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Abstract: It is important how the token unit is defined in a sentence in natural language process
tasks, such as text classification, machine translation, and generation. Many studies recently utilized
the subword tokenization in language models such as BERT, KoBERT, and ALBERT. Although
these language models achieved state-of-the-art results in various NLP tasks, it is not clear whether
the subword tokenization is the best token unit for Korean sentence embedding. Thus, we carried
out sentence embedding based on word, morpheme, subword, and submorpheme, respectively,
on Korean sentiment analysis. We explored the two-sentence representation methods for sentence
embedding: considering the order of tokens in a sentence and not considering the order. While
inputting a sentence, which is decomposed by token unit, to the two-sentence representation methods,
we construct the sentence embedding with various tokenizations to find the most effective token unit
for Korean sentence embedding. In our work, we confirmed: the robustness of the subword unit for
out-of-vocabulary (OOV) problems compared to other token units, the disadvantage of replacing
whitespace with a particular symbol in the sentiment analysis task, and that the optimal vocabulary
size is 16K in subword and submorpheme tokenization. We empirically noticed that the subword,
which was tokenized by a vocabulary size of 16K without replacement of whitespace, was the most
effective for sentence embedding on the Korean sentiment analysis task.

Keywords: Korean sentence embedding; subword; tokenization; sentiment analysis

1. Introduction

Embedding is a fundamental step when representing text data in vector space for
natural language process tasks, namely, text classification, machine translation, and genera-
tion. To represent discrete data such as words and sentences in vector space, much research
has been conducted on various embedding methods based on words, morphemes, and
subwords. Most embedding research has focused on word embedding, which learns a
vector from the word token unit [1–4]. However, word embedding is problematic due to un-
known tokens raising the out-of-vocabulary (OOV) problem. To alleviate the OOV problem,
morpheme embedding was introduced [5,6]. Since a word is decomposed into a sequence
of morpheme tokens based on morphological meanings, morpheme embedding has fewer
unknown tokens and is more robust to the OOV problem than word embedding [5,7].
Subword tokenization is an attractive approach in sentence embedding researches [8,9] and
it acquired a good performance on the political-bias classification task [10]. The subword
token is decomposed by data-driven statistical algorithms, for example, byte pair encod-
ing (BPE) and SentencePiece (https://github.com/google/sentencepiece) (accessed on 9
December 2020) [11,12]. It was proved that subword embedding is effective for machine
translation tasks [8,9], and the language models based on the transformer, namely, BERT
and KoBERT, achieved state-of-the-art results on sentiment analysis by conducting subword
tokenization [13,14]. However, it is not clear whether subword tokenization is an effective
method for Korean sentence embedding. We raise the question: “What is the optimal token
unit for Korean sentence embedding?” To find the answer, we explored sentiment analysis
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task with sentence representation methods, which is known as sentence embedding, based
on the various token units (word, morpheme, subword, and submorpheme).

The language models based on the transformer (e.g., BERT, KoBERT, and ALBERT)
learn the pretraining tasks with the large corpora and subword tokenization for improving
performance [13–15]. However, because we focused on determining whether subword
tokenization is an important factor for improving performance, we controlled other factors
for improving performance, excluding tokenization for sentence embedding. To control
factors other than embedding methods, we used simple classifiers, such as a support
vector machine (SVM) (https://www.cs.cornell.edu/people/tj/svm_light/) (accessed on 9
December 2020), multi-layer perceptron (MLP), and long short-term memory (LSTM). That
is, we constructed the sentence embedding by applying the token sequence based on the
various token units to the sentence representation methods and evaluated the performance
of sentence embedding using the simple classifiers on a Korean sentiment analysis task.
Our research is structured as follows. In Section 2, we introduce the related works of
the sentence representation methods based on tokenization. In Section 3, we describe the
properties of token units in the Korean language and how to obtain the sentence vector
from the sequence of token units in a sentence. In Section 4, we evaluate the performance
of the sentence embedding according to the token unit defining the sentence in the Korean
sentiment analysis task. In Section 5, we analyze the experimental results, considering
the properties of token units. Lastly, Section 6 summarizes our task and presents the
expected effect.

2. Related Work

Most previous studies inputted the word token unit in the embedding models, namely,
Word2vec and GloVe [1–3,16–18], to represent the word as a continuous vector. Tang (2014)
and Severyn (2015) conducted the word embedding by inputting word tokens in skip-gram
for the sentence classification task in English [1,2]. Zhao (2018) also explored the word
embedding in English utilizing GloVe to eliminate the gender stereotype caused by the
biased data [4]. Lee (2019) carried out CBOW for word embedding on the Korean spam
message filtering task [3]. The morpheme has the advantage of expressing an internal
meaning of a word because a word is decomposed into a sequence of morpheme tokens by
morphological meaning [5–7]. In English, Botha (2014) verified that morpheme embedding
is effective to represent the meaning of tokens than the word embedding, and Tang (2020)
introduced the tokenization strategies for resolving the OOV problem based on morpheme
embedding [5,7]. Lee (2018) combined morphological features in a word to demonstrate
the effect of morpheme embedding in the Korean language [6]. Subword tokenization was
recently introduced with BPE and SentencePiece algorithms [8–10]. Banerjee (2018) and
Wang (2020) tackled the OOV problem by utilizing the BPE algorithm on the machine
translation task using multiple languages [8,9]. Cho (2020a) explored subword embedding
with SentencePiece for the bias classification task using the Korean news article dataset [10].
In addition, BERT was introduced by Devlin (2019) as the pretraining language model based
on a transformer, and it was expanded to KoBERT and ALBERT [13–15]. These utilize the
subword embedding to pretrain the large corpora, and these achieved the state-of-the-art
results on various NLP tasks.

3. Sentence Representation with Tokenization
3.1. Tokenization

Tokenization lists a sentence as a token sequence. As shown in Table 1, tokenization
results differ depending on the token unit. Thus, we describe the tokenization results
with properties of the Korean language in the order of word, morpheme, subword, and
submorpheme. In all tokenization, we did not deal with punctuation marks.

https://www.cs.cornell.edu/people/tj/svm_light/
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Table 1. Example of tokenization results according to token units for “너무나감동적인영화” (very
touching movie); We marked the token, which is we can not represent in English, as “-” (hyphen).

Token Unit Tokenization Result

Raw Text 너무나감동적인영화 (very touching movie)
Word 너무나/감동적인/영화 (very/touching/movie)
Morpheme 너무나/감동/적/인/영화 (very/touch/-/ing/movie)
Subword _너무/나/_감동/적인/_영화 (_very/-/_touch/-ing/_movie)
Submorpheme _너무/나/_감동/_적/_인/_영화 (_very/-/_touch/_-/_ing/_movie)

Word tokenization is the simplest method of decomposing a sentence by whitespace.
For word tokenization, we did not handle whitespace as a particular symbol. As shown
in Table 1, word tokenization represents “너무나 감동적인 영화” (very touching movie)
as “너무나” (very), “감동적인” (touching), and “영화” (movie). As a word is a synthesis
of morphemes in the Korean language, a word appears differently depending on which
morphemes are combined. For example, a noun “영화” (movie) is represented as “영화가”
or “영화는” when used with “가” or “는” as a morpheme representing the subject, and then
“영화를” when used with “를” as a morpheme representing the object. (“가,” “는,” and “를”
are Korean postpositions to indicate the role of a noun in a sentence). These properties of
word tokenization have the disadvantages of high complexity of morphological meaning
and many unknown tokens, causing the OOV problem. To improve the disadvantages of
word tokenization, much research decomposes a word into a morpheme sequence.

The morpheme is the smallest token unit semantically and has the advantages of alle-
viating the complexity of morphological meaning and decreasing the number of unknown
tokens. Morpheme tokenization represents the sentence of Table 1 as “너무나” (very), “감동”
(touch), “적” (-), “인” (ing), and “영화” (movie). As shown in the result, we found that
morpheme tokenization decomposes the sentence more finely than word tokenization. For
example, “감동적인” (touching) in word tokenization is decomposed to “감동” (touch),
“적” (-), and “인” (ing) in morpheme tokenization. In other words, because morpheme
tokenization alleviates the complexity of morphological meaning in a word and decreases
the number of unknown tokens, it is effective at resolving the OOV problem than the word.

A subword is decomposed by SentencePiece in our work. SentencePiece is a data-
driven statistical algorithm based on a language model [11]. SentencePiece replaces the
whitespace in a sentence with a particular symbol, “_” (underbar), to restore the sentence
for the machine translation task [19], and decomposes a sentence into a subword sequence.
For example, “너무나 감동적인 영화” is decomposed to “_너무” (_very), “나” (-), “_감동”
(_touch), “적인” (-ing), and “_영화” (_movie) in the tokenization result of the subwords
of Table 1. However, we found that “_영화” (_movie) and “영화” (movie) have different
vectors, even though two tokens have the same meaning as “movie”. We hypothesize that it
is unnecessary to replace the whitespace in the sentiment analysis task because replacement
is for restoring sentences in the machine translation task. To verify our hypothesis, we
carried out the subword task in two cases: SWU (SubWord with Underbar) and SWT
(SubWord Token without underbar). SWU is the original result of SentencePiece, so the
tokenization results of SWU include a particular symbol for replacing the whitespace
“_” (underbar). In contrast, SWT removes the symbol from SWU. It means that the SWT
removes the symbol after applying a sentence to SentencePiece. For example, “_영화”
(_movie) in SWU is transformed to “영화” (movie) in SWT.

A submorpheme is created by applying the morpheme sequence to the SentencePiece
after tokenizing a sentence by the morphological analyzer. We expected that if we applied
a morpheme sequence to SentencePiece, the performance of sentence embedding with
subword tokenization would improve because it has been proven that morpheme-based
sentence embedding outperforms word-based sentence embedding. Thus, we thought of a
way to apply a morpheme sequence to SentencePiece instead of a word sequence, called the
a submorpheme. For example, the tokenization results of submorpheme are represented
as “_너무” (_very), “나” (-), “_감동” (_touch), “_적” (_-), “_인” (_ing), and “_영화” (_movie)
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based on morpheme tokenization; “너무나” (very), “감동” (touch), “적” (-), “인” (ing), and
“영화” (movie). As the subword tokenization, we explore submorpheme tokenization in
two cases: SMU (SubMorpheme with Underbar) and SMT (SubMorpheme Token without
underbar) in the same way as subword. That is, SMU is the result of applying a morpheme
sequence to SentencePiece, whereas SMT removes the symbol from SMU.

3.2. Sentence Representation Methods

There are two methods with which to represent a sentence vector. One is averaging
sequential token vectors of a sentence. This method makes the sentence vector by averaging
the sequential token vectors without considering the order of tokens in the sentence. When
a sentence consists of a token sequence S = (t1, t2, ..., tn), where ti is the i-th token in the
sentence, we compose the sentence vector VS as average(vt1 , vt2 , ..., vtn), where vti is the
vector of i-th token ti. The other considers the order of tokens in a sentence by sequentially
inputting the token vector of sentence in LSTM. We carried out the two methods to compose
a sentence vector according to whether the order of tokens in a sentence is considered.
Before representing the sentence vector, we pretrained the downstream task dataset as a
continuous vector by using skip-gram (https://code.google.com/archive/p/word2vec/)
(accessed on 9 December 2020) [16,17]. We set up the hyperparameters: iteration 300,
min-count 1, window size 5; and then vector sizes 200, 250, and 300, respectively. When
pretraining the downstream task dataset, we used the only trainset.

In the sentence representation method ignoring the order of tokens in a sentence, we
averaged the token vectors, which mapped the tokens of the input sentence to the pre-
trained vector, to compose a sentence vector. The sentence vector averaging the sequential
token vectors was input into two classifiers; SVM and MLP. To verify the performance
of the classifiers, we divided the trainset in a ratio of 8:2 in all experiments. SVM aims to
maximize the distance between the decision boundary and support vector [20]. In the ex-
periment of SVM, we used hinge loss from Equation (1) by setting ∆ to 1 when minimizing
the loss between actual score y and predicted score ŷ.

hinge loss = max{0, ∆− (ŷ× y)} (1)

We implemented the MLP simplifying network with hidden units of half of the
vector size and set up the hyperparameters as follows: ReLU as an activation function in
the hidden layer; stochastic gradient descent (SGD) as an optimizer with a learning rate
of 0.001, 32 batch size, and 100 epochs. We minimized the loss using the cross-entropy
function through Equation (2). In the output layer, we used the softmax function to output
the predicted probability for the input vector.

Cross Entropy Loss = −
n

∑
i=1

yilog(ŷi) (2)

LSTM is effective to process sequential data, for example, the sensor data for detecting
abnormal kick patterns on Taekwondo matches [21]. It is because the weight of LSTM
in time t is trained by including the histories of previous time {(t − 1), (t − 2), ...} for
sequential data [22,23]. To consider the order of tokens in a sentence, which is likewise
sequential data, we construct the sentence embedding by sequentially training the histories
of previous times in LSTM. We input sequentially the token vector, which maps the token
of sentence to pretrained vector, to LSTM. LSTM is constructed by hidden units of 128
and using tanh as the activation function. We output the sequential vectors of hidden
units at every time t and concatenated them. The loss of LSTM also is minimized by the
cross-entropy function from Equation (2), as for MLP. We divided the trainset into a ratio
of 8:2 to validate the performance of the model and set up the hyperparameters of LSTM
as SGD with a learning rate of 0.001, 32 batch size, and 100 epochs. LSTM outputs the
probability for input sentence by a softmax function in the output layer.

https://code.google.com/archive/p/word2vec/
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4. Experiments

We empirically investigate the effective token unit for the Korean sentence embedding
here. In detail, we focus on the following three research questions:

1. Which tokenization is more robust to the OOV problem?
2. Is the symbol replacing whitespaces meaningful in the Korean sentiment analysis?
3. What is the optimal vocabulary size for sentence embedding?

4.1. Dataset and Token Analysis

We were inspired by Cho (2020a), which is carried out the political-bias classification
with the news article dataset, to find optimal tokenization for Korean sentences [10].
In Korean, the informal text includes many variations of token unlike the formal text
such as the news article dataset. For example, “강력한 추천” (strong recommendation)
is abbreviated as “강추”. Additionally, “대박” (wow) is a coined word in Korean and
“멋있다” (nice) makes a typo as “머싰다”. Because these properties of informal text are
heavily influenced by the token unit that makes up a sentence, we used the informal text,
naver sentiment movie corpus (NSMC) (https://github.com/e9t/nsmc) (accessed on 2
December 2020), for the sentiment analysis task in Korean. The NSMC dataset has a trainset
(150,000 reviews) and a testset (50,000 reviews), and it has binary sentiments of positive
and negative [24,25]. A review of NSMC dataset consists of no more than 140 characters,
so we regarded a review as a sentence in our work. In other words, we carried out the
sentiment analysis using the NSMC dataset to evaluate the sentence embedding based on
various token units (word, morpheme, subword, and submorpheme).

For the morpheme tokenization, we chose high-speed morphological analyzers,
namely, Mecab, Okt (https://konlpy-ko.readthedocs.io/ko/v0.4.3/) (accessed on 2 Decem-
ber 2020), and KLT2000 that is run by index2018.exe (https://cafe.naver.com/nlpkang/3)
(accessed on 2 December 2020) [26]. The tokenization results differ depending on which
morphological analyzer is used. For example of Table 1, Mecab and Okt is decomposed
into “너무나” (very), “감동” (touch), “적” (-), “인” (ing), and “영화” (movie), but KLT2000
is decomposed into “너무나” (very), “감동적” (touch-), and “영화” (movie). Thus, we com-
pared the performances of sentiment analysis with sentence embedding utilizing three
morphological analyzers.

We used the SentencePiece for subword tokenization and hypothesized that it is un-
necessary to replace the whitespace of SentencePiece on the Korean sentiment analysis
task. For subword tokenization, we carried out the SWU and SWT methods depending
on whether the whitespace is replaced with a particular symbol, “_” (underbar). The Sen-
tencePiece algorithm for subword tokenization creates the vocabulary according to what
vocabulary size is set. Cho (2020c) tested the SentencePiece with vocabulary sizes 50K,
75K, 100K, and 125K, and then the results showed a performance improvement when
vocabulary size was small—50K [27]. To prove that the smaller the vocabulary size, the
better the performance for vocabulary sizes smaller than 50K, we explored the vocabulary
sizes 2K, 4K, 8K, 16K, and 32K. For the submorpheme tokenization, we utilized the same
morphological analyzers with morpheme tokenization (Mecab, Okt, and KLT2000) and
SentencePiece. As we expected that submorpheme tokenization has the same trend of sub-
word tokenization, we explored the sentence embedding with submorpheme tokenization
in two cases, namely, SMU and SMT. As for subword, we explored the vocabulary sizes
2K, 4K, 8K, 16K, and 32K in the experiments of submorpheme tokenization with Okt and
KLT2000. In submorpheme tokenization with Mecab, we tested the vocabulary sizes 2K,
4K, 8K, and 16K because vocabulary size 32K does not work when a morpheme sequence
using Mecab is applied to SentenePiece.

We confirmed the data distribution of the NSMC dataset using each token unit (e.g.,
the number of tokens, OOV rate, and average token length). In Table 2, N(token) refers
to the number of tokens in the trainset or testset of the NSMC datatset. OOV rate is the
ratio of the number of unknown tokens to the number of testset tokens, as in Equation (3).
Avg_length is the average length of tokens in the trainset or testset of the NSMC dataset.

https://github.com/e9t/nsmc
https://konlpy-ko.readthedocs.io/ko/v0.4.3/
https://cafe.naver.com/nlpkang/3
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The average length of tokens is composed by the sum of length of all token over the number
of total tokens in the dataset as Equation (4), where n is the number of total tokens in the
dataset and ti is the i-th token in the total tokens. For example, “너무나/감동적인/영화” by
word tokenization has an average token length of 3+4+2

3 = 3 because this example has
token lengths of 3(너무나), 4(감동적인), and 2(영화), and then n is 3.

OOV rate =
N(unknown token)

N(testset)
(3)

Avg_length =
∑n

i=1 length(ti)

n
(4)

Table 2. Data distribution for tokenization.

Tokenization N(token) OOV Rate Avg_Length
Trainset Testset Trainset Testset

Word 1,137,736 380,472 26.48 3.778 3.778

Morpheme
Mecab 2,750,801 921,106 1.032 1.562 1.560

Okt 2,306,158 771,970 2.56 1.993 1.991
KLT2000 1,399,134 468,458 6.53 2.337 2.333

Subword

SWU

2K 3,986,624 1,332,618 0.028 1.363 1.364
4K 2,951,483 986,317 0.047 1.842 1.843
8K 2,536,203 849,876 0.077 2.143 2.139
16K 2,262,086 762,284 0.121 2.403 2.385
32K 2,062,594 701,982 0.202 2.635 2.590

SWT

2K 3,930,835 1,314,239 0.028 1.093 1.094
4K 2,934,992 980,809 0.044 1.464 1.466
8K 2,528,770 847,393 0.068 1.700 1.696
16K 2,257,431 760,706 0.105 1.904 1.890
32K 2,058,975 700,666 0.173 2.087 2.051

Submorpheme

Mecab_SMU

2K 4,143,841 1,385,508 0.029 1.701 1.702
4K 3,475,644 1,163,011 0.045 2.028 2.028
8K 3,338,314 1,118,941 0.057 2.111 2.108
16K 3,291,225 1,104,407 0.084 2.142 2.136

Mecab_SMT

2K 4,101,705 1,371,610 0.029 1.048 1.048
4K 3,450,677 1,154,684 0.042 1.246 1.245
8K 3,315,186 1,111,229 0.053 1.296 1.294
16K 3,268,987 1,097,026 0.071 1.315 1.310

Table 2 shows that the larger the number of tokens in trainset and testset, the lower
the OOV rate. Besides, in subword and submorpheme tokenizations, we found that minor
differences between the data distributions of SWU and SWT (or SMU and SMT), even
between the vocabulary sizes. In Table 2, the word tokenization has the smallest number
of tokens and a higher OOV rate of 26.48% compared to other token units. This means
the word tokenization is not robust to the OOV problem caused by unknown tokens.
Among morpheme tokenizations, the KLT2000 showed the smallest number of tokens and
the highest OOV rate of 6.53%, whereas the Mecab and Okt had the larger numbers of
tokens and smaller OOV rates of 1.032% and 2.56%, respectively, compared to KLT2000.
In subword tokenizations, SWU and SWT show similar data distributions, and then SWT
shows a slightly lower OOV rate than SWU. We expect that SWT eliminates some noise by
duplicated token due to the symbols such as “_영화” (_movie) and “영화” (movie). We also
found that both SWU and SWT in subword tokenization have large numbers of tokens and
lower OOV rates with small vocabularies, but their difference is trivial. The submorpheme
tokenization is similar to the trend of subword tokenization. Table 2 shows a representative
data distribution of submorpheme with Mecab. The specific data distributions of the
submorpheme unit, including Okt and KLT2000, are presented in Table A1.
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4.2. Experiments and Results

To evaluate the sentence embedding based on various token units, we carried out the
Korean sentiment analysis task using SVM, MLP, and LSTM as classifiers. Table 3 shows
the sentiment analysis accuracy of sentence embedding based on word and morpheme
units. Tables 4 and 5 show the sentiment analysis accuracy of sentence embedding based
on subword and submorpheme units, respectively. In Table 3–5, these indicate the perfor-
mance according to the vector sizes 200, 250, and 300. Overall, the accuracy of LSTM was
better than those of SVM and MLP. This means that the sentence representation method
considering the order of tokens in the sentence is more effective than not considering the
order. Thus, based on the performances of LSTM, we analyzed the experimental results of
sentence embedding.

As shown in Table 3, morpheme-based sentence embedding outperforms word-based
sentence embedding. Word-based sentence embedding showed an accuracy of 81.27%,
but it was significantly less accurate than morpheme-based sentence embedding. Among
the morphological analyzers for morpheme-based sentence embedding, when we utilized
Mecab, the morpheme-based sentence embedding achieved the best accuracy at 85.39%.

Table 3. Sentiment analysis accuracy with the sentence representation methods based on word and morpheme tokenization.

Tokenization SVM MLP LSTM
200 250 300 200 250 300 200 250 300

Word 71.84 77.79 66.25 76.31 77.53 68.76 81.27 80.8 80.81

Morpheme
Mecab 81.08 82.06 82.07 81.06 82.08 81.95 85.32 85.39 84.96

Okt 81.86 83.13 82.82 82.83 83.16 82.44 85.17 82.94 85.11
KLT2000 82.07 81.05 82.36 81.81 82.4 82.24 83.86 84.07 83.91

Table 4 shows the performances of sentiment analysis using the subword-based
sentence embedding according to vocabulary sizes comparing the SWU and SWT. As
shown in Table 4, we found the two key points. First, SWT outperformed SWU among
the subword-sentence embedding methods. Second, the performance improved when
the vocabulary size was large. The sentence embedding based on SWT achieved 85.67%
accuracy, whereas the sentence embedding based on SWU achieved 85.42% accuracy. The
difference between performances of sentence embedding utilizing SWU and SWT was
trivial, but the sentence embedding based on SWT indicates higher accuracy than the
sentence embedding based on SWU. In the comparison of vocabulary sizes, the sentence
embedding based on SWU and SWT achieved the accuracies of 81.57% and 81.59% for
vocabulary size 2K, respectively, whereas for vocabulary size 32K, the sentence embedding
based on SWU and SWT achieved the accuracies of 85.34% and 85.52%. Although sentence
embedding with SWU and SWT achieved the best accuracies of 85.42% and 85.67% for
vocabulary size 16K, respectively, we found a tendency that the larger the vocabulary size
improves performance in Table 4.

Table 4. Sentiment analysis accuracy with the sentence representation methods based on subword tokenization.

Tokenization SVM MLP LSTM
200 250 300 200 250 300 200 250 300

SWU

2K 78.77 79.02 79.26 78.91 79.04 79.32 81.57 81.56 81.44
4K 81.52 81.6 81.78 81.89 81.93 82.17 84.49 84.13 83.98
8K 82.87 82.88 82.96 83.06 83.16 83.32 85.23 84.99 84.98

16K 83.09 83.11 83.23 83.38 83.49 83.57 85.42 85.33 85.35
32K 83.19 83.22 83.33 83.48 83.6 83.69 85.34 84.96 84.69

SWT

2K 63.67 74.75 76.09 65.67 78 76.33 81.59 81.57 81.58
4K 78.99 78.72 78.77 79.5 79.21 78.84 84.12 83.8 83.26
8K 82.77 82.75 83.03 83.13 82.96 83.12 85.05 85.18 84.81

16K 83.13 83.06 83.33 83.43 83.33 83.68 85.67 84.93 85.27
32K 83.27 83.43 83.56 83.58 83.57 83.94 85.52 85.24 84.71
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We confirmed the performance of sentence embedding based on submorpheme tok-
enization in Table 5. First of all, unlike our expectation that submorpheme-based sentence
embedding outperforms subword-based sentence embedding, submorpheme-based sen-
tence embedding had lower performance than subword-based sentence embedding. The
submorpheme-based sentence embedding with Okt_SMU achieved 85.32% accuracy as
its best performance, whereas the subword-based sentence embedding achieved the bet-
ter performance of 85.67% in SWT. We further found three tendencies. First, among the
morphological analyzers utilized in submorpheme tokenizations, Okt showed better per-
formance than the other morphological analyzers. Second, SMU outperformed SMT among
the submorpheme-based sentence embedding methods, unlike the experimental results of
subword-based sentence embedding. Lastly, the performance improved when the vocabu-
lary size was large, similarly to the subword-based sentence embedding. In Table 5, the
sentence embedding based on SMU indicated the performances of 84.83%, 85.32%, and
84.82% in Mecab, Okt, and KLT2000, respectively, whereas the sentence embedding based
on SMT indicated the performances of 84.74%, 85.16%, and 84.83%. The performance of
submorpheme-based sentence embedding was improved when the vocabulary size was
32K compared to 2K, just like subword-based sentence embedding.

Table 5. Sentiment analysis accuracy with the sentence representation methods based on submorpheme tokenization.

Tokenization SVM MLP LSTM
200 250 300 200 250 300 200 250 300

Mecab_SMU

2K 79.11 79.4 79.57 79.25 79.4 79.67 82.74 82.87 82.44
4K 81.02 81.3 81.47 81.38 81.55 81.72 84.55 84.72 84.76
8K 81.05 81.27 81.34 81.41 81.51 81.6 84.56 84.79 84.75

16K 80.71 81.23 81.48 81.15 81.45 81.74 84.76 84.83 84.43

Mecab_SMT

2K 74.3 76.68 78.19 74.97 76.85 79.27 82.12 82.05 81.29
4K 79.65 79.65 79.47 80.84 79.03 80.9 84.1 84.17 84.24
8K 81.03 79.32 77.92 80.87 78.16 79.15 84.35 84.34 84.39

16K 79.87 80.88 80.4 80.15 81.5 79.58 84. 48 84.60 84.74

Okt_SMU

2K 78.91 79.13 79.45 79.1 79.38 79.43 82.37 82.23 82.32
4K 81.44 81.59 81.71 81.83 82 81.98 84.34 84.52 83.7
8K 82.11 82.32 82.52 82.53 82.72 82.94 85.32 84.94 85.03

16K 82.49 82.56 82.83 82.76 83.19 83.18 85.0 85.25 84.76
32K 82.72 82.74 82.86 83.04 83.11 83.37 85.01 84.5 83.96

Okt_SMT

2K 76.36 77.39 68.06 78.75 78.9 71.39 82.01 82.03 81.33
4K 80.62 81.23 81.55 81.36 81.66 81.47 83.69 84.03 84.05
8K 82.05 82.57 82.48 82.62 83.06 82.68 84.73 85.10 84.81

16K 82.38 82.66 82.83 82.87 83.12 83.23 85.06 84.77 85.16
32K 82.49 82.59 82.66 82.9 83.12 83.1 84.93 84.61 84.77

KLT2000_SMU

2K 78.35 78.44 78.68 78.52 78.71 78.92 81.62 81.44 81.3
4K 80.84 80.91 81.34 81.43 81.32 81.64 83.84 83.8 83.3
8K 82.07 82.02 82.03 82.6 82.28 82.46 84.69 84.22 84.5

16K 82.14 82.08 82.37 82.45 82.49 82.81 84.82 84.27 84.24
32K 82.21 82.23 82.36 82.58 82.76 82.96 84.55 84.47 84.48

KLT2000_SMT

2K 77.9 76.13 76.26 77.84 77.05 76.96 81.04 81.3 80.76
4K 80.75 81.23 80.98 81.42 81.22 81.4 83.57 83.49 83.05
8K 81.93 81.93 82.41 82.31 82.54 82.95 84.49 84.5 84.46

16K 82.21 82.38 82.43 82.58 82.88 82.85 84.66 84.83 84.47
32K 82.21 82.24 82.35 82.42 82.51 82.86 84.35 84.31 84.26

As shown in Tables 3–5, the best tokenization method for the Korean sentence em-
bedding is SWT of subword tokenization with vocabulary size 16K—85.67% accuracy.
Multi-lingual BERT and KoBERT achieved 87.5% and 90.1% accuracy, respectively, on the
sentiment analysis using the NSMC dataset. However, our method is competitive with
multi-lingual BERT and KoBERT because the capacities of multi-lingual BERT and KoBERT
have a lot of computation by conducting the pretraining tasks with large corpora, whereas
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our method has a small amount of computation with simple classifiers. Our research further
is valuable in suggesting the most efficient token units for sentence embedding.

5. Analysis and Discussion

We can now answer the three questions on the data distribution and performance of
sentence embedding on the Korean sentiment analysis task.

1. Which tokenization is more robust to the OOV problem?
2. Is the symbol replacing whitespaces meaningful in the Korean sentiment analysis?
3. What is the optimal vocabulary size for sentence embedding?

It is known that word embedding causes the OOV problem and that morpheme
embedding is effective at alleviating the OOV problem. Considering those facts, we com-
pared the performances of sentence embedding based on word, morpheme, subword, and
submorpheme tokenization by correlation with OOV rate. As shown in Table 2, the OOV
rate was the lowest, from 0.028% to 0.202%, in subword tokenization, followed by the
submorpheme tokenization, from 0.029% to 0.084%, the morpheme tokenization, from
1.032% to 6.53%, and then the word tokenization (the highest) at 26.48%. The performances
of subword-based sentence embedding outperformed those of the sentence embedding
based on other tokenizations as shown in Tables 3 and 4. Although the submorpheme
tokenization had a lower OOV rate like the subword tokenization, the performance of
submorpheme-based sentence embedding (at 85.32% accuracy) was lower than that of
subword-based sentence embedding (at 85.67% accuracy). We expect that submorpheme
tokenization loses the syntactic and semantic meanings of a token because it is too finely
decomposed by the combination of data-driven algorithm and morphological analyzer.
Through the result that performance is generally improved when the OOV rate is low, we
got the solution to: “Which tokenization is more robust to the OOV problem?” Subword
tokenization is more robust to the OOV problem than other tokenizations.

In subword and submorpheme tokenizations, we confirmed the ratio of duplicated
tokens due to the symbol “_ (underbar)” in SWU to analyze the effect of replacing the
whitespace with a particular symbol. The duplicated token rate was calculated from
Equation (5)—the difference in the number of tokens in SWU and SWT over the number of
tokens in SWU.

Duplicated token rate(%) =
N(SWU)− N(SWT)

N(SWU)
× 100 (5)

We obtained the duplicated token rates in the trainset of each vocabulary size. The
results show 12% (±4.755), which is the mean ± standard deviation for the duplicated
token rate of each vocabulary size. It means that SWU learns noise of 12% (±4.755) in the
trainset and it supports the result that SWT outperforms SWU among the subword-based
sentence embedding methods. Thus, we conclude that the replacement with symbol is not
effective in the Korean sentence embedding. In the submorpheme tokenizations, however,
the results are different from the subword tokenization. SMU had better performance
than SMT among the submorpheme-based sentence embedding methods. We expect that
was because the submorpheme tokenization proceeds with the additional tokenization
by SentencePiece from the morpheme tokens that have already been decomposed by
morphological analyzer; the symbol of submorpheme tokenization does not have a role
for whitespace.

Additionally, while expanding the experiment of Cho (2020c), we obtained the so-
lution to: “What is the optimal vocabulary size for Korean sentence embedding?” Cho
(2020c) empirically concluded that the performance improves as the vocabulary size lowers,
while experimenting with vocabulary sizes 50K, 75K, 100K, and 125K [27]. To verify that
a vocabulary size smaller than 50K has better performance, we tested the subword and
submorpheme tokenization with vocabulary sizes 2K, 4K, 8K, 16K, and 32K. The experi-
mental results showed a tendency to improve performance when the vocabulary size was
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large in Tables 4 and 5, contrary to the conclusion of Cho (2020c). To analyze these results,
we confirmed the average token lengths of our experiments (vocabulary sizes 2K, 4K, 8K,
16K, and 32K) and those of Cho (2020c) (vocabulary sizes 50K, 75K, 100K, and 125K). As
shown in Table 2, the average token length increases when vocabulary size increases in both
subword and submorpheme tokenizations. Vocabulary sizes 50K, 75K, 100K, and 125K,
which are tested in Cho (2020c), got the average token lengths of 2.769, 2.889, 2.962, and
3.016 for the trainset of SWU, respectively. With the trainset of SWT, the vocabulary sizes
got the average token lengths of 2.193, 2.288, 2.346, and 2.389, respectively. In our work,
the subword-based sentence embedding in both SWT and SWU had the best accuracy
with vocabulary size 16K, and the average token length closed to about 2 or 2.5, even with
submorpheme-based sentence embedding. When analyzing the results with our average
token length, we came to a new conclusion that the optimal vocabulary size is 16K because
the average token length closes to about 2 or 2.5.

6. Conclusions

To find the optimal token unit for constructing the Korean sentence vector, we carried
out the Korean sentiment analysis task according to the sentence embedding with various
token units: word, morpheme, subword, and submorpheme. When representing the sen-
tence vector from the token unit sequence, we carried out the two sentence representation
methods: considering the order of tokens in the sentence or not. We empirically answered
that when the SWT of subword tokenization is utilized in the sentence representation
method considering the order of tokens in a sentence, the performance is best at 85.67%
accuracy. We investigated the properties of token units to analyze our experimental results
and found some key points. (1) Subword tokenization is more robust to the OOV problem
than morpheme tokenization because of the lower OOV rate. (2) Replacing the whitespace
with a particular symbol is not effective for subword and submorpheme tokenization for
the Korean sentiment analysis task. (3) In the tokenizations utilizing the SentencePiece
algorithmm such as subword and submorpheme tokenization, the vocabulary size 16K
achieved the best performance because the average token length closed to about 2 or 2.5.
We expect that our research will present the foundations for research on effective sentence
embedding with simple computations.
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Appendix A

We present the data distribution of each tokenization, namely, word, morpheme,
subword, and submorpheme as shown in Table 2. Table 2 shows only data distribution
of submorpheme with Mecab, excluding Okt and KLT2000. Thus, we present the data
distribution of submorpheme including the Mecab, Okt, and KLT2000 in Table A1.

https://github.com/e9t/nsmc
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Table A1. Data Distribution for Submorpheme Tokenization in detail.

Tokenization N(Token) OOV Rate Avg_Length
Trainset Testset Trainset Testset

Submorpheme

Mecab_SMU

2K 4,143,841 1,385,508 0.029 1.701 1.702
4K 3,475,644 1,163,011 0.045 2.028 2.028
8K 3,338,314 1,118,941 0.057 2.111 2.108
16K 3,291,225 1,104,407 0.084 2.142 1.136

Mecab_SMT

2K 4,101,705 1,371,610 0.029 1.048 1.048
4K 3,450,677 1,154,684 0.042 1.246 1.245
8K 3,315,186 1,111,229 0.053 1.296 1.294
16K 3,268,987 1,097,026 0.071 1.315 1.310

Okt_SMU

2K 3,976,273 1,330,247 0.028 1.623 1.623
4K 2,992,410 1,001,011 0.048 2.157 2.157
8K 2,683,202 899,937 0.071 2.405 2.399
16K 2,531,714 851,292 0.105 2.549 2.537
32K 2,460,044 829,834 0.17 2.624 2.602

Okt_SMT

2K 3,940,007 1,318,202 0.028 1.091 1.090
4K 2,985,670 998,713 0.044 1.440 1.439
8K 2,680,690 899,083 0.062 1.603 1.599
16K 2,530,037 850,718 0.089 1.699 1.690
32K 2,458,502 829,318 0.13 1.748 1.733

KLT2000_SMU

2K 3,051,372 1,019,474 0.034 1.530 1.531
4K 2,188,325 731,568 0.057 2.133 2.134
8K 1,906,344 639,554 0.095 2.449 2.441
16K 1,748,764 589,289 0.162 2.669 2.649
32K 1,659,831 563,303 0.27 2.812 2.772

KLT2000_SMT

2K 3,013,758 1,007,099 0.034 1.085 1.085
4K 2,182,286 729,598 0.055 1.498 1.498
8K 1,904,128 638,851 0.087 1.717 1.711
16K 1,747,658 588,951 0.145 1.871 1.856
32K 1,658,897 562,998 0.23 1.971 1.941
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