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Abstract: To achieve Industry 4.0 solutions for the networking of mechatronic components in produc-
tion plants, the use of Internet of Things (IoT) technology is the optimal way for goods transportation
in the cyber-physical system (CPS). As a result, automated guided vehicles (AGVs) are networked
to all other participants in the production system to accept and execute transport jobs. Accurately
tracking the planned paths of AGVs is therefore essential. The omnidirectional mobile vehicle has
shown its excellent characteristics in crowded environments and narrow aisle spaces. However,
the slip problem of the omnidirectional mobile vehicle is more serious than that of the general
wheeled mobile vehicle. This paper proposes a slip estimation and compensation control method for
an omnidirectional Mecanum-wheeled automated guided vehicle (OMWAGV) and implements a
control system. Based on the slip estimation and compensation control of the general wheeled mobile
platform, a Microchip dsPIC30F6010A microcontroller-based system uses an MPU-9250 multi-axis
accelerometer sensor to derive the longitudinal speed, transverse speed, and steering angle of the
omnidirectional wheel platform. These data are then compared with those from the motor encoders.
A linear regression with a recursive least squares (RLS) method is utilized to estimate real-time slip
ratio variations of four driving wheels and conduct the corresponding compensation and control. As
a result, the driving speeds of the four omnidirectional wheels are dynamically adjusted so that the
OMWAGV can accurately follow the predetermined motion trajectory. The experimental results of
diagonally moving and cross-walking motions without and with slip estimation and compensation
control showed that, without calculating the errors occurred during travel, the distances between the
original starting position to the stopping position are dramatically reduced from 1.52 m to 0.03 m and
from 1.56 m to 0.03 m, respectively. The higher tracking accuracy of the proposed method verifies its
effectiveness and validness.

Keywords: omnidirectional Mecanum-wheeled automated guided vehicle (OMWAGV); recursive
least square (RLS); slip ratio

1. Introduction

In recent years, with the prevailing trend of Industry 4.0, factories have increasingly
higher requirements for the efficiency of warehouse systems. It is necessary to use Inter-
net of Things (IoT) technology for networking among the production components and
transportation vehicles [1–3]. Traditional vehicles use differential wheels, which are less
efficient for factory handling. For example, when entering the station for goods, vehicles
need to turn to face the entry site and then move forward. In addition, if the path lay-
out includes a right angle, the differential wheeled vehicles cannot achieve walking by
translation, which will be programmed to turn 90 degrees and then execute the straight
walk command. Omnidirectional mobile wheeled vehicles have improved performance in
congested environments and narrow aisles, which are commonly found in factory work-
shops, warehouses, offices, hospitals, etc. In fact, the topics of experimental investigations
of a highly maneuverable mobile omniwheel robot, integration of inertial sensor data
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into control of the mobile platform and navigation control, and stability investigation
of a mobile robot based on a hexacopter equipped with an integrated manipulator have
attracted much attention in Europe and around the world. As a result, the omnidirectional
Mecanum-wheeled automated guided vehicle (OMWAGV) walks more flexibly along a
path, and its walking mode includes going straight, translation, and oblique moving. If
it encounters a right-angle path, the OMWAGV only needs to translate into the station.
However, OMWAGVs slip more severely than differential wheeled vehicles.

A traction control system for vehicles is designed to prevent their performance from
being degraded due to vehicle tire locking and skidding. Therefore, in harsh environments,
such as slippery, snowy, and icy ground, the performance and stability of a vehicle is
significantly improved by the use of a traction control system. A parameter identification
technique with the constraint of minimizing power consumption for a city bus equipped
with a permanent magnet three-phase synchronous motor is proposed in [4] to maintain
performance. Furthermore, slip between the tire and the road surface greatly reduces speed.
The required traction force depends on the slip ratio, the normal force acting on the tire,
and the friction coefficient between the tire and the ground [5,6]. The friction coefficient
has a very close relationship with the slip ratio under the ground–tire contact. Because the
friction coefficient of the tire against the ground is unknown and changes with time during
driving, the slip estimation based on data obtained by the sensors is highly important. The
tire angular acceleration can easily be measured by a sensor, but the vehicle speed can only
be calculated from the slip ratio.

The Mecanum wheel has excellent omnidirectional mobility and has attracted a lot
of attention in the industry [7]. For example, under the prevailing trend of Industry 4.0,
AGVs with Mecanum wheels are widely used in automated warehouse logistics systems
and mobile robotic arms [8]. It also has various home, hospital, nuclear power plant, and
military applications [9]. In addition to the diversity of its applications, most studies are
devoted to eliminating the uncertainty inherent in the Mecanum wheel, such as the low
and non-fixed friction to the ground, the displacement under contact points, abnormal
wheel diameter, vibration during movement, etc.

Three typical tire–road friction coefficient estimation methods, the slip slope, indi-
vidual tire force estimation, and extended Kalman filter, are reviewed and compared and
then a new cost-effective tire–road friction coefficient estimation method is presented
in [10]. In [5], the authors investigate the tire–road adhesion stability by observing the force
transmitting behavior between the wheel drive torque to the tire–road adhesion torque. A
closed-loop reduced-order observer is designed to estimate the adhesion torque in order to
determine the optimal operation point for wheel slip prevention. To solve the problem of
skid braking and spin acceleration, a second-order sliding-mode traction controller and a
sliding-mode observer to estimate the tire–road adhesion coefficient are presented in [6].
The authors in [11] propose a sliding-mode controller with a conditional integrator for
wheel slip in electric vehicles. Three different observers utilizing engine torque, brake
torque, and global positioning system (GPS) measurements are designed to estimate the
slip ratios and longitudinal tire forces in [12]. A recursive least squares (RLS) method is
then used to identify the friction coefficient. The authors of [13] propose a tire–road friction
coefficient estimation algorithm that utilizes the lateral dynamics of the vehicle, which is a
function of slip angle, friction coefficient, normal force, and cornering stiffness. A differ-
ential GPS and a gyroscope are used to identify the real-time tire–road friction coefficient
and cornering stiffness parameters of the tire. Based on a linear vehicle model and sensor
measurements, the RLS method with a forgetting factor is utilized to estimate the vehicle
sideslip. In addition, by integrating sensor measurements and roll dynamics, a Kalman
filter is designed to estimate the roll angle in [14]. This methodology is also applied to
estimate the nanosized parameters of a single-input and single-output linear model in [15].
A proposed wheel slip control system consists of three parts to maximize the braking force
and maintain vehicle stability in [16]. These are a braking monitor based on the extended
Kalman filter to estimate the tire braking force, lateral tire force and brake disc-pad friction
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coefficient, and a sliding-mode wheel slip controller, and an optimally designed target
slip assignment method. Using a different method, [17] proposes a geometric approach to
obtain the decoupling controllability between horizontal, vertical, and angular motions
and their functional controllability of the DC-drives for the Robotino.

The movement of a four Mecanum-wheeled mobile robot is controlled by the inverse
kinematic so as to convert the robot velocity components, robot angular velocity, angular
velocity of each wheel, and turn direction [18]. A kinematic controller for a Mecanum-
wheeled omnidirectional robot is designed based on the feedback linearization method in
an FPGA [19]. A robust and adaptive sliding mode controller for trajectory tracking of a
Mecanum-wheeled mobile robot with uncertainties is proposed in [9]. The authors of [8]
propose an adaptive, nonsingular terminal sliding mode control by the output recurrent
fuzzy wavelet neural networks for a group of networked heterogeneous Mecanum-wheeled
omnidirectional robots with uncertainties. However, they only conducted simulations. A
Mecanum-wheeled vehicle with a vision sensor system is proposed to smoothly correct the
vehicle position by continuously entering sensor data into the position feedback loop in [20].
The authors identify the positional error sources of Mecanum-wheel-based omnidirectional
mobile robots due to wheel slip, and then adjust the wheel parameters to reduce positional
errors in [21]. The authors of [22] propose the use of a hierarchical linear quadratic regulator
(LQR) to satisfy the global objective (vehicle motion) and local objective (driving force and
slip control of each wheel) of a Mecanum-wheeled vehicle.

In this paper, the OMWAGV modeling is introduced in Section 2. In Section 3, the
method of slip estimation and compensation is described. Experimental results are shown
in Section 4. Finally, conclusions are given in Section 5.

2. Modeling of Omnidirectional Mecanum-Wheeled Automated Guided Vehicle

The configuration of the OMWAGV is presented in Figure 1 [18]. With the different
directions and speeds of the four wheels, the movement posture of the OMWAGV can be
changed to move in all directions. The vehicle speed v is composed of the longitudinal
speed vx and the translational axis speed vy as follows [18]:

vx = v cos θ (1)

vy = v cos θ (2)

where θ is the yaw angle of the vehicle, ω is the steering angular speed, r is the radius of
the wheel, ωi(i = 1, 2, 3, 4) is the angular velocity of each wheel, vi = rωi(i = 1, 2, 3, 4) is
the moving speed of each wheel, and the size of the vehicle is determined by the distance
between the center of the body and the axle represented by the vectors a ({ai, i = 1, 2, 3, 4})
and b ({bi, i = 1, 2, 3, 4}).
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Figure 1. The configuration of the omnidirectional Mecanum-wheeled automated guided vehicle.

Generally, the peripheral small wheels on the omnidirectional wheel are at a
constant angle of 45 degrees [7], that is, the wheels move freely at 45 degrees (γi =(

π/4 −π/4 −π/4 π/4
)
). Therefore, the motion equation of each wheel of the

OMWAGV can be obtained as:

vi + rωi cos(γi) = vx − biω (3)

rωi sin(γi) = vy + aiω (4)

After rearranging Equations (3) and (4), each wheel speed vi can be calculated like this:

vi = vx − biω−
vy + aiω

tan(γi)
(5)

Since values of tan(γi), i = 1, 2, 3, 4 in Equation (5) are 1, −1, −1, and 1, respectively,
and |ai|= a, (i = 1, 2, 3, 4) and |bi|= b, (i = 1, 2, 3, 4) , the speed of each omnidirectional
wheel can be calculated as follows:

v1 = vx − vy − aω− bω (6)

v2 = vx + vy + aω + bω (7)

v3 = vx + vy − aω− bω (8)

v4 = vx − vy + aω + bω (9)

By rearranging Equations (6)–(9), we get:

vx = r(ω1 + ω2 + ω3 + ω4)/4 (10)

vy = r(−ω1 + ω2 + ω3 −ω4)/4 (11)

ω = r(−ω1 + ω2 −ω3 + ω4)/[4(a + b)] (12)



Electronics 2021, 10, 840 5 of 19

According to the above equations, the posture of the omnidirectional wheels can be
deduced when they move. Figure 2 shows the eight main motion modes of the omnidirec-
tional wheel vehicle, including forward, backward, left, and right translations, and four
45-degree diagonal movements.
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3. Slip Estimation and Compensation

Assuming that the motion mode of the omnidirectional wheel is translational, m is
the mass of the vehicle, while Fx and Fy are the respective sums of the longitudinal forces
and lateral forces of the four wheels. The equations for the motion of the omnidirectional
wheels are:

m
.
vx = Fx (13)

m
.
vy = Fy (14)

Fx = (Fd1 + Fd2 + Fd3 + Fd4)/4 (15)

Fy = (−Fd1 + Fd2 + Fd3 − Fd4)/4 (16)

where Fdi(i = 1, 2, 3, 4) is the longitudinal force of each wheel. Since the speed of the
OMWAGV is much slower than the speed of the general vehicle and the windward area
of the OMWAGV is small, the wind resistance can be ignored. The normal force of each
wheel (Fzi(i = 1, 2, 3, 4)) can be obtained as [6,12]:

Fz1 = (mga−maxh)/2L = Fz2 (17)

Fz3 = (mga + maxh)/2L = Fz4 (18)

where L is the length from the front wheel to the rear wheel of the vehicle, h is the height
between the center of the vehicle and the floor, and ax is the longitudinal acceleration of
the vehicle. If the vehicle is considered a quarter car model (QCM) [4], the longitudinal
force of each wheel will be affected by the tire moment of inertia Iωi, the tire rotational
angular acceleration

.
ωi, the tire torque Ti and the tire radius r. The corresponding equation

is as follows:
Fdi = (Ti − Iωi

.
ωi)/r, i = 1, 2, 3, 4 (19)

The slip of the vehicle is the error factor between the rotation speed of the motor to the
tire and the actual speed of the vehicle. This paper uses the recursive least squares (RLS)
estimation method to estimate the slip value, and uses the 9-axis sensor module to capture
the current speed and attitude of the vehicle. The related equation is (20) [23]:

vzn(t) = vn(t)αn(t) + en(t), n = x, y (20)

where vzn(t) is the speed of the vehicle measured by the 9-axis sensor, αn(t) is the estimated
value of slip, vn(t) is the tire speed of the vehicle, en(t) is the measurement and estimation
error, and n = x, y represents the quantity in the longitudinal and lateral directions.
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The error en(t) will be:

en(t) = vzn(t)− vn(t)αn(t− 1) (21)

and slip estimation αn(t) is:

αn(t) = αn(t− 1)− Kn(t)(vn(t)αn(t− 1)− v∗zn(t)) (22)

where v∗zn(t) is the speed command of the vehicle. The general expression of (21) is:

en(t) = yn(t)− ϕT
n (t)Θn(t) (23)

where yn(t) is the observable output of the system, ϕn(t) is a known and measurable
regressor, and Θn(t) is unknown but constant. Θ̂n(t) is the estimated value of Θn(t) at
time t and meets the following least squares estimation method:

min

{
1
2

t

∑
j=1

η
t−j
n [yn(j)− ϕT

n (j− 1)Θ̂n(j)]
2
}

, 0 < η ≤ 1 (24)

where η is the forgetting factor, and set dVn(Θ̂n(t))/dΘ̂n(t) = 0 is set to obtain the follow-
ing results:

Θ̂n(t) = Pn(t)ϕn(t− 1)en(t) = Θ̂n(t− 1) + Kn(t)en(t)
Kn(t) =

Pn(t−1)ϕn(t)
ηn+ϕT

n (t)Pn(t−1)ϕn(t)

Pn(t) = 1
ηn
[Pn(t− 1)− Pn(t−1)ϕn(t)ϕT

n (t)Pn(t−1)
ηn+ϕT

n (t)Pn(t−1)ϕn(t)
]

(25)

where Kn(t) is the covariance matrix.
Equations (26) and (27) will estimate the slip for each wheel of the OMWAGV:

vx =
1
4

4

∑
i=1

(vxiαxi + exi) (26)

vy = [−(vx1αx1 + ex1) + (vx2αx2 + ex2) + (vx3αx3 + ex3)− (vx4αx4 + ex4)]/4 (27)

Based on the definition of the slip ratio (28) [12]:

λ =
(rω− v)

max(rω, v)
(28)

we may have the related slip ratio (λ) for the OMWAGV:

λni =
vni(1− αni)

max(vni, αnivni)
, n ∈ {x, y}, i ∈ {1, 2, 3, 4} (29)

Different motion modes of the OMWAGV will result in different wheel speed com-
pensation. In this paper, the slip compensation of the OMWAGV is divided into straight
motion, translation, and diagonal motion. When the OMWAGV walks straight, the longitu-
dinal speed of the vehicle is calculated by (10) and the ideal lateral speed will be zero. As
the vehicle slips, there is an error between the longitudinal speed and the target speed of
the vehicle, and then the vehicle will generate a lateral speed. Let v∗zxi, i = 1, 2, 3, 4 be the
longitudinal speed command of each wheel:

v∗zxi = vx + λxiv′xi, i = 1, 2, 3, 4 vzn(t) = vn(t)αn(t) + en(t), n = x, y (30)

where λxi and v′xi are the slip ratio and the compensation of longitudinal slip of each wheel
when the OMWAGV walks straight, and:

v∗xi = (v′zxi − vx)/λxi, i = 1, 2, 3, 4 (31)
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When the OMWAGV walks straight, the lateral slip value of each wheel of the vehicle
is 1. From Equation (11), it is known that the lateral velocity of the OMWAGV is affected
by the speed of each wheel, while (32) is the compensation amount for the lateral slip of
each wheel of the OMWAGV:

v′yi =

{
(−v∗zyi − vy)(1− λyi), i = 1, 4
(v∗zyi − vy)(1− λyi), i = 2, 3

(32)

where v∗zyi and λyi are the lateral speed command and slip ratio of each wheel when the
OMWAGV walks straight.

When the OMWAGV translates, the lateral speed of the vehicle is calculated using
(11), and the ideal longitudinal speed will be zero. When the vehicle slips, the lateral speed
of the vehicle will not meet the target speed and will generate longitudinal speed. The
compensation for lateral slip of the OMWAGV will be:

v′yi =

{
(−v∗zyi − vy)/(1− λyi), i = 1, 4
(v∗zyi − vy)/(1− λyi), i = 2, 3

(33)

When the OMWAGV translates, the longitudinal slip value of each wheel of the vehicle
is 1. From Equations (10) and (11), it is known that the lateral speed and longitudinal
speed of the OMWAGV are affected by the speed of each wheel. The longitudinal slip
compensation for the translation of the OMWAGV is:

v′xi =

{
−(v∗zxi + vx)(1− λxi), i = 1, 4
(v∗zxi − vx)(1− λxi), i = 2, 3

(34)

The ideal speed of the OMWAGV for 45-degree oblique walking is half of the longitu-
dinal speed and half of the lateral speed of the vehicle. The compensation for the oblique
walking of the OMWAGV is:

v′xi =


0.5v∗zxi−vx

1−2λxi
, i = 1, 4

0.5v∗zxi−vx
1−2λxi

, i = 2, 3
v′yi =


−0.5v∗zyi−vy

1−2λyi
, i = 1, 4

0.5v∗zyi−vy

1−2λyi
, i = 2, 3

(35)

4. Experimental Results

The proposed system includes four sets of brushless DC motors, gearboxes, controllers,
omnidirectional Mecanum wheels, and sensors. The brushless DC motors are 5RB100KS-
SY10 with encoders that calculate the actual speed of the motor (ωi(i = 1, 2, 3, 4)). The Hall
sensor signals are fed back to the PID speed controller for motor position and speed control.
A gearbox with a 19:1 gear ratio is used to increase the motor torque, so the maximum
motor speed is 157.89 r/min and the rated torque is 7.6 Nm. An MPU-9265 [24] is installed
on the vehicle to measure the actual speed and direction of the vehicle (vx, vy, θ), estimate
the slip of the OMWAGV, and make the robot move more accurately. The MPU-9250
is a multi-chip module nine-axis motion tracking device, which consists of a three-axis
gyroscope, a three-axis accelerometer, a three-axis magnetometer, and a digital motion
processor (DMP). In addition, the MPU-9250 also provides nine 16-bit analog-to-digital
converters (ADCs) for digitizing nine-axis analog outputs. With the inputs from the
encoders and the MPU-9250, a microprocessor (dsPIC30F6010A) [25] is used to program
software that estimates the slip by the RLS method, calculate the slip ratio (λx, λy), and
control the motion of the OMWAGV. The slip compensation block with the input of slip
ratio will calculate the compensation value, which is used for the slip error compensation
control of the OMWAGV. The block diagram of slip error compensation control for the
OMWAGV is shown in Figure 3. Figure 4 shows the appearance of the OMWAGV. Figure 5
is the hardware of the experimental system. The size of the vehicle is 90 cm long, 50 cm
wide, 54 cm high, and the weight is about 60 kg.
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As the vehicle speed is set to 30 cm/s, Figures 6–9 show the four motor speeds, the
vehicle speed, and the estimated values of the RLS method. The blue and yellow curves
in the lower part of the figures respectively stand for the speed of the vehicle captured by
the nine-axis sensor and the wheel speeds, and the upper part is the estimated values by
the RLS method using Equation (20). The means and standard deviations of the speeds
and the estimated slip values in Figures 6–9 are presented in Tables 1 and 2. It is easier to
compare the performance of each motor. Figure 10 shows the estimated values by the RLS
method of four motors together. The performance of each motor is slightly different.
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Table 1. The means and standard deviations of the speeds in Figures 6–9 (unit: cm/s).

Speed MPU-9250 First Motor Second Motor Third Motor Fourth Motor

mean 28.103 28.633 29.457 28.971 29.179
standard
deviation 0.023 1.322 1.960 0.848 0.945

Table 2. The means and standard deviations of the estimated slip values in Figures 6–9.

Estimated Slip First Motor Second Motor Third Motor Fourth Motor

mean 0.951 1.036 0.945 0.910
standard
deviation 0.001 0.002 0.002 0.002
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Figure 11 shows the actual slip ratio of the fourth motor (top), the estimated slip
ratio (middle), and their difference (bottom). The actual slip ratio is the λ value from
Equation (28), and the estimated value is obtained by substituting the estimated value of
the RLS method (22) into Equation (29). The other three motors have similar results.

Figure 12 shows the test site for walking straight, where the green tape stands for the
starting point, the yellow one is 50 cm, and the red ones are 100 cm, 200 cm, 300 cm, and
400 cm, respectively. The walking distances of 100 cm and 400 cm are conducted. The steps
of the OMWAGV moving 100 cm without and with using RLS estimation compensation are
shown in Figures 13 and 14. It can be seen that the OMWAGV has little error when walking
short distances. Figures 15 and 16 show the case of walking 400 cm without and with RLS
estimation compensation, respectively. In Figure 15, it is obvious that the OMWAGV is
slowly shifting to the right and towards the end during walking. The OMWAGV deviated
from the white line by 16 cm and also exceeded the end. In Figure 16, after walking, the
robot deviated from the white line by 4 cm and the error at the end was less than 1 cm.
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Figure 16. OMWAGV walking straight 400 cm with RLS estimation compensation. (a) Starting position, (b–e) at middle
way, and (f) deviation at stop position.

Figure 17 shows the captured pictures of the OMWAGV moving diagonally without
using RLS estimation compensation. The process is from the starting position, forward
at an angle of 45 degrees to the left, back to the starting position, backward at an angle
of 45 degrees to the right, back to the starting position, forward at an angle of 45 degrees
to the right, back to the starting position, backward at an angle of 45 degrees to the left,
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and finally back to the starting position. Figure 18 displays the path by software package
Tracker [26], and clearly shows that the path of the vehicle has shifted significantly, where
the yellow point is the starting position and the black point is the end position. Tracker
is a free video analysis and modeling tool built on the Open Source Physics (OSP) Java
framework. It is designed to be used in physics education. Tracker video modeling is a
powerful way to combine videos with computer modeling. Figure 19 displays the captured
pictures of the OMWAGV with RLS estimation and compensation for moving diagonally.
Figure 20 shows the walking path of the video of Figure 19. Comparing the paths of
Figures 18 and 20, the deviation of the latter is greatly reduced. Since the shooting is not
directly above the scene, the displayed walking paths are distorted. Figures 21 and 22 are
the captured pictures of the robot without and with RLS estimation and compensation for
cross-walking motion. Figures 23 and 24 show the walking paths of Figures 21 and 22 by
Tracker, and the travel deviation of the latter is greatly reduced. In summary, the distances
between the original starting position to the stopping position are 1.52 m, 0.03 m, 1.56 m,
and 0.03 m in Figures 18, 20, 22 and 24, respectively. The effectiveness of the proposed
compensation and control algorithm are clear.
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Figure 17. The captured pictures of the OMWAGV moving diagonally without RLS estimation and
compensation. (a) Starting position, (b) forward at an angle of 45 degrees to the left, (c) return to the
starting position, (d) backward at an angle of 45 degrees to the right, (e) back to the starting position,
(f) forward at an angle of 45 degrees to the right, (g) return to the starting position, (h) backward at
an angle of 45 degrees to the left, (i) return to the starting position.
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Figure 19. The captured pictures of the OMWAGV moving diagonally with RLS estimation com-
pensation. (a) Starting position, (b) forward at an angle of 45 degrees to the left, (c) return to the
starting position, (d) backward at an angle of 45 degrees to the right, (e) back to the starting position,
(f) forward at an angle of 45 degrees to the right, (g) return to the starting position, (h) backward at
an angle of 45 degrees to the left, (i) return to the starting position.
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Figure 21. The captured pictures of the robot’s cross-walking motion without RLS estimation and
compensation. (a) Starting position, (b) forward, (c) back to the starting position, (d) backward, (e)
back to the starting position, (f) left shift, (g) back to the starting position, (h) right shift, (i) back to
the starting position.
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back to the starting position, (f) left shift, (g) back to the starting position, (h) right shift, (i) back to
the starting position.
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Figures 25 and 26 show the OMWAGV with a load of 46 kg walking a distance of
400 cm without and with RLS estimation and compensation, respectively. In the former,
it is obvious that the robot was slowly shifting to the right during walking and deviated
from the white line by 38 cm. In the latter, the robot deviated from the white line by 4 cm
and the error at the end was less than 1 cm.
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Figure 26. The OMWAGV with a load of 46 kg walking a distance of 400 cm with RLS estimation
and compensation. (a) Starting position, (b–e) at middle way, and (f) deviation at stop position.

5. Conclusions

In this paper, an OMWAGV with slip estimation and compensation control is designed
and implemented. The model of the OMWAGV is first introduced. Based on a quarter
car model for the OMWAGV, a recursive least squares (RLS) method is described and
utilized to estimate real-time slip ratio changes for four driving wheels. The slip ratio
compensation and control of the OMWAGV is considered for straight motion, translation,
and diagonal motion. The proposed system includes a Microchip dsPIC30F6010A, a nine-
axis accelerometer sensor (MPU-9250), four Mecanum wheels, and four sets of brushless
DC motors, gearboxes, and controllers. The experimental results of diagonally moving
and cross-walking motion without and with slip estimation and compensation control
show that, without calculating the errors that occur during travel, the distances between
the original starting position and the stopping position are dramatically reduced from
1.52 m to 0.03 m and from 1.56 m to 0.03 m, respectively. The higher tracking accuracy of
the proposed method has verified its effectiveness and validness. Referring to [27], the
performance comparison between the proposed method and other novel control methods
is indispensable for us in the near future.
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