart
City Using Machine Learning. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and
Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 305–310. [CrossRef]

7. Parker, L.R.; Yoo, P.D.; Asyhari, T.A.; Chermak, L.; Jhi, Y.; Taha, K. Demise: Interpretable deep extraction and mutual information
selection techniques for IoT intrusion detection. In Proceedings of the 14th International Conference on Availability, Reliability
and Security, Canterbury, UK, 26–29 August 2019; pp. 1–10.

8. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra,
Australia, 10–12 November 2015; pp. 1–6. [CrossRef]

9. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE
Access 2018, 6, 6900–6919. [CrossRef]

10. Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The case for vm-based cloudlets in mobile computing. IEEE Pervasive
Comput. 2009, 8, 14–23. [CrossRef]

11. Nishio, T.; Shinkuma, R.; Takahashi, T.; Mandayam, N.B. Service-oriented heterogeneous resource sharing for optimizing
service latency in mobile cloud. In Proceedings of the First International Workshop on Mobile Cloud Computing & Networking,
Bangalore, India, 29 July–1 August 2013; pp. 19–26.

12. Griffin, D.; Rio, M.; Simoens, P.; Smet, P.; Vandeputte, F.; Vermoesen, L.; Bursztynowski, D.; Schamel, F. Service oriented
networking. In Proceedings of the 2014 European Conference on Networks and Communications (EuCNC), Bologna, Italy, 23–26
June 2014; pp. 1–5.

13. Kasongo, S.M.; Sun, Y. Performance Analysis of Intrusion Detection Systems Using a Feature Selection Method on the UNSW-
NB15 Dataset. J. Big Data 2020, 7, 1–20. [CrossRef]

14. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

15. Moustafa, N.; Slay, J. The evaluation of Network Anomaly Detection Systems: Statistical analysis of the UNSW-NB15 data set
and the comparison with the KDD99 data set. Inf. Secur. J. Glob. Perspect. 2016, 25, 18–31. [CrossRef]

16. Brugger, T. KDD Cup’99 dataset (Network Intrusion) considered harmful. KDnuggets Newsl. 2007, 7, 15.
17. Papamartzivanos, D.; Mármol, F.G.; Kambourakis, G. Dendron: Genetic trees driven rule induction for network intrusion

detection systems. Future Gener. Comput. Syst. 2018, 79, 558–574. [CrossRef]
18. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009

IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6.

19. Kolias, C.; Kambourakis, G.; Stavrou, A.; Gritzalis, S. Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats
and a Public Dataset. IEEE Commun. Surv. Tutor. 2016, 18, 184–208. [CrossRef]

20. Zhou, Y.; Cheng, G.; Jiang, S.; Dai, M. Building an efficient intrusion detection system based on feature selection and ensemble
classifier. Comput. Netw. 2020, 174, 107247. [CrossRef]

21. Rahman, M.A.; Asyhari, A.T.; Leong, L.; Satrya, G.; Tao, M.H.; Zolkipli, M. Scalable machine learning-based intrusion detection
system for iot-enabled smart cities. Sustain. Cities Soc. 2020, 61, 102324. [CrossRef]

22. Anthi, E.; Williams, L.; Słowińska, M.; Theodorakopoulos, G.; Burnap, P. A Supervised Intrusion Detection System for Smart
Home IoT Devices. IEEE Internet Things J. 2019, 6, 9042–9053. [CrossRef]

23. Nguyen, T.D.; Marchal, S.; Miettinen, M.; Fereidooni, H.; Asokan, N.; Sadeghi, A. DÏoT: A Federated Self-learning Anomaly
Detection System for IoT. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS), Dallas, TX, USA, 7–10 July 2019; pp. 756–767. [CrossRef]

24. Jiang, J.C.; Kantarci, B.; Oktug, S.; Soyata, T. Federated Learning in Smart City Sensing: Challenges and Opportunities. Sensors
2020, 20, 6230. [CrossRef] [PubMed]

25. Lyu, L.; Yu, H.; Yang, Q. Threats to federated learning: A survey. arXiv 2020, arXiv:2003.02133.
26. Catak, F.O.; Mustacoglu, A.F. Distributed denial of service attack detection using autoencoder and deep neural networks. J. Intell.

Fuzzy Syst. 2019, 37, 3969–3979. [CrossRef]
27. Asaithambi, S. The VirusTotal Homepage. Available online: https://www.virustotal.com/gui/ (accessed on 24 March 2021).
28. Asaithambi, S. Why, How and When to apply Feature Selection. Available online: https://www.shorturl.at/qzEI6 (accessed on

21 September 2019).
29. Cen, L.; Gates, C.; Si, L.; Li, N. A probabilistic discriminative model for android malware detection with decompiled source code.

IEEE Trans. Dependable Secur. Comput. 2015, 12, 400–412. [CrossRef]
30. Kotsiantis, S. Supervised Machine Learning: A Review of Classification Techniques. In Proceedings of the 2007 Conference

on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI,
Information Retrieval and Pervasive Technologies; IOS Press: Amsterdam, The Netherlands, 2007; pp. 3–24.

31. Chandra, B.; Gupta, M. An efficient statistical feature selection approach for classification of gene expression data. J. Biomed.
Inform. 2011, 44, 529–535. [CrossRef]

32. Scikit-Learn Machine Learning in Python. Available online: https://scikit-learn.org/stable/ (accessed on 4 March 2021).

http://dx.doi.org/10.1109/CCWC.2019.8666450
http://dx.doi.org/10.1109/MilCIS.2015.7348942
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1186/s40537-020-00379-6
http://dx.doi.org/10.1080/19393555.2015.1125974
http://dx.doi.org/10.1016/j.future.2017.09.056
http://dx.doi.org/10.1109/COMST.2015.2402161
http://dx.doi.org/10.1016/j.comnet.2020.107247
http://dx.doi.org/10.1016/j.scs.2020.102324
http://dx.doi.org/10.1109/JIOT.2019.2926365
http://dx.doi.org/10.1109/ICDCS.2019.00080
http://dx.doi.org/10.3390/s20216230
http://www.ncbi.nlm.nih.gov/pubmed/33142863
http://dx.doi.org/10.3233/JIFS-190159
https://www.virustotal.com/gui/
https://www.shorturl.at/qzEI6
http://dx.doi.org/10.1109/TDSC.2014.2355839
http://dx.doi.org/10.1016/j.jbi.2011.01.001
https://scikit-learn.org/stable/

Electronics 2021, 10, 848 19 of 19

33. Kumar, V.; Sinha, D.; Das, A.K.; Pandey, S.C.; Goswami, R.T. An integrated rule based intrusion detection system: Analysis on
UNSW-NB15 data set and the real time online dataset. Clust. Comput. 2020, 23, 1397–1418. [CrossRef]

34. Meftah, S.; Rachidi, T.; Assem, N. Network based intrusion detection using the UNSW-NB15 dataset. Int. J. Comput. Digit. Syst.
2019, 8, 478–487.

35. Godard, S. Sar Collect, Report, or sAve System Activity Information. Available online: https://linux.die.net/man/1/sar
(accessed on 6 February 2021).

36. Damasevicius, R.; Venckauskas, A.; Grigaliunas, S.; Toldinas, J.; Morkevicius, N.; Aleliunas, T.; Smuikys, P. LITNET-2020: An
annotated real-world network flow dataset for network intrusion detection. Electronics 2020, 9, 800. [CrossRef]

http://dx.doi.org/10.1007/s10586-019-03008-x
https://linux.die.net/man/1/sar
http://dx.doi.org/10.3390/electronics9050800

	Introduction
	Background
	Internet of Things (IoT)
	Perception Layer
	Network Layer
	Processing Layer
	Application Layer

	Edge Computing
	Front-End
	Near-End
	Far-End

	IoT Attacks

	Related Work
	Proposed Method
	Machine Learning
	K-Nearest Neighbors (K-NN)
	Random Forests
	Logistic Regression (LR)

	Feature Selection
	Dataset
	Evaluation Metrics

	Results and Discussion
	Results
	Discussion
	Hardware Resource Utilization

	Conclusions
	References

