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Abstract: In recent years, the number of services in mobile networks has increased exponentially.
This increase has forced operators to change their network management processes to ensure an
adequate Quality of Experience (QoE). A key component in QoE management is the availability of a
precise QoE model for every service that reflects the impact of network performance variations on the
end-user experience. In this work, an automatic method is presented for deriving Quality-of-Service
(QoS) thresholds in analytical QoE models of several services from radio connection traces collected
in an Long Term Evolution (LTE) network. Such QoS thresholds reflect the minimum connection
performance below which a user gives up its connection. The proposed method relies on the fact that
user experience influences the traffic volume requested by users. Method assessment is performed
with real connection traces taken from live LTE networks. Results confirm that packet delay or user
throughput are critical factors for user experience in the analyzed services.

Keywords: traffic monitoring; mobile network; quality of experience; big data; LTE

1. Introduction

In recent years, there has been a significant increase in the number of users and
services in mobile networks. This fact has led to an exponential growth in the demand of
mobility services. In coming years, a tenfold increase of mobile traffic is expected, reaching
71% of total traffic on the Internet by 2022. Internet of Things (IoT) applications are one
of the main causes for this increase, and by 2023, IoT devices will account for 50% of all
global networked devices [1]. Not only that, new radio access technologies (e.g., 5G) have
increased the complexity of mobile networks, which has been identified as a major issue
for the success of future deployments [2].

Traditionally, operators have managed their networks in a Quality of Service (QoS)
framework. This QoS perspective needs to measure user or network performance (e.g.,
accessibility, sustainability, integrity, et al.). Thus, network management must be oriented in
such a way as to meet some requirements based on these indicators (e.g., a user throughput
not less than X Mbps). Additionally, QoS requirements can be defined in a service basis
in such a way that different services can use different indicators and/or meet different
requirements. As an example, operators usually demand some maximum delay for real-
time services (e.g., Voice over IP (VoIP)), while throughput is the most-used indicator for
best-effort services (e.g., the Internet) [3].

The QoS framework, however, lacks the user’s perspective, and so a good net-
work/user performance is not always translated into a good user experience. Opera-
tors have therefore shifted their focus from network performance to end-user satisfaction
(Quality of Experience (QoE)) [4]. This shift is reinforced by the success of smartphones
and tablets, which has raised users’ expectations, and the introduction of 5G new radio
technology [5,6]. As a consequence, QoS management processes have been replaced by
a more modern approach that is focused on QoE. This new paradigm has become a key
differentiating factor in a competitive market in which networks and services are similar
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for all operators. In this new framework focused on the user’s perspective, Customer Expe-
rience Management (CEM) has become an extremely important task for mobile network
operators [7].

CEM aims to improve the final user experience by optimizing the use of network
resources [8]. One of the main tasks involved in CEM is to find sophisticated indicators at
the service level to ensure service performance is properly characterized. Unfortunately,
such service performance indicators are usually not available for network operators, unless
complex crowd sourcing schemes are deployed [9]. Thus, CEM tries to understand the
factors influencing user quality perception with the aim of describing the relationship
between measurable variables and the experience perceived by the end user (i.e., QoE
modeling [8,10]. Such variables may be human (e.g., age, education, etc.), system (e.g.,
resolution, throughput, delay, etc.) or context (e.g., cost, data charging gap, mobility, etc.)
factors [11–13]. For system aspects, QoE models often consist of analytical utility functions
relating network-based QoS indicators to user opinion [14]. In its simplest form, this
relationship between QoS and QoE is a logarithmic [15] or exponential [16] function. This
approach is followed by most frameworks for large-scale, on-line, passive monitoring for
each connection [17,18]. For a comprehensive survey of objective QoE models, the reader
is referred to [19].

Most QoE models include parameters reflecting QoS thresholds above/below which
QoE remains constant [20]. The values of these thresholds are derived from subjective
tests with real users in lab environments, which are time-consuming and may not reflect
the true conditions in real life. Moreover, objective QoE models are seldom updated.
However, customer expectations continuously increase as a result of handset upgrades,
service diversification and new radio technologies. As a consequence, user satisfaction
progressively decreases if the provided QoS remains the same. For this reason, QoE
models must be continuously updated. In most cases, tuning model parameters would be
enough, avoiding more complex actions, such as changing the model structure. Even so,
an automatic parameter tuning process is required to avoid subjective tests.

Current mobile networks generate a huge amount of information in the form of
measurements and interaction registers [21]. However, for simplicity, the majority of
this information is discarded, and CEM is often performed based on limited data. Thus,
operators are only focused on Configuration Management (CM), Performance Management
(PM), Charge Data Record (CDR) and Customer Relationship Management (CRM) data.
All this information is usually aggregated, meaning that it is impossible to identify an
individual user’s QoE. With the latest advances in information technologies, it is now
possible to analyze massive volumes of information by using Big Data Analytics (BDA)
techniques [22]. In mobile networks, BDA can improve the reaction time of management
systems, allowing actions in real time and in a proactive way to improve the monitoring,
control and optimization of QoE [21]. Connection traces are one of the main sources of
information in mobile networks. Traces systematically register all events associated with a
specific cell/user in some period of time, becoming a powerful tool for automated network
performance analysis, monitoring and control [6].

In this work, a novel automatic method is presented to tune QoS thresholds in classical
analytical QoE models by analyzing radio connection traces in an Long Term Evolution
(LTE) system. The proposed method relies on the fact that users tend to shorten their
connections when QoE is not satisfactory. Thus, the values of QoS thresholds can be inferred
by detecting the loss of traffic volume for each connection as a result of unsatisfied users.
The method consists of two stages: first, connections are segregated per service, based on
QoS Class Identifiers (QCIs) and hierarchical clustering from connection descriptors; then,
the value of QoS thresholds is estimated for each service by analyzing traffic descriptors on
a per-connection basis. Method assessment is carried out by using a real trace dataset from
two live LTE networks. Unlike previous approaches, the proposed data-driven method
(a) can be fully automated, eliminating the need for subjective tests when deploying a new
service; (b) can deal with the large diversity of system and human factors, which cannot
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be taken into account in lab environments; and (c) can be executed periodically to detect
changes in user trends in large geographical regions.

The rest of the work is organized as follows. Section 2 introduces the use of utility
functions for QoE characterization. Section 3 outlines the trace collection process in mobile
networks. Section 4 describes the proposed method to adjust QoS threshold parameters in
classical QoE models based on network traces. Section 5 shows the results obtained with a
trace dataset taken from real LTE systems. Finally, Section 6 presents the main conclusions.

2. Characterization of Quality of Experience

QoE monitoring in mobile networks is a key factor for operators [23]. As the network
evolves, new indicators and counters are included in network equipment with the aim of
reflecting service performance (e.g., initial buffering time or web download time for video
and web services, respectively). However, user experience, as a subjective matter, cannot
be measured but only estimated from network and service performance indicators. For this
purpose, QoE models use utility functions to map the value of network Key Performance
Indicators (KPIs), reflecting QoS, to user experience [20,24].

How QoS parameters are mapped into a QoE indicator is a widely studied subject. A
generic formula connecting QoE with QoS for different packet data services is described
in [16]. It is assumed here that user experience remains constant at a maximum level when
some upper QoS threshold is exceeded. Similarly, a minimum QoS threshold can be defined
below which a user neglects to continue its connection due to their bad experience. These
statements can be formulated as

QoE = max{min{ f (QoS1, QoS2, . . . , QoSN), QoEmax}, QoEmin} , (1)

where QoSi, ∀i ∈ {1, 2. . . N}, are the N network performance indicators reflecting service
performance, QoE is the indicator quantifying user experience, f is the user utility function,
and QoEmax and QoEmin define the range of QoE values. Note that existence of QoE limits
implies that there also exist QoS thresholds, QoSi,thmax and QoSi,thmin

, above or below which
QoE does not change. Thus, (1) can be reformulated as

QoE = f (max{min{QoS1, QoS1,thmax}, QoS1,thmin
},

. . . , max{min{QoSN , QoSN,thmax}, QoSN,thmin
}) .

(2)

At the same time, user experience is influenced by factors that strongly depend
on the requested service. For instance, a user performing a voice call is sensitive to
packet delay, whereas a user uploading a photo in a social network is more sensitive to
throughput [25]. Thus, different user utility functions are defined for each service [20]. To
aid comparison, QoE is commonly measured as the Mean Opinion Score (MOS). MOS scale
ranges from 1 (worst experience) to 5 (best experience), i.e., MOS(s)

max ≤ 5 and MOS(s)
min ≥ 1.

However, some models set more restrictive limits. With these considerations, (1) can be
reformulated as

MOS(s) = max{min{ f (s)(QoS1, QoS2, . . . , QoSNQoS), MOS(s)
max}, MOS(s)

thmin
}

= f (s)(max{min{QoS1, QoS(s)
1,max}, QoS(s)

1,min}),

. . . , max{min{QoSN , QoS(s)
N,max}, QoS(s)

N,min}) ,

(3)

where superscript s refers to the service under consideration (i.e., s ∈ {web, video, . . .}).
From (3), it follows that users of different services can experience a different QoE with
the same network performance (QoS). Consequently, different QoS requirements must be
achieved to guarantee the same MOS for all services in a mobile network [20].
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QoS thresholds give extremely valuable information to network operators, as it is not
worthwhile to increase QoS beyond/below a certain threshold if there is no impact on user
experience. Unfortunately, the value of QoS thresholds per service, QoS(s)

i,min/max, is highly
dependent on many factors, such as user expectation (which is not the same for all users),
handset features (the user expects a better experience for a more expensive terminal) or
network evolution (a specific level of user experience previously seen as acceptable may
not be so some months later). All these factors make it very difficult for operators to find
precise QoS thresholds for their networks. Nonetheless, approximating these thresholds is
still useful for operators as it allows them to assess the overall cell performance from a user
experience perspective. From these thresholds, operators can trigger corrective actions to
have an impact on the overall user experience (e.g., ensuring some minimum user QoE).
In this work, we take advantage of the fact that the minimum threshold, QoSi,min, often
reflects the QoS below which the user gives up the connection [16]. Thus, QoSi,min can be
inferred from user behavior observed in connection traces.

3. Trace Collection Process

Monitoring the QoE of individual users can only be done by collecting QoS indicators
for each connection. Such a piece of information is only available in connection traces,
containing signaling messages (a.k.a. events) exchanged between every single piece of user
equipment (UE) and base station. The structure of events consists of a header and a message
container made up of different attributes, referred to as event parameters. The header
provides general information (e.g., timestamp, base station, user, event type, among others),
whereas attributes stored in the message container are specific to the event. Depending on
the network entities involved, events can be external or internal. External events consist of
signaling messages exchanged through network interfaces via standard protocols [26–28],
whereas internal events store vendor-specific information about the performance of the
base stations (known as evolved Nodes B (eNBs) in LTE). Events selected by the network
operator are registered in a Data Trace File (DTF) for each cell, which is. generated after
each reporting period (currently, 15 min). Two types of DTFs are distinguished: UE Traffic
Recording (UETR) and Cell Traffic Recording (CTR) [29]. UETRs gather events from a
specific users identified by International Mobile Subscriber Identity (IMSI), while CTRs
store cell performance information by monitoring many anonymous connections [30]. In
this work, CTRs are used to collect QoS indicators that reflect the average performance of
each cell in the network.

A high-level view of the architecture for trace reporting in LTE can be found in [30].
The operator starts the trace collection process by preparing a Configuration Trace File (CTF)
in the Operations Support System (OSS). A CTF consists of (a) the event(s) to be monitored,
(b) the particular UE(s) or ratio of anonymous users to be monitored, (c) the Reporting
Output Period (ROP), (d) the maximum number of traces activated simultaneously in
the OSS and (e) the time period when trace collection is enabled. Once trace collection is
enabled, UEs transfer their event records to their serving eNB. After finishing the ROP,
DTFs are generated by the eNB and then sent to the OSS asynchronously.

Trace files are binary files encoded in ASN.1 format [29]. Trace decoding is performed
by a parsing tool that decodes, synchronizes and correlates events to extract the information
contained in fields and compute the required network indicators, as described later.

4. Estimation of QoS Thresholds on a Per-Service Basis

A novel method to automatically estimate QoS thresholds for different services is
described in this section. In this work, only the threshold that determines the worst network
performance tolerated by users before terminating the connection is estimated. Depending
on the service, this critical value corresponds to QoS(s)

i,thmin
or QoS(s)

i,thmax
. Estimation is

carried out by a heuristic approach based on user behavior observed in connection traces.
The inputs to the method are the following descriptors, collected for each connection:
(a) the QCI value; (b) the Radio Resource Control (RRC) connection time; (c) the total
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downlink (DL) and uplink (UL) traffic volume at the packet data converge protocol level;
(d) the DL traffic volume ratio transmitted in the last transmission time intervals (TTIs) [31];
(e) the DL activity ratio, computed as the ratio between active TTIs (i.e., those with data
to transmit) and the effective duration of the connection; (f) the DL session throughput,
computed as the volume transmitted in the DL divided by the effective duration of the
connection; (g) the mean downlink delay, τ, defined as the sum of DL mean connection
delays in Radio Link Control (RLC) and Medium Access Control (MAC) layers; and (h)
the mean DL Packet Data Control Protocol (PDCP) connection throughput, THPDCP,DL,
excluding the last TTIs. The output of the method is an estimate of the QoS threshold for
each indicator i and service s, QoS(s)

i,thmin/max
.

Two main steps are required to estimate QoS thresholds for each service: (1) the
classification of connection traces on a service basis and (2) the estimation of QoS thresholds
for each service by analyzing user behavior.

4.1. Step 1: Classification of Connection Traces

Due to the coexistence of multiple services with very different requirements, cellular
operators are forced to classify traffic for each service to offer differentiated access and
resource management [32]. In LTE, services are distinguished by their QCI value [33].
Then, different traffic management priorities and policies (e.g., scheduling weights, queue
thresholds, link-layer protocol configuration, etc.) are applied depending on QCI. In current
networks, services are commonly classified as QCI 1 (VoIP), QCI 2 (conversational video),
QCI 3 (real-time gaming), QCI 4 (non-conversational video), QCI 5 (IMS signaling) and
QCIs from 6 to 9 (services based on the Transport Control Protocol without a guaranteed
bit rate) [33]. In particular, QCI labels 6 to 9 include a mix of services, ranging from social
networks to buffered streaming, which have very different QoS requirements from a QoE
perspective. Moreover, some operators assign these last QCI values for user prioritization
purposes (i.e., plan vs pre-paid). Thus, it is very difficult to monitor the experience of each
specific service based on counters in the network management system, even if these are
segregated per QCI. Thus, a more accurate traffic classification is needed for QCIs 6–9.

In recent years, several methods for data traffic classification have been proposed.
The simplest method is to identify the connection port [34]. However, currently, several
applications use non-standard ports, and port assignment is often dynamic, meaning that
there is no unequivocal relationship between a port number and service. More refined
methods for traffic classification are based on the analysis of information exchanged
along the session [35]. Such an approach cannot be applied for encrypted traffic services.
Moreover, even for non-encrypted services, all these methods rely on information from
high protocol layers, which can only be accessed by expensive network probes [36].

An option to solve these limitations consists of analyzing payload-independent flow
characteristics. These methods exploit the fact that different applications show different
features in their traffic that can be classified with Machine Learning (ML) techniques.
Encrypted traffic classification has been extensively covered in the literature. In [37], a
supervised learning algorithm is used to identify fingerprints of Android apps from their
encrypted network traffic. However, supervised schemes require a labeled training dataset.
Other alternatives use unsupervised learning algorithms to classify connections without
the need of a previously-labeled dataset [38,39]. In [38], an unsupervised method for
offline coarse-grained traffic classification in cellular radio access networks is presented.
This method relies on the fact that the identification of the class of service for a specific
connection can be performed from a set of traffic descriptors showing the properties of data
bursts in the connection. Unfortunately, radio connection traces do not explicitly register
these traffic descriptors at the burst level, so that they must be estimated from other traffic
parameters collected per connection. In the absence of labeled data that could be used
as ground truth, the authors in [38] validate their method by comparing the traffic mix
resulting from their classification algorithm against mobile traffic statistics published by a
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vendor. Results show that traffic shares per application class estimated by the proposed
method are similar to those provided by a vendor report.

The above-described method is used in this work in the absence of a large dataset of
real traces that includes the service requested by the user for each radio connection, due to
the difficulty of combining data from the radio access and core domains. To this end, the
following traffic descriptors are collected per connection:

• The RRC connection time;
• The total DL traffic volume at the packet data converge protocol level;
• The UL traffic volume ratio ηUL [%], computed as

ηUL = 100× VUL
VUL + VDL

; (4)

• The DL traffic volume ratio transmitted in last TTIs, ηlastTTI
UL , computed as

ηlastTTI
UL =

V lastTTI
DL
VDL

; (5)

• The DL activity ratio, ηactive
DL , computed as the ratio between active TTIs and the

effective duration of the connection,

ηactive
DL =

Tactive
DL
Te f f

; (6)

• The session DL throughput, THsession
DL (in bps).

Then, burst level parameters required for traffic classification are estimated for each
connection from the set of traffic descriptors listed above. From these parameters, con-
nections are divided into groups by hierarchical clustering. Finally, the resulting groups
are associated with broad application groups by analyzing the median value of traffic
descriptors for connections in each group.

4.2. Step 2: Estimation of Minimum Qos Thresholds

As explained in Section 2, each service has its own user utility function, f (s), combining
different QoS indicators. In this work, the analysis is restricted to application groups that
have a significant share of connections and are affected by QoS; namely, Voice over LTE
(VoLTE), full-buffer data services (e.g., app download, software update, large file download
via File Transfer Protocol, etc.) and streaming services (e.g., audio/video, live/buffered,
etc.). For simplicity, in each service, only the QoS indicator with the largest impact on
QoE for each service is considered (i.e., N =1 ∀ s in (3)). This indicator is not necessarily
the same for all services. For instance, packet delay negatively affects user experience for
real-time services (e.g., VoLTE or conversational video-streaming), whereas user experience
in non-real-time services (e.g., app download) is more sensitive to user data throughput.
Previous works have shown that user experience in most services is dominated by a
single QoS metric. For instance, in [40], an analytical model to estimate the QoE for a
video-streaming service based on different network level metrics (e.g., average session
throughput, packet loss ratio and round-trip time) is presented. It is shown there that QoE
is strongly correlated with a single QoS metric (average session throughput). On the other
hand, it is well accepted that voice calls are mostly affected by packet delay [41]. For this
reason, user experience is estimated here from the foremost QoS indicator of the requested
service in order to reduce the complexity of the proposed model.

Hereafter, it is assumed that the QoE of a connection k of service s, MOS(s)(k), is
conditioned by the value of the indicator i with the largest impact for that service, QoS(s)

i (k).

When this indicator falls below a certain threshold, QoS(s)
i,min users experience their worst

QoE, MOS(s)
min, which is reflected in different traffic indicators depending on the service.
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For instance, unsatisfied VoLTE users tend to shorten their connections, and the effect is
therefore observed in connection length. In contrast, in non-real-time services, whether
background, interactive or streaming, the effect is more evident in the traffic volume for
each connection. As a consequence, an analysis of an additional and service-based traffic
indicators (e.g., length connection for VoLTE or data volume for streaming services) is
needed in order to detect those low-QoE connections. This traffic indicator is denoted as
T(s)

j (k). Then, the QoE estimation of a connection k of service s is based on QoS indicator

j, QoS(s)
j (k), used to infer the user behavior, and QoS indicator i, QoS(s)

i , as the indicator

with the largest effect on QoE. As user behavior is not deterministic, this QoS(s)
i has some

random component so that connections with the same QoS(s)
i do not end up with identical

values of QoS(s)
j . To deal with this uncertainty, a percentile curve relating connection QoS(s)

i

and QoS(s)
j is constructed for each service by discretizing QoS(s)

i values and computing the

50th percentile (median) of the distribution of QoS(s)
j per bin, QoS(s)

j,50th tile(QoS(s)
i ).

Finally, the QoS threshold for each service, QoS(s)
i,thmin

, is estimated. This minimum
QoS threshold determines a boundary between two states: a degraded state, where a
user perceives a bad service performance and tends to stop the connection, and a normal
state, where service performance is good enough to consume the service normally. As this
boundary highly depends on service, the following paragraphs anticipate the ideal user
behavior for broad service classes. To this end, Figure 1 shows the expected relationship
between the selected QoS and traffic indicators—i.e., QoS(s)

i (k), QoS(s)
j (k) and T(s)

j (k)—for
each class.
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Figure 1. Expected impact of user behavior for broad service classes.
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In full-buffer data services, all data are available at the beginning of the connection,
meaning that the associated traffic pattern consists of a few, very long bursts in which
data are transmitted at full speed. Thus, the user terminal demands as many resources as
possible until all the data are transmitted. It is assumed here that the user tends to give up
the session when the download time exceeds a certain threshold. Such an action should
be reflected both in connection duration and traffic volumes per connection, as shown in
Figure 1a. The x-axis represents the mean DL PDCP connection throughput, measured
only considering active (and non-last) TTIs, which are selected as the QoS indicator with
the largest impact on QoE for these services. The primary x-axis represents the connection
duration, while the secondary y-axis represents the total DL data volume per the connection.
The solid curve represents the median of the distribution of connection duration, whereas
the dashed line represents the median of the distribution of the total DL data volume.
For clarity, the shaded area labeled as the degraded state comprises connections whose
link conditions are unacceptable for the user, which are more likely to be interrupted. As
observed in the figure, it is expected that users will try to maintain a connection until a
maximum duration is reached. On the right of the figure, as the link performance improves,
the connection duration is reduced, since data are transmitted faster. In contrast, the data
volume per connection remains constant, since it is not conditioned by link performance
beyond a certain point (i.e., the user ends the connection before downloading the complete
data). Thus, the minimum QoS threshold, THmin, in full-buffer data services is estimated
as the average DL PDCP throughput below which connection duration drops.

Streaming services are also affected by user throughput, meaning that the selected
QoS indicator is again DL PDCP throughput. However, a different behavior is expected for
connection duration and data volume. Streaming sessions consist of long connections with
large data volume distributed in many bursts. Unlike full-buffer data services, streaming
services are elastic, meaning that a good link performance does not necessarily lead to
a reduction of session duration. Thus, connection duration may not be a good QoS
indicator to reflect user behavior. Instead, DL session throughput, calculated by dividing
the total DL data volume by the connection duration (including silent periods), may
reflect the quality of the downloaded material. Figure 1b shows the expected impact of
user behavior for streaming services, representing the relationship between DL PDCP
throughput and DL session throughput. The solid line represents the median session
throughput and the shaded area defines the degraded state. As shown, in the degraded
state, the session throughput decreases as the DL PDCP throughput decreases. Once the
DL PDCP throughput is good enough, the session throughput remains constant, showing
that the latter is not conditioned by the former. Thus, the minimum QoS threshold, THmin,
for streaming services is the value of the DL PDCP throughput below which the median
session throughput starts to decrease.

In a VoLTE service, the connection duration is the most representative indicator for
the characterization of user behavior. However, unlike full-buffer data, the QoS indicator
with the strongest impact on QoE is packet delay. Figure 1c shows the expected impact
of user behavior in VoLTE by representing the variation of connection duration caused
by changes in DL packet delay. As in previous sub-figures, the solid line represents the
median of connection duration and the shaded area is the degraded state. It is observed
that the median connection duration should drop when the DL packet delay increases
above a certain limit. Thus, the minimum QoS threshold, τmax, for VoLTE is the value of
average DL packet delay above which the mean connection duration starts to decrease.

It is envisaged that, in real networks, some services may not be fully represented by
the three above cases. For instance, web service or social networks might show different
behaviors depending on the size of their objects. Likewise, live streaming may have strict
latency requirements.
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5. Performance Assessment

In this section, the above-described method to estimate QoS thresholds on a service
basis is tested with a set of radio connection traces taken from a live LTE network. For clarity,
the analysis set-up is first explained and results are presented later. Finally, implementation
issues are discussed.

5.1. Analysis Set-Up

Two independent datasets are generated from anonymous traces collected in two
different LTE systems. Both systems are mature enough to provide a large set of connections
with a varying QoS to derive the required QoS thresholds. Dataset 1 is collected in 1960
LTE cells covering an urban area of 3900 km2. Specifically, traces are collected during two
hours (from 10:00 to 12:00 a.m.), resulting in 48,683 connections: 43% of connections in
QCI 1 and 57% in the range of QCIs 6–9. On the other hand, dataset 2 is collected from
10:00 to 11:00 a.m. in 145 LTE cells covering 125 km2 in an urban area, resulting in 10,123
connections, all of which have QCIs between 6 and 9.

Traces are processed to obtain the traffic descriptors for each connection needed for
traffic classification, as defined in Section 4.1. Then, connections are classified with the
unsupervised learning method described in the same subsection. After classification, 8% of
connections are labeled as full-buffer data services, 5% are classified as streaming, 35% are
classified as VoIP, 5% as web browsing of webs with large objects and 47% as web browsing
for webs with small objects or social networks.

5.2. Results

Figure 2 shows the analysis for full-buffer data services. Each point in the figure
represents a connection labeled as full-buffer data service. The solid line represents the
median connection duration, CD( f b)

median, and the dashed line represents the median DL

data volume, V( f b)
DLmedian

. The throughput axis is adjusted to low values (below 10 Mbps)
to better identify the boundary between the two states specified in Figure 1a. The results
confirm the expected impact of user behavior, since, for a low DL PDCP throughput, the
DL data volume decreases and the connection duration stagnates. The minimum QoS
threshold can be determined as the TH( f b)

PDCP,DL value that causes CD( f b)
median to drop and

V( f b)
DLmedian

to remain constant. From the figure, the estimated threshold for this service is

TH( f b)
PDCP,DLmin

= 5 Mbps.
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Figure 2. Quality of Service (QoS) and traffic indicators for full-buffer data services.
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Figure 3 shows the analysis pf streaming services. Each point in the figure represents
a connection identified as a streaming service. The solid line represents the median DL
session throughput, TH(str)

session,DLmedian
. Results show that TH(str)

session,DL presents a trend close
to the expected behavior in Figure 1b. Thus, the minimum QoE threshold for this service can
be set as the TH(str)

PDCP,DL value such that THsession,DL reaches its peak; i.e., TH(str)
PDCP,DL,min =

30 Mbps.
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Figure 3. QoS and traffic indicators for streaming services.

Figure 4 shows the analysis of VoLTE. Each point in the figure represents a VoLTE
connection. The solid line representing CD(v)

median confirms the impact of users anticipated
in Figure 1c. From the figure, it is inferred that the maximum DL packet delay threshold is
τ
(v)
max = 20 ms.
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Figure 4. QoS and traffic indicators for a Voice over LTE (VoLTE) service.

Figure 5 shows the analysis of web browsing for webs with large objects. Each point in
the figure represents a connection labeled as web browsing with this feature. The solid line
represents CD(wl)

median, and the dashed line represents V(wl)
DLmedian

. A priori, user behavior for
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these services should be close to that in full-buffer services. However, the DL data volume
seems not to be greatly affected by changes in DL PDCP throughput. This is due to the
fact that web sessions manage a lower amount of data for each connection than full-buffer
data services and thus the link performance must be much worse for the user to notice this
degradation. Based on the available data, a minimum QoS value for this service cannot
be obtained.
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Figure 5. QoS and traffic indicators for a web browsing service (large objects).

Finally, Figure 6 shows the analysis of web browsing with small objects and social
networks. Each point in the figure represents a connection identified as these services. The
solid line represents CD(ws)

median and the dashed line represents V(ws)
DLmedian

. It is observed that

CD(ws)
median and V(ws)

DLmedian
do not show changes regardless of throughput values. This is due

to the fact that these services manage a very small amount of data for each connection. As
a consequence, user satisfaction relies more on successful data transactions rather than
on the connection duration. Thus, only extremely bad link conditions would impact CD.
Thus, TH(ws)

PDCP,DL,min cannot be estimated.
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Figure 6. QoS and traffic indicators for social networks and web browsing services (small objects).
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5.3. Implementation Issues

The method is designed as a centralized scheme that can be integrated into OSS
platforms. Due to its simplicity, its computational load is relatively low. The theoretical
time complexity increases linearly with the number of analyzed connection traces. In
practice, the most time-consuming process is trace pre-processing, which can be done by
trace processing tools provided by OSS vendors and the classification process, which is
performed by using an unsupervised algorithm and can be implemented, along with the
rest of the method, in any programming language (in this work, Matlab [42]). Specifically,
the total execution time for the considered datasets in a 2.6-GHz quad-core processor laptop
is less than 5462 s (92 s per 1000 connections).

6. Conclusions

In this paper, a novel automatic method for estimating QoS thresholds to be integrated
in user utility functions on a per-service basis in an LTE system is proposed. The method
relies on the collection of radio connection traces. In the first stage, connection traces
are classified into application groups based on QCI and traffic descriptors registered per
connection. Then, a minimum QoS threshold is inferred on a per-service basis by analyzing
the QoS indicator with the largest impact on user experience and the traffic indicator that
best reflects user behavior. The method has been tested with traces taken from live LTE
networks, resulting in a minimum DL user throughput of 5 Mbps for full-buffer data
services, 30 Mbps for streaming services and a maximum DL packet delay of 20 ms for
VoIP services. The proposed data-driven method can be fully automated, eliminating the
need for time-consuming subjective tests. Likewise, it can deal with the large diversity
of system and human factors, which cannot be taken into account in lab environments.
Due to its low computational load, it can be executed periodically to track changes in user
trends. Additional analysis can be extended to 5G and broadband Internet satellite systems
to check the impact of network capabilities on general user behavior.
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DTF Data Trace File
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OSS Operations Support System
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