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Abstract: Internet technology and mobile technology have enabled producing and diffusing massive
data sets concerning almost every aspect of day-by-day life. Remarkable examples are social media
and apps for volunteered information production, as well as Open Data portals on which public
administrations publish authoritative and (often) geo-referenced data sets. In this context, JSON
has become the most popular standard for representing and exchanging possibly geo-referenced
data sets over the Internet.Analysts, wishing to manage, integrate and cross-analyze such data sets,
need a framework that allows them to access possibly remote storage systems for JSON data sets,
to retrieve and query data sets by means of a unique query language (independent of the specific
storage technology), by exploiting possibly-remote computational resources (such as cloud servers),
comfortably working on their PC in their office, more or less unaware of real location of resources.
In this paper, we present the current state of the J-CO Framework, a platform-independent and
analyst-oriented software framework to manipulate and cross-analyze possibly geo-tagged JSON
data sets. The paper presents the general approach behind the J-CO Framework, by illustrating
the query language by means of a simple, yet non-trivial, example of geographical cross-analysis.
The paper also presents the novel features introduced by the re-engineered version of the execution
engine and the most recent components, i.e., the storage service for large single JSON documents and
the user interface that allows analysts to comfortably share data sets and computational resources
with other analysts possibly working in different places of the Earth globe. Finally, the paper reports
the results of an experimental campaign, which show that the execution engine actually performs in
a more than satisfactory way, proving that our framework can be actually used by analysts to process
JSON data sets.

Keywords: collections of JSON documents; geo-referenced data sets; platform-independent frame-
work for managing JSON data sets

1. Introduction

Internet technology and mobile technology have enabled the massive production of
information concerning more or less any aspect of day-by-day life. In fact, social media,
mobile devices and apps for volunteered information production have contributed to gather
huge volumes of possibly geo-referenced data sets. Nevertheless, public administrations are
producing a very large number of publicly available data sets concerning the administrated
territory, known as Open Data, on dedicated portals. Often, Open Data are geo-referenced
data sets describing authoritative information about territories, such as boundaries of
municipalities, roads, public transportation lines, and so on and so forth.

The most popular standard for distributing these data sets is JSON (acronym for
JavaScript Object Notation) [1]: its success is due to the flexibility it provides, because it is
a simple serialized representation of main-memory objects managed by object-oriented
programming languages; with respect to XML (eXtensible Mark-up Language) [2], it is
simpler and faster to manage JSON data sets than XML documents. The GeoJSON format [3,
4] is a remarkablGIS (Geographical Information Systems), which is based on JSON.
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Currently, many technologies are available or are under development to store and
manage large JSON data sets, including NoSQL (that stands for Not only SQL) database
systems [5], which are becoming quite popular, such as MongoDB [6]. However, as usual,
one single technology is not enough to fully deal with every kind of data set; furthermore,
we cannot think that a unique and central storage system could store all data sets to manage,
especially when complex cross-analysis tasks must be performed by analysts. We are also
envisioning virtual JSON stores, i.e., abstractions of JSON stores obtained by aggregating
links of JSON data sets of interest available on the Internet (for example, published by Open
Data portals); we figure out that such virtual JSON stores could provide only a read-only
access method.

Unfortunately, when different storage technologies are involved, analysts wishing
to integrate data sets encounter objective obstacles, such as proprietary or missing query
languages, different computational capabilities, restricted or impossible access to JSON
stores in writing mode, and different user interfaces. In other words, we observed the lack
of a unifying framework and of a unifying query language suitable for people without
(or with basic) programming skills. Due to the distribution of data storage systems on
different servers, possibly located far away each other, as well as to the availability of the
necessary computational resources on remote servers (like cloud servers), analysts who
share data sets with other investigation teams located in various parts of the Earth globe
should exploit those computational resources remotely, comfortably working in their office.
This perspective further complicates the panorama.

These considerations became clear in our mind while participating to the Urban Nexus
project [7], a joint effort of geographers and computer scientists to develop models and tools
for studying mobility on the basis of Big Data, Open Data and Social Media. The project
involved three European research institutions, i.e., University of Bergamo (Italy), Ecole
Polytechnique Fédérale de Lausanne (EPFL) (Switzerland) and Angila Ruskin University of
Cambridge (UK). So, in 2017 we conceived a new framework, named J-CO (that stands for
JSON COllections). The original goal of the framework was to provide a high-level query
language able to natively manipulate collections of JSON documents possibly exploiting
their geo-tagging, so as to allow geographers to perform complex analysis tasks.

Although started as part of the Urban Nexus project, now it is an autonomous project.
Currently, the goal of the framework is twofold: it has to provide a platform-independent
view of several (possibly remote) data storage services, storing possibly geo-tagged JSON
data sets; it has to provide a query language, named J-CO-QL, for manipulating sets of
JSON documents, by natively supporting spatial representations and operations.

This paper presents an extensive review of the organization of the framework, by
discussing how the integration of the concept of platform independence (with respect to
storage technology) and of the loosely-coupled approach has led us to devise a powerful
framework for providing data analysts with a tool for cross-analyzing heterogeneous
JSON data sets. With respect to our previous publications [8–10] the main contribution
of the paper is to provide an organic and comprehensive description of the current state
of the framework, which, after re-engineering the J-CO-QL Engine (the execution engine
of J-CO-QL) and adding novel components, has assumed the nature of a loosely-coupled
and platform-independent framework for manipulating and transforming (possibly geo-
tagged) JSON data sets. Specifically, the novel components are the storage service for large
single JSON documents (named J-CO-DS) and the user interface (named J-CO-UI), which
allows analysts to comfortably share data sets and computational resources with other
analysts possibly working in different places of the Earth globe. The J-CO Framework is
not a database system, but a tool that provides a platform-independent query language
and processing capabilities to retrieve data sets from various JSON stores (not necessarily
DBMSs, i.e., DataBase Management Systems), cross-analyze them and possibly store results
into its own storage service J-CO-DS (in place of other JSON stores that could provide only
a read-only access mode). As a final contribution, for the first time the paper analyzes
performance of the execution engine; the results show that it performs quickly with compact
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data sets and scales properly when the size of data sets increases. Consequently, we can
claim that the J-CO Framework is ready to be actually used by analysts.

The paper is organized as follows. Section 2 presents the background of our project
and related work. Section 3 introduces the J-CO Framework, specifically focusing on the
novel components and on the main features of the re-engineered J-CO-QL Engine. Section 4
introduces the J-CO-QL language, by means of a simple, yet non-trivial, cross-analysis
example, by means of which key instructions of the language are presented. Section 5
presents the latest component added to the framework, i.e., the user interface named
J-CO-UI. Section 6 reports the experimental campaign and discusses the results. Finally,
Section 7 draws the conclusions.

2. Background and Related Work

We now illustrate the background of our research. First, we present the motivations of
our proposal. Then, we present related research work.

2.1. Background of the Proposal

The first step towards the idea of a loosely-coupled and platform-independent framework
for managing JSON data sets was suggested after the work on the FollowMe project [11,12]:
in that project, we had the idea of exploiting social media to trace movements of users. We
chose the name “FollowMe” because we traced travelers that posted geo-located messages on
Twitter; travelers were detected in a pool of 30 airports connected with the airport of Bergamo
(northern Italy), since we wanted to study the relevance of this airport in relation to EXPO
2015, held in Milan (only 40 km separate Milan from Bergamo). Then [13], we integrated
the FollowMe project within a framework for analyzing trips of Twitter users; in particular
(see [14]), we developed a clustering technique for identifying common paths followed by
travelers during their trips. In this preliminary work, trips of Twitter users were represented as
JSON documents; we had to analyze them on the basis of a multi-paradigmatic approach (see
the Urban Nexus project [7]). While facing this analysis task, we experienced the limitations of
current SQL and NoSQL technology when managing heterogeneous geo-located data in the
form of JSON documents.

As mentioned above, we had the idea of the J-CO Framework while working in the
Urban Nexus project [7]. The goal of this project was to study how city users (inhabitants
and commuters) live the city, by means of Big Data, Open Data and any kind of Web source.
The project integrated authoritative data sets, statistical data sets and data from social
media. In fact, we argued that novel information sources and Big Data (intended as variety
of data sets and sources, on the basis of the Seven V’s model [15]) can be beneficial to foster
geographical studies about how people live territories. In this project, we realized that
data come from many sources as JSON or GeoJSON [3] data sets; we also realized that
geographers and analysts ask for high-level tools to work on data sets. These considerations
inspired the research work on the J-CO Framework.

2.2. Related Work (on NoSQL Databases and on Query Languages for JSON Documents)

The advent of XML in the late 1990s as the standard format for representing semi-
structured documents, for exchanging them through the Internet, gave researchers the
idea to investigate the development of database technology for storing XML documents.
A large number of proposals came out from this research topic: the reader can refer
to [16–18] for some surveys. The common feature of all these proposals is that they are
XML-native databases, i.e., databases that natively store XML documents (independently
of the underlying technology); thus, they constitute an early investigation towards NoSQL
databases, because they abandoned the relational data model. XML-native databases had
impact on data mining research as well: in fact, the ability of XML to represent both raw
data and mined patterns opened the perspective of using XML and XML-native databases
to store both data and mined patterns within a unifying representation framework [19,20].
However, some practical obstacles, concerned with the complexity of managing XML
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documents and their excessive verbosity, have limited XML to become “the representation
format” for the Internet. In contrast, JSON has been favored in this sense.

JSON has become the most popular standard for exchanging data sets between dif-
ferent layers of the same web information system and, very often, between different
information systems; furthermore, many web services and social-media APIs (Application
Programming Interfaces) adopt JSON to exchange data sets. Consequently, the area of
NoSQL databases started developing NoSQL DBMSs to natively store JSON data sets. An
interesting survey on NoSQL databases is [5], where several systems are cataloged and
classified.

One common feature of most NoSQL databases is that they abandon the ACID (Atom-
icity, Consistency, Isolation, Durability) properties of transactions (as provided by relational
DBMSs) in favor of the Base (Basically Available, Soft state, Eventual consistency) model
[21,22] to deal with concurrency. In particular, since JSON data are generically called
“documents” [23], a DBMS able to natively store JSON documents falls into the category
of document databases. One of the most famous representatives is MongoDB [6]. Readers
interested in NoSQL DBMSs evaluation can refer to [5,22].

Obviously, the diffusion of JSON and of JSON-native DBMS technology asks for
suitable and high-level query languages. Before defining our query language named J-
CO-QL [9,10] (see Section 4 for a synthetic introduction), we studied previous proposals.
Hereafter, we present the most relevant languages. We compare their features with those
that characterize J-CO-QL; Table 1 synthetically reports the results of the comparison; the
table considers only those languages that operate on JSON documents; rows report the
features we considered. Specifically, they are introduced below.

1. Adaptability to heterogeneity. This feature refers to the ability of the language to
manipulate heterogeneous documents with one single instruction. In fact, usually
query operators have sets of documents as operands; sets of documents may contain
heterogeneous documents, i.e., documents having (possibly many) different structures
from each other; if the operators are able to work on documents with totally different
structure with one single instruction, i.e., processing them all together, the feature
called Adaptability to heterogeneity is met. In contrast, if operators deal with one
single structure at a time, this feature is not met.

2. Spatial operations. This feature refers to the capability of performing spatial opera-
tions on geo-tagged documents.

3. Platform independence. This feature refers to the fact that the query language is
independent of a specific platform, typically JSON document stores.

4. Re-use of intermediate results. When complex transformations are performed, inter-
mediate results could be precious for next processing steps. With this feature, we refer
to the capability of the query language to explicitly handle and re-use intermediate
results, to avoid re computations as well as to avoid storing intermediate results
temporarily within JSON databases.

5. Orientation to Analysts. This feature refers to the fact that operators of the query
language are oriented to analysts, without specific procedural programming skills.

6. Orientation to Programmers. This feature refers to the fact that operators of the
query language are oriented to computer programmers, having strong computer
programming skills.

Table 1. Comparison of query languages for JSON data.

Query Language J-CO-QL Jaql SQL++ JSONiq MongoDB

1. Adaptability to heterogeneity YES NO NO NO NO
2. Spatial operations YES NO NO NO YES
3. Platform independence YES NO YES YES NO
4. Re-use of intermediate results YES NO NO NO NO
5. Orientation to Analysts YES NO YES NO NO
6. Orientation to Programmers NO YES NO YES YES
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After this premise, we can start presenting various languages for querying JSON
data sets.

Jaql was proposed in [21] to help Hadoop (the popular Map-Reduce framework,
see [24,25]) programmers develop complex transformations, when writing Map-Reduce
programs on Big Data. It is designed to be flexible and independent of the physical repre-
sentation of data. Furthermore, since it is thought for the Map-Reduce paradigm, where
complex computations are modeled as sequences of Map-Reduce phases, Jaql strongly
relies on the concept of “pipe”. Considering the features reported in Table 1, Jaql does
not support heterogeneity of documents, does not provide spatial operations, is not plat-
form independent, does not provide re-usability of intermediate results and is oriented
to programmers.

The language that we repute the best proposal before J-CO-QL is SQL++ [26]. Its semi-
structured data model is designed as an extension of both JSON and the relational data
model; consequently, the language is derived from the classical SELECT statement by adding
a limited number of language extensions. In this sense, [27] reports the case of N1QL for
Analytics, an interesting implementation of SQL++ for the Couchbase Server. Considering the
features reported in Table 1, SQL++ is not specifically designed to work with heterogeneous
documents in an explicit way, as well as spatial operations are not considered at all. It is
platform independent, but it does not provide re-usability of intermediate results and it is
oriented to analysts (because it derives from SQL).

JSONiq [28] is a query language for JSON documents derived from XQuery [29]. The
functional style of the language, the semantics of comparisons in case of data heterogeneity
and the declarative snapshot-based updates are taken from XQuery, while other specific
features are not suitable for querying JSON documents, such as management of mixed
content, because they are peculiar of XML. However, like XQuery, it can be hardly used by
inexperienced users. Considering the features reported in Table 1, JSONiq is not able to
work on heterogeneous documents and does not provide spatial operations; it is platform
independent, but it does not provide re-usability of intermediate results and it is not
oriented to analysts, while it is oriented to programmers.

The query language provided by MongoDB [5,30], probably the most popular JSON
document DBMS, is certainly considered the reference language (URL: https://docs.
mongodb.com/manual/, accessed on 3 March 2021). If we consider the features reported
in Table 1, it is not designed to manipulate totally heterogeneous documents. It provides
spatial operations, but they can be performed only on documents that are materialized
in the database (because they must be previously indexed by means of spatial indexes);
spatial operations cannot be performed on temporary data. It is not platform indepen-
dent, because it is specific of MongoDB; re-usability of intermediate results is not natively
supported, because they must be saved into the database. The syntax, which is based
on object-oriented programming, makes it not specifically oriented to analysts; however,
complex transformations can be performed only by writing JavaScript functions within the
query, thus this makes the language definitely oriented to programmers.

Other approaches to manipulate heterogeneous big data recognize the importance of
a declarative query language [31,32], although they do not work on JSON data sets. The
advantage is to simplify coding of complex transformations, in particular in the context of
Map-Reduce programming. An interesting example is Spark SQL [33], introduced within
the Apache Spark framework, one of the two most-popular frameworks supporting the
Map-Reduce paradigm for processing Big Data. It is designed to allow for specifying
complex manipulations of data sets without using Map-Reduce primitives (the framework
transforms Spark SQL queries into low-level Map-Reduce primitives). However, Spark SQL
still does not consider at all spatial operations.

A proposal concerned with spatial operations is GeoSPARQL [34]. It is a Geographic
Query Language for RDF data, proposed as a standard by the OGC (Open Geospatial
Consortium—URL: https://www.ogc.org/, accessed on 3 March 2021), for querying
geospatial data on the Semantic Web. GeoSPARQL is designed to accommodate sys-

https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://www.ogc.org/
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tems based on qualitative spatial reasoning and systems based on quantitative spatial
computation, to ease data analysis. In contrast, it is not designed to work with large
JSON data sets, while our framework (and its query language) is oriented to provide data
analysts with a tool for managing data about real entities, described by large sets of JSON
documents and/or large GeoJSON documents.

The overall J-CO Framework (and the J-CO-QL query language, in particular) relies on
our previous research work on collections of complex spatial data [35,36]. In those works,
we proposed a database model capable to deal with heterogeneous collections of possibly
nested spatial objects; the proposal encompassed an algebra to query complex spatial
data, derived from classical relational algebra. In J-CO we follow a different approach: we
have not defined a database model, because J-CO relies on JSON data sets. Furthermore,
J-CO-QL abandons the classical syntax of relational algebra, in favor of a more flexible
syntax, suitable to specify complex transformation processes in a more intuitive and flexible
way; in fact, we applied the experience we made in [37], where we defined a language for
manipulating clusters of web search results performed through a mobile device.

The J-CO Framework is specifically designed to be loosely-coupled with underlying
JSON document stores: it seamlessly accesses any kind of JSON document stores (provided
that a connector is available) and provides its own computational capabilities; consequently,
J-CO-QL is platform independent (feature 3 in Table 1). This is why we say that it is a
“multi-store framework”. In effect, when we defined the approach, we had the concept of
PolyStore DBMS in mind; it denotes database management systems that deal with several
DBMSs at the same time, each of them possibly providing a different logical model, such
as relational, graph, JSON, pure-text, images and videos. It appears that BigDAWG [38] is
the first polystore system in the literature; nevertheless, it is not an isolated case and the
work on polystores is going on. For example, [39] reports about Polystore++, a polystore
system for analytic applications. However, the definition of polystore systems requires
the development of techniques for building query plans (as in [40]), as well as to define
extensions of the classical relational algebra (as in [41]).

These previous workson polystores clearly adopted a pure database approach, in
which it is assumed that the DBMSs integrated within the polystore provide their own
and fully exploitable query languages. However, an interesting sentence from [41] says:
“Polystores seek to provide a mechanism to allow applications to transparently achieve
the benefits of diverse databases while insulating applications from the details of these
databases”. The J-CO Framework is not a polystore, since it relies on a unique data model
and does not push computation to DBMSs, in order to be platform independent; however,
it certainly has been designed in order to make applications insulated from the specific
JSON document store technology.

The loosely-coupled design of the J-CO Framework, motivated by the fact that JSON
document stores could not provide the necessary processing capabilities or permissions
to execute queries, could appear a strange decision to database experts. Currently, the
J-CO-QL Engine executes queries only in main memory. However, the world of database
systems is more and more getting populated by solutions that manage large data sets
in main memory. A field in which this approach could appear paradoxical is Business
Intelligence. However, there exist systems (see [42]) that perform Business Intelligence
tasks on large volumes of data to aggregate in main memory. The Qlik suite [43,44] is a quite
famous suite for Business Intelligence that operates in main memory: it first collects data
from data sources into main memory, then it performs aggregations requested by users.

3. A Framework for Manipulating Geo-Referenced Data

In this section, we introduce the J-CO Framework.

3.1. Organization of the Framework

The framework we conceived for integrating and transforming geo-referenced JSON
data is named J-CO (acronym for JSON COllections) and comprehends several components.
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• One or more NoSQL storage systems, powered by MongoDB, ElasticSearch [45] and, in
the future, other similar systems (for example, AWS Amazon DB, https://aws.amazon.
com/documentdb/, accessed on 3 March 2021).

• J-CO-DS is a simplified storage system for sets of JSON documents; since it is based
on the file-system, it is able to store very large JSON documents that would not be
managed by other systems, like MongoDB. It is not a DBMS, since it neither provides a
query language nor supports OLTP operations.

• J-CO-QL is the query language around which the entire framework is built. The
language allows for specifying complex transformations, possibly based on spatial op-
erations.

• The J-CO-QL Engine executes J-CO-QL queries by retrieving data stored in one or
many JSON storage systems.

• A User Interface, named J-CO-UI, provides users with a powerful tool to write complex
queries step-by-step, by possibly inspecting temporary results of the process.

The overall framework relies on a unique data model.

Definition 1. Data Model. A “collection” is a set of JSON documents, where documents are
heterogeneous, i.e., possibly have their own structure, without limitations. A “database” is a set of
collections; neither predefined structures nor schemas for documents in collections are considered.

Hereafter, we give a more detailed description of two key components, specifically
J-CO-DS and J-CO-QL Engine. J-CO-QL will be presented in Section 4, while J-CO-UI will
be introduced in Section 5.

Now, we present the layer-based view of the framework we reported in Figure 1,
which motivates the loosely-coupled design. We considered three layers, i.e., the Data Layer,
the Engine Layer and the Interface Layer.

• The Data Layer includes all data stores, managed by any kind of NoSQL storage
system (currently, MongoDB, ElasticSearch and J-CO-DS). Since each single data store
can contain a relevant piece of information to integrate, they must be viewed in a
seamless way by users: they do not have to take care of the specific storage technology.

• The Engine Layer encompasses one or many instances of the J-CO-QL Engine. Why
more than one instance? Because it could be installed on several servers, in order to
provide many different users, possibly located in different areas of the Earth globe,
with the necessary computational power.

• The Interface Layer encompasses one or more installations of J-CO-UI: in fact, users
(typically, analysts) write queries and develop transformation processes through this
tool. Since J-CO-UI is a desktop application (see Section 5), its instances are installed
on analysts’ PCs.

Consequently, we can say that the loosely-coupled design of the J-CO Framework
allows for creating an eco-system of data, computational resources and human resources
distributed around the world, working together on the same investigation problem.
Each single computational resource (user interfaces, J-CO-QL Engine and JSON storage
systems) communicate through the Internet and can be easily added to or removed from
the eco-system.

https://aws.amazon.com/documentdb/
https://aws.amazon.com/documentdb/
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Figure 1. Application Layers for the J-CO Framework.

Discussion. Thinking about JSON stores, we do not have to think that they are necessarily
DBMSs that work on JSON documents instead of relational data; in fact, people usually
think that they provide a query language able to transform data items in a way similar to
what SQL does (through the INSERT, UPDATE, DELETE and SELECT statements). The scenario
is quite different, for various reasons. First of all, we discuss the topic of query languages.

• Some JSON storage systems provide query languages, in a way similar to traditional
DBMSs; however, these languages do not provide operations that are familiar to SQL
users, like “joins”. An example is MongoDB, in which to perform queries equivalent
to “joins” it is often necessary to write procedural JavaScript code, to overcome the
limitations of its query language.

• Other JSON storage systems do not provide any query language or capability to trans-
form stored data. ElasticSearch falls into this category: it is an engine for information
retrieval, which receives and provides data in JSON format through its API. However,
it is not a DBMS: when a document is received, it is indexed by means of an inverted
index, that allows keyword-based searches to retrieve indexed documents. Clearly, it
has not to provide a query language as intended for DBMSs, because it is not a DBMS.

• In principle, any Open Data portal could be a read-only JSON store: if we had
a tool able to provide a database-like abstraction of Open Data portals, we could
consider it as a valid JSON store from which data can be read for further processing.
Obviously, we cannot expect any processing functionality (in terms of query language)
by such sources.

Another point to consider when thinking about JSON storage systems is whether they
provide a concurrency model.

• A strong concurrency model is one of the key success factors of relational DBMSs.
Some JSON store systems provide strong concurrency models, like CouchDB [25,46],
that, for this reason, has been chosen as the DBMS for HyperLedger Fabric [47], the
well-known block-chain platform developed by Linux Foundation.
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• Originally, MongoDB provided very limited concurrency control and transaction
management. Now, as long as it becomes more and more adopted, new versions enrich
support to transactions; consequently, it is becoming a true DBMS for JSON documents.

• Other JSON storage systems do not provide any concurrency control or support to
transactions. This is the case, for instance, of ElasticSearch.

3.2. J-CO-DS

We decided to develop this storage service when we encountered some limitations
exposed by available NoSQL storage systems, in particular, MongoDB and ElasticSearch.

• MongoDB [6] is a true DBMS for JSON data. Its data model is the same we introduced
in Definition 1: a “database” is a set of collections, where a “collection” is a set of
JSON documents. Neither predefined structures nor schemas must be defined: a
collection can store heterogeneous JSON documents, with no limitations. However,
MongoDB is designed to manage very large collections of small documents: it does not
accept JSON documents whose internal binary representation (the BSON format) is
larger than 16MB. This limitation makes impossible to store large GeoJSON documents
within MongoDB databases: in fact, a GeoJSON document is a single document that can
be giant; in case of complex geometries, the BSON representation can easily exceed
16 MB. Consequently, MongoDB is actually unable to manage very large documents.

• On the other side, ElasticSearch [45] is a very popular tool for performing information
retrieval operations. It is not designed to be a pure DBMS, but since it receives and
provides JSON data sets through its API, it can be assimilated to the database view.
However, it is not good to store very large GeoJSON documents into ElasticSearch,
because it has to index the whole document, including geometries; this would cause a
significant waste of time (during indexing) and would negatively affect results pro-
vided by ElasticSearch at retrieval time, because coordinates would be considered for
text-based retrieval as text fragments, not as numbers denoting geo-tagging. Elastic-
Search does not provide any query language, in the sense of database query languages:
stored data cannot be manipulated as it is possible to do, e.g., within MongoDB.
Obviously, its API allows for uploading, getting and deleting data sets.

So, we argued that a data storage service for large JSON (possibly GeoJSON) docu-
ments was missing and we decided to develop J-CO-DS.

J-CO-DS provides the same data model as MongoDB: a database is a set of collections,
and a collection can contain any kind of (possibly huge) JSON documents. No query
language is provided, because J-CO-DS is not meant to be a DBMS: it is a simple JSON
storage system, which does not support OLTP operations at document level. J-CO-DS
had to be easily developed and fast in retrieving and storing documents: consequently,
we adopted a lightweight approach by design, i.e., collections are managed through the
file-system. No extra features are provided, neither indexes nor spatial indexes, because
J-CO-DS is designed neither for processing queries not for supporting operational activities.
In fact, J-CO-DS is thought to be a simple storage system for collections of JSON documents,
able to manage large single documents; it can be used by analysts to organize data sets,
without the complexity of a pure DBMS, like MongoDB. Note that this approach is perfectly
coherent with the rest of the framework, which is designed to be platform independent as
far as storage systems are concerned.

Obviously, a managing interface is provided. Hereafter, we present the components
of J-CO-DS.

• J-CO-DS Service is the true storage service that can be contacted through a TCP port,
either by J-CO-QL Engine instances or by any other application wishing to exploit
its services.

• J-CO-DS Manager is a user interface that allows for interactively managing the data
store; it is an application that can be installed on administrator’s PC and provides two
execution modes:
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– Stand-alone mode: in this execution mode, the application uses a text-based inter-
face, that can be accessed through a classical text-based shell;

– Web-based mode: when launched in this mode, the application provides a web-based
interface, by means of an internal web server packaged in the executable file.

Through the user interface, usual basic management operations can be performed,
such as database creation and deletion, collection creation and deletion and upload of
JSON documents into collections. J-CO-DS does not support transactions and does
not provide explicit locking mechanisms, because they are not necessary; only an
implicit locking mechanism on collections, when either a read or a write operation is
performed, is provided to serialize access to single collections.

3.3. J-CO-QL Engine

The J-CO-QL Engine is the core software component of the framework, because it
executes J-CO-QL queries. Recently, it has been re-engineered, in order to be compliant
with the multi-layer view depicted in Figure 1. It mainly operates as a service on a specific
TCP port. It actually executes J-CO-QL queries, by connecting to data storage services to
get and save data sets (collections of JSON documents). Since its re-engineering, it provides
two different operating modes:

• Batch Mode: this mode can be used to execute complex and long queries, previously
written by analysts.

• Interactive Mode: this mode can be used to write queries step-by-step, so as to build
complex transformation processes, in an interactive manner.

In particular, when operating in Interactive Mode, the service provides the follow-
ing features:

• Long-Term Query Process: the query process lives for a long time, the process state is
not lost while waiting for new instructions;

• Step-by-step Issuing: instructions are provided one at a time; if the instruction generates
an error (lexical, syntactic or semantic error) simply the process state does not change;

• State Inspection: the current process state can be inspected;
• Roll-back: the user can roll-back the execution of the process to a previous execu-

tion state.

These features are controlled by J-CO-UI (see Section 5).

Platform Independence. One of the main goal of the J-CO Framework is being able to
access several data sources, managed by different storage technologies. The reason for
developing a novel query language (the J-CO-QL query language, presented in Section 4),
is to provide a uniform language that is independent of the specific storage platform.
In fact, due to the significant differences that characterize capabilities of query languages
provided by data storage systems, as well as the possible absence of query languages
and processing capabilities, the J-CO-QL Engine cannot transfer any processing activity
to data sources. This is beneficial for the evolution of J-CO-QL, in which we plan to add
instructions for complex tasks such as machine learning. The following features are related
with platform independence.

• Multiple Connectors. The J-CO-QL Engine is equipped with a specific connector for
each single data storage system we have considered so far, i.e., MongoDB, ElasticSearch
and J-CO-DS. These connectors provide a uniform interface to the code of the J-CO-QL
Engine towards different data storage systems.

• Retrieving/storing Collections. The J-CO-QL Engine interacts with data storage systems
only to retrieve the content of collections and to store new collections. No data
processing is asked to data storage systems because input collections are transferred to
the J-CO-QL Engine and output collections are transferred to the data storage systems.

• Loosely Coupling. As a result, the J-CO-QL Engine is loosely coupled to data storage
systems: all processing activities (i.e., execution of J-CO-QL transformation processes)
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are performed within the J-CO-QL Engine on the local copy of collections, not on the
source databases.

The J-CO-QL Engine is implemented in Java standard edition. This choice further
achieves platform independence, in this case as far as the operating system is concerned.

Connectors to storage systems invoke specific APIs provided by them. In particular,
the connector to MongoDB has to encode/decode JSON documents to/from the BSON rep-
resentation.

As far as the management of geometries is concerned, we used theJTS—Java Topology
Suite library (URL: https://github.com/locationtech/jts, accessed on 3 March 2021). The
library is able to parse GeoJSON geometries represented as GeometryCollection types
(see [3]), so as to obtain its own internal representation, suitable to easily perform spatial
operations. The library is able to re-generate GeoJSON representations of geometries from
its own internal representation.

Currently, all collections are processed only in main memory, without using mass
memory. In order to overcome limitations in memory size, as well as to accelerate spatial
operations, we plan to introduce hybrid processing methods (main and mass memory) as
well as to create (spatial) indexes on the fly.

Discussion. In the application context of our framework, decoupling data source environ-
ments from the processing environment is an essential feature. First of all, it is due to the
fact that JSON storage systems may not provide any capability to transform data (see the
discussion in Section 3.1). As an effect, the J-CO-QL Engine remains independent of actual
processing capability (if any) provided by JSON stores (the situation in which no JSON
store providing processing capability is connected is possible). Furthermore, the J-CO-QL
Engine could implement J-CO-QL operators that cannot be supported by query languages
(for example, operators for performing data mining and machine learning activities, that
we are planning as future work).

A second, but not less important, reason is concerned with integration of collections
coming from different JSON stores: to integrate them, data sets should be moved from
one store to another. We do not want users to move data from one store to another
(provided that they provide the necessary computational power), because this would limit
the flexibility we want to provide analysts with.

In fact, the user can be substantially unaware of where and how a database is managed,
because, as depicted in Figure 2, queries and the engine seamlessly operate on collections
and integrate them, irrespective of their actual source (Section 4 will highlight this aspect).
Thus, we can see the J-CO-QL Engine as a service built on top of other services, specifically
JSON stores and NoSQL DBMSs. Thus, it could be a way to somehow “federate” JSON
stores. Nevertheless, the J-CO-QL Engine is not a NoSQL DBMS: it simply retrieves data
from and store data into databases managed by JSON stores and NoSQL DBMSs, which
continue providing their specific functionality: for example, MongoDB serves information
systems for operational activities, while ElasticSearch is a document search engine. Thus,
the J-CO Framework enables to create a sort of “side federation” of JSON stores currently
used for other purposes; this is also a sort of “light federation”, because JSON stores are
“federated” only during the time the J-CO-QL Engine is connected to them. At the best of
our knowledge, we have found no similar proposals.

https://github.com/locationtech/jts
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Figure 2. General approach to process collections (represented as rectangles): no processing activities on data sources.

4. J-CO-QL: The Query Language of the J-CO Framework

In this section, we introduce J-CO-QL, the query language of the J-CO Framework. First
of all, in Section 4.1 we introduce the main features of the language. Then, in Section 4.2
we describe some key instructions of the language by means of an illustrating example.

4.1. J-CO-QL Main Features

J-CO-QL is designed to work with collections of JSON documents (see Definition 1).
In a document, fields can be either simple fields (numbers or strings) or complex fields (i.e.,
nested documents) or vectors (of numbers, strings and documents).

Since J-CO-QL has to natively deal with geo-references, its data model must natively
encompass them. However, JSON does not consider geo-references. We decided to rely on
the GeoJSON standard [3,4]: fields describing geometries are complex JSON nested docu-
ments that can describe points, lines and polygons, as well as collections of them; for this
purpose, the GeoJSON standard provides a specific data type named GeometryCollection.
In J-CO-QL, geo-references play a special role, since the language provides operators and
constructs to handle them. In order to give this special role to geo-references, the J-CO-QL
data model considers the special ~geometry field: if present at the root level of a document,
this means that the document is geo-referenced (or geo-tagged). The name ~geometry is
fully compliant with JSON naming rules, but ~ is rarely used in field names: in our model,
it is used to denote a special role of the field. The value of the ~geometry field is based on
the GeometryCollection type of the GeoJSON standard.

As an example, consider Listings 1 and 2, which report the excerpts of two collections
of documents: Listing 1 reports the excerpt of the collection named Districts, which
describes districts of cities in Northern Italy; Listing 2 reports the excerpt of the collection
named BikeLanes, which describes bike lanes in Northern Italy. These two collections are
inspired by real data sets published on the Open Data portal of Milan (Italy) City Council
(URL: https://dati.comune.milano.it/, accessed on 3 March 2021).

The reader can notice that the documents in the BikeLanes collection (Listing 2) have
different structures, although they describe the same type of geographical entity, i.e., bike
lanes; we will see how J-CO-QL is able to deal with heterogeneous collections.

Furthermore, notice that documents in the Districts collection (Listing 1) are already
compliant with the J-CO-QL data model, since they have the root-level ~geometry field.
In contrast, documents in the BikeLanes collection (Listing 2) do not have the ~geometry
field, but the geometry field (without ~, because they are possibly derived from a GeoJSON
document). Consequently, J-CO-QL should provide constructs to align geometries to the
J-CO-QL data model.

https://dati.comune.milano.it/
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Listing 1. Excerpt of collection Districts.
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Figure 2. General approach to process collections (represented as rectangles: no processing activities on data sources.

4. J-CO-QL: The Query Language of the J-CO Framework

In this section, we introduce J-CO-QL, the query language of the J-CO Framework. First
of all, in Section 4.1 we introduce the main features of the language. Then, in Section 4.2
we describe some key instructions of the language by means of an illustrating example.

Listing 1 Excerpt of collection Districts.

Collection Districts:

{ "ID": 74,
"Properties": {
"Name": "ROSERIO",
"City": "Milan" },

"~geometry": {
"type": "Polygon",
"coordinates": [
[ [ [9.13005657492143, 45.5229429902529], ...,

[9.13003510901344, 45.5229853369611] ] ] ] } },
{ "ID": 82,

"Properties": {
"Name": "COMASINA",
"City": "Milan" },

"~geometry": {
"type": "Polygon",
"coordinates": [
[ [ [9.16950766784049, 45.5251391141947], ...,

[9.16920281509976, 45.5253660742429] ] ] ] } },
...

Listing 2. Excerpt of collection BikeLanes.
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Listing 2 Excerpt of collection BikeLanes.

Collection BikeLanes:

{ "City" : "Milan",
"Name" : "VIA ROBERTO KOCH",
"Trunks" : 2,
"geometry":
{ "type" : "GeometryCollection",
"geometries" : [
{ "type" : "MultiLineString",

"coordinates" : [ [ [9.11455186249295, 45.4446414404081], ... ] ] },
{ "type" : "MultiLineString",

"coordinates" : [ [ [9.11469823062049, 45.4446837789302], ... ] ] }
] } },

{ "Properties" : { "City" : "Milan",
"Name" : "VIA COL MOSCHIN",
"Trunks" : 1 },

"geometry":
{ "type" : "GeometryCollection",
"geometries" : [

{ "type" : "MultiLineString",
"coordinates" : [ [ [9.18457781600816, 45.4519411253397], ... ] ] }

] } }
...

4.1. J-CO-QL Main Features

J-CO-QL is designed to work with collections of JSON documents (see Definition 1).
In a document, fields can be either simple fields (numbers or strings) or complex fields (i.e.,
nested documents) or vectors (of numbers, strings and documents).

Since J-CO-QL has to natively deal with geo-references, its data model must natively
encompass them. However, JSON does not consider geo-references. We decided to rely on
the GeoJSON standard [3,4]: fields describing geometries are complex JSON nested docu-
ments that can describe points, lines and polygons, as well as collections of them; for this
purpose, the GeoJSON standard provides a specific data type named GeometryCollection.
In J-CO-QL, geo-references play a special role, since the language provides operators and
constructs to handle them. In order to give this special role to geo-references, the J-CO-QL
data model considers the special ~geometry field: if present at the root level of a document,
this means that the document is geo-referenced (or geo-tagged). The name ~geometry is
fully compliant with JSON naming rules, but ~ is rarely used in field names: in our model,
it is used to denote a special role of the field. The value of the ~geometry field is based on
the GeometryCollection type of the GeoJSON standard.

As an example, consider Listings 1 and 2, which report the excerpts of two collections
of documents: Listing 1 reports the excerpt of the collection named Districts, which
describes districts of cities in Northern Italy; Listing 2 reports the excerpt of the collection
named BikeLanes, which describes bike lanes in Northern Italy. These two collections are
inspired by real data sets published on the Open Data portal of Milan (Italy) City Council
(URL: https://dati.comune.milano.it/, accessed on).

The reader can notice that the documents in the BikeLanes collection (Listing 2) have
different structures, although they describe the same type of geographical entity, i.e., bike
lanes; we will see how J-CO-QL is able to deal with heterogeneous collections.

Furthermore, notice that documents in the Districts collection (Listing 1) are already
compliant with the J-CO-QL data model, since they have the root-level ~geometry field.
In contrast, documents in the BikeLanes collection (Listing 2) do not have the ~geometry
field, but the geometry field (without ~, because they are possibly derived from a GeoJSON

As a final remark, notice that coordinates (longitude and latitude) are expressed based
on the WGS84 (World Geodetic System) standard, our Coordinate Reference System (CRS);
currently no other CRS is supported.

Since the first version of the language [8], J-CO-QL instructions have met the closure
property, that is, they get collections and generate collections. Furthermore, the language
provides the key features reported hereafter.

• J-CO-QL instructions are able to deal with documents with different structure with
one single instruction. This is the feature named Adaptability to heterogeneity in
Table 1.
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• J-CO-QL instructions allow for specifying complex transformations oriented to analyze
data. This is the feature named Orientation to Analysts in Table 1.

• J-CO-QL instructions directly deal with geo-references (through the ~geometry field)
and spatial operations. This is the feature named Spatial operations in Table 1.

J-CO-QL queries (or transformation processes) are sequences of instructions [10,48].
The execution process of queries is based on the concept of state of the query process (or
query-process state, in the rest of the paper), which is a pair s = (tc, IR), where tc is a
collection named Temporary Collection, while IR is a database named Intermediate Results
database.

Each instruction ij starts from a given query-process state s(j−1) and generates a new
query-process state sj. A specific instruction asks the J-CO-QL Engine to store tc (the
Temporary Collection) into IR (the Intermediate Results database), so that the collection could
be taken as input by a subsequent instruction.

The J-CO-QL Engine executes each query process in isolation: several users can use
the same instance of the engine in a concurrent way. Thus, the goal of the IR database,
one for each query process, is twofold. First, it temporarily stores intermediate results
of the process, so that they do not have to be stored into persistent databases (since they
are intermediate results). This is the feature named Re-use of intermediate results in
Table 1. Second, it ensures isolation of query process execution as far as intermediate
results are concerned.

4.2. Language by Example

In this section, we briefly illustrate J-CO-QL, by showing a short example of cross
analysis. Suppose that three data storage systems are involved in the activity: a J-CO-
DS server having 10.0.0.11 as (toy) IP address; two MongoDB servers, whose (toy) IP
addresses are 10.0.0.12 and 10.0.0.13.

Specifically, we have three databases. The first one is named Boundaries; it is hosted
by the J-CO-DS server and stores authoritative data sets about administrative boundaries
(since they are usually very large, it could not be possible to store them within MongoDB
databases, see Section 3.2); in particular, this database contains the Districts collection
(that contains JSON documents describing districts of cities in Northern Italy, such as
Milan). Recall that Listing 1 shows an excerpt of this collection.

The second database is named RegionInfo: it is managed by the MongoDB server
with IP address 10.0.0.12; it contains collections related with territory. In particular, we
have the BikeLanes collection, which contains documents describing the path of bike lanes
in Northern Italy. Listing 2 reports an excerpt of this collection (recall that documents have
heterogeneous structure).

The third database is managed by the MongoDB server having IP address 10.0.0.13:
its name is toShare, because it contains data sets that the analysis team has to share with
other teams.

The team of analysts has the following (sample) goal: discovering the bike lanes in
the city of Milan that cross at least two districts of the city of Milan. The J-CO-QL query for
performing the analysis is reported in Listings 3 and 4. Hereafter, we will explain it, by
briefly introducing each single instruction. The reader can exploit Figure 3, which reports
the execution trace of the process: the trace starts with the empty query-process state
([], {}) taken as input by the first GET COLLECTION instruction (line 4 of Listing 3); the
query-process state produced by each single instruction is reported (for simplicity, we do
not report the actual content of temporary collections, but only an identifier ti, where i is
the line that generates the temporary collection ti).
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Figure 3. Execution trace for the sample transformation process written with J-CO-QL.

Listing 3. Sample transformation process written by means of J-CO-QL (part 1).

Electronics 2021, 1, 1 15 of 39

Listing 3 Sample transformation process written by means of J-CO-QL (part 1).

1: USE DB Boundaries
ON SERVER jcods ’http://10.0.0.11:17017’;

2: USE DB RegionInfo
ON SERVER MongoDB ’http://10.0.0.12:27017’;

3: USE DB ToShare
ON SERVER MongoDB ’http://10.0.0.13:27017’;

4: GET COLLECTION Districts@Boundaries;

5: FILTER
CASE

WHERE WITH .Properties.City
AND .Properties.City="Milan"

GENERATE
{.ID, .Name: .Properties.Name}
KEEPING GEOMETRY

DROP OTHERS;

6: SET INTERMEDIATE AS Milan_Districts;

7: GET COLLECTION BikeLanes@RegionInfo;

8: FILTER
CASE

WHERE WITH .City
AND .City="Milan"

GENERATE {.Name}
SETTING GEOMETRY .geometry

WHERE WITH .Properties.City
AND .Properties.City="Milan"

GENERATE
{.Name: .Properties.Name}
SETTING GEOMETRY .geometry

DROP OTHERS;

9: SET INTERMEDIATE AS Milan_BikeLanes;
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Listing 4. Sample transformation process written by means of J-CO-QL (part 2).

Electronics 2021, 1, 1 16 of 39

Listing 4 Sample transformation process written by means of J-CO-QL (part 2).

10: SPATIAL JOIN OF COLLECTIONS
Milan_Districts AS D, Milan_BikeLanes AS B

ON INTERSECT
SET GEOMETRY INTERSECTION
CASE

WHERE WITH .D.ID, .B.Name
GENERATE {.DistrictName: .D.Name,

.BikeLaneName: .B.Name}
KEEPING GEOMETRY

DROP OTHERS
REMOVE DUPLICATES;

11: GROUP
PARTITION

WITH .BikeLaneName
BY .BikeLaneName
INTO .DistrictSegs
DROP GROUPING FIELDS

DROP OTHERS;

12: FILTER
CASE

WHERE WITH .BikeLaneName, .DistrictSegs
GENERATE {.BikeLaneName,

.NumOfDistricts: COUNT(.DistrictSegs)}
SETTING GEOMETRY Aggregate(.DistrictSegs)

DROP OTHERS;

13: FILTER
CASE

WHERE WITH .BikeLaneName, .NumOfDistricts
AND.NumOfDistricts >= 2

GENERATE {.BikeLaneName}
KEEPING GEOMETRY

DROP OTHERS;

14: SAVE AS BikeLanesCrossingDistricts@ToShare;

This execution model derives from the semantics of relational algebra, where an oper-
ator produces a table that is taken as input by the next operator; in relational algebra, the
inverted syntax of unary operators (operands are behind the operators) and the infix syntax
of binary operators make writing queries somehow unnatural. In J-CO-QL, instructions
implicitly start from the query-process state possibly generated by the previous instruction
and generate a new query-process state, which contains a possibly modified version of the
temporary collection; thus, a query is a kind of “pipe” of instructions, that are written in
the same order as they are thought. In fact, J-CO-QL is neither procedural nor imperative:
no variables and no instructions to control the execution flow (like cycles) are provided.
Instructions specify complex transformations on documents in a declarative way, following
the same approach behind the SELECT statement of SQL, which is the reason why SQL is
widely used by people without programming skills to query and analyze data.

Let us start describing the first part of the query, reported in Listing 3.

• First of all, it is necessary to specify which databases to connect to. The three USE DB
instructions at lines 1–3 do this work. Notice that the ON clauses specify the connection
strings necessary to connect to the desired servers. These instructions do not change
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the query-process state; consequently, both temporary collection and Intermediate
Results database IR remain empty; this is why in Figure 3 we start depicting the query
process form line 4.

• The GET COLLECTION instruction at line 4 gets the Districts collection from the
Boundaries database: the collection becomes the new temporary collection t4 of the
query process (as depicted in Figure 3).

• The FILTER instruction at line 5 actually filters documents that describe districts of
Milan. It takes the current temporary collection t4 and applies the CASE WHERE clause,
which is a document selection condition. In the instruction, the condition relies on
the WITH predicate: this predicate is true if the document under selection contains the
specified field (or fields, if a list of field names is specified). In the specific case, the
condition is true if the document under selection contains the City field within the
root-level Properties field and if its value is "Milan".
For each document that meets the condition, the GENERATE action inserts a restructured
version of the document into the output temporary collection t5, such that the ID field
is reported as it is, while a new root-level Name field is derived from the previously
nested one (specified by the expression .Name: .Properties.Name). The ~geometry
field is kept as it is, as specified by the KEEPING GEOMETRY directive.
The final DROP OTHERS option specifies that documents that do not meet the selection
condition must be discarded and will not appear in the output collection (the language
admits an alternative KEEP OTHERS option, which would keep not-selected documents
into the output collection). We introduced this option to make J-CO-QL adaptive to
heterogeneity (feature 1 of Table 1).
The output collection becomes the new temporary collection t5. An excerpt is reported
in the upper part of Listing 5, where the restructured version of documents shown in
Listing 1 is reported.
In the CASE WHERE clause and in the GENERATE action, fields are referred to by means
of a dot notation like .A.B.C, in order to deal with nested documents (the sample dot
notation would access the C field nested within a B field, in turn nested within the A
field at the root level of the document).

• The temporary collection t5 produced by line 5 contains only districts of Milan. Line 6
saves this temporary collection into the Intermediate Results database IR with name
Milan_Districts, for further processing during the same query process; this is the
feature Re-use of intermediate results reported in Table 1. In Figure 3, notice how
the IR database is no longer empty in the query-process state produced by line 6.

• Lines 7 to 9 basically perform, on bike lanes, the same task performed by lines 4 to 6.
Specifically, line 7 gets the BikeLanes collection from the RegionInfo database; this
collection becomes the new temporary collection t7.

• The FILTER instruction at line 8 selects bike lanes of Milan. However, recall from
Listing 2 that documents describing bike lanes are heterogeneous: for this reason,
the CASE clause contains two WHERE selection conditions, each one followed by a cor-
responding GENERATE action. When a document is evaluated, if the first selection
condition is not true, the second one is evaluated and, if true, the document is re-
structured according to the corresponding GENERATE action. If none of the selection
conditions is true, the document is discarded from the output collection, according to
the DROP OTHERS option.
Notice that line 8 is an example of one of the innovative features introduced by J-CO-
QL, i.e., the capability of dealing with heterogeneous collections (feature Adaptability
to heterogeneity in Table 1). In fact, the collection can contain documents with several
structures (as in the example); by means of multiple WHERE conditions and the contri-
bution of the KEEP OTHERS/DROP OTHERS options, the same instruction is able to filter
documents with different structures, focusing on some of them, possibly unifying
the structure of output documents as well as possibly generating documents with
different structures, with one single instruction.
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Notice that the two GENERATE actions restructure the selected documents in order to
have the same structure. The two documents shown in Listing 2 are restructured as
reported in the lower part of Listing 5.
Furthermore, the two GENERATE actions have to adapt geo-tagging to the J-CO-QL data
model: the SETTING GEOMETRY .geometry option specifies that the new ~geometry
special field must be derived from the geometry field formerly present in the source
selected document (in the lower part of Listing 5, which reports the output collection,
it is possible to see that, now, documents have the ~geometry field). This field is inter-
nally managed by means of the representation provided by the JTS—Java Topology
Suite library; consequently, the SETTING GEOMETRY option asks the J-CO-QL Engine to
convert a pure JSON field (the former geometry field) into the internal representation
adopted to represent the ~geometry field.
The SETTING GEOMETRY option was introduced to explicitly deal with geometries; it is
accompanied by the alternative KEEPING GEOMETRY and DROPPING GEOMETRY options
that, respectively, actually keep and drop the ~geometry field coming from the source
document. In fact, this field has a special meaning for documents; consequently, we
thought that the language had to force users to always consider this field in a special
way, without confusing it with other fields.

• Line 9 saves the resulting temporary collection t8 (containing only bike lanes of Milan)
into the Intermediate Results database IR, with name Milan_BikeLanes: this can be
clearly seen in Figure 3, where the IR database in the output query-process state of
line 9 now contains two collections.

Listing 5. Excerpt of collections Milan_Districts (upper part) and Milan_BikeLanes (lower part)
saved into the Intermediate Results database IR.
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Listing 5 Excerpt of collections Milan_Districts (upper part) and Milan_BikeLanes
(lower part) saved into the Intermediate Results database IR.

Collection t4 saved as Milan_Districts into the IR database:

{ "ID": 74,
"Name": "ROSERIO",
"~geometry":
{ "type": "MultiPolygon",
"coordinates": [

[ [ [9.13005657492143, 45.5229429902529], ...,
[9.13003510901344, 45.5229853369611] ] ] ] } },

{ "ID": 82,
"Name": "COMASINA",
"~geometry":
{ "type": "MultiPolygon",
"coordinates": [

[ [ [9.16950766784049, 45.5251391141947], ...,
[9.16920281509976, 45.5253660742429] ] ] ] } },

...

Collection t8 saved as Milan_BikeLanes into the IR database:

{ "Name": "VIA ROBERTO KOCH",
"~geometry": {
"type" : "GeometryCollection",
"geometries" : [
{ "type" : "MultiLineString",

"coordinates" : [ [ [ 9.11455186249295, 45.4446414404081],
[ 9.11469823062049, 45.4446837789302] ] ] },

{ "type" : "MultiLineString",
"coordinates" : [ [ [9.11469823062049, 45.4446837789302],

[9.11475944738880 45.4447021324387], ... ] ] },
...

4.2. Language by Example

In this section, we briefly illustrate J-CO-QL, by showing a short example of cross
analysis. Suppose that three data storage systems are involved in the activity: a J-CO-
DS Server having 10.0.0.11 as (toy) IP address; two MongoDB servers, whose (toy) IP
addresses are 10.0.0.12 and 10.0.0.13.

Specifically, we have three databases. The first one is named Boundaries; it is hosted
by the J-CO-DS Server and stores authoritative data sets about administrative boundaries
(since they are usually very large, it could not be possible to store them within MongoDB
databases, see Section 3.2); in particular, this database contains the Districts collection
(that contains JSON documents describing districts of cities in Northern Italy, such as
Milan). Recall that Listing 1 shows an excerpt of this collection.

The second database is named RegionInfo: it is managed by the MongoDB server
with IP address 10.0.0.12; it contains collections related with territory. In particular, we
have the BikeLanes collection, which contains documents describing the path of bike lanes
in Northern Italy. Listing 2 reports an excerpt of this collection (recall that documents have
heterogeneous structure).

The third database is managed by MongoDB on server having IP address 10.0.0.13:
its name is toShare, because it contains data sets that the analysis team has to share with
other teams.

The team of analysts has the following (sample) goal: discovering the bike lanes in
the city of Milan that cross at least two districts of the city of Milan. The J-CO-QL query for
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The result of the first part of the process, so far illustrated, is sketched in Listing 5;
Figure 4 depicts both districts (black lines) and bike lanes (red lines) of Milan. These two
collections are the starting point for the second part of the process, reported in Listing 4.

• The query carries on at line 10 with the SPATIAL JOIN instruction. This is the key
instruction provided by J-CO-QL in order to perform complex transformations con-
cerned with geo-referenced data. Recall that the Milan_Districts collection describes
districts in Milan: each document in the collection contains a field named ~geometry,
which, in this case, describes the boundary of the district as a polygon. This collection
is aliased as D in the instruction. The second collection is Milan_BikeLanes: it is
aliased as B and the ~geometry field of each document, in this case, represents the
full path of a single bike lane. These two collections are taken from the Intermediate
Results database, in that they are intermediate results obtained by previous instruc-
tions in the query (when no database is specified after a collection name, it is retrieved
from the IR database). This is how J-CO-QL completes the support to the feature
Re-usability of intermediate results reported in Table 1.
The SPATIAL JOIN instruction computes pairs of documents in the two collections,
such that the spatial-join condition specified in the ON clause is satisfied. Specifically, a
new document is built if the geometries of the two paired documents intersect. The SET
GEOMETRY clause specifies the geometry to assign to the document obtained by pairing
the two original ones: we specify that we want the intersection of the two geometries,
i.e., the fragment of polyline that describes the portion of bike lane crossing the given
district. The upper part of Listing 6 reports an excerpt of the documents resulting
from the generation of pairs that satisfy the spatial-join condition. Notice the D field,
which contains the original document coming from the collection aliased as D, the B
field, which contains the original document coming from the collection aliased as B,
and the ~geometry field resulting from the intersection of the two original geometries.
The subsequent CASE WHERE clause is necessary to restructure the documents, remov-
ing nesting; it behaves as the CASE WHERE clause already seen in the FILTER instruction.
The specific WHERE selection condition in the instruction uses the WITH predicate, so
as to select documents having the desired fields; then, the GENERATE action specifies
how to restructure each document that satisfies the condition; the KEEPING GEOMETRY
option specifies that we maintain the geometry obtained by the spatial join (i.e., the
intersection of the two original geometries). The lower part of Listing 6 reports an
excerpt of the temporary collection t10 (as reported in Figure 3) resulting from the
SPATIAL JOIN; notice how the documents in the upper part of the listing are restruc-
tured by the GENERATE action.
The final REMOVE DUPLICATES option asks for removing duplicates from the output
temporary collection. This option is available in many instructions (in particular
FILTER): when it is not specified, removal of duplicates is not performed.
The SPATIAL JOIN could be done on the temporary collection as well, by using the
collection name TEMPORARY. This is not usually possible in JSON DBMSs, which enable
spatial queries only on materialized documents, because they have to build spatial
indexes. In contrast, J-CO-QL is able to spatially join collections obtained from two
different databases, possibly managed by two different storage services, without
forcing analysts to transfer them from one storage to another.
Furthermore, if we explicitly consider MongoDB, currently its query language is not at
all able to perform something similar to the SPATIAL JOIN without writing JavaScript
code, i.e., procedural and imperative code. This is why, in Table 1, we said that
MongoDB is not Oriented to Analysts but is Oriented to Programmers; in contrast,
J-CO-QL is fully oriented to analysts, because its instructions are declarative and no
procedural integration is allowed.

• At this point (line 11), it is necessary to group documents resulting from the SPATIAL
JOIN, in order to count the number of districts that are crossed by each bike lane. In
fact, if a bike lane crosses several districts, several documents having the same value
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for the BikeLaneName field are in the output of the SPATIAL JOIN instruction (line 10).
In the GROUP instruction, the goal of the PARTITION clause is to select documents (from
the temporary collection t10 produced by the previous instruction) that have some
common fields or characteristics. In line 11 of Listing 4, we select documents having
the BikeLaneName field. In practice, we specify a partition of the full set of documents
in the temporary collection; the DROP OTHERS option at the end of line 11 specifies
that documents not selected for the specified partition are discarded from the output
temporary collection. This is again to meet the feature Adaptability to heterogeneity
reported in Table 1; in particular, since many PARTITION clauses are allowed, many
different grouping tasks on many different document structures could be specified
within the same instruction.
At this point, documents in the partition are then grouped based on the BikeLaneName
field, as specified by the BY clause. For each identified group of documents (i.e.,
documents having the same value for the BikeLaneName field), a new document is
put into the output collection, such that all common fields are reported and a new
field, an array of grouped documents named DistrictSegs (as specified by the INTO
clause) is added. The DROP GROUPING FIELDS option specifies that grouping fields (in
this case, only the BikeLaneName field) are removed from grouped documents.
An excerpt of the temporary collection t11, as numbered in Figure 3, is reported in the
upper part of Listing 7.

• Once documents are grouped, it is necessary (line 12) to add a field to be assigned
with the number of elements that are present in the DistrictSegs array, so as to know
how many districts are crossed by each bike lane.
The FILTER instruction at line 12 selects all the documents and restructures them by
adding the field named NumOfDistricts. The lower part of Listing 7 reports the tem-
porary collection t12, as numbered in Figure 3, resulting from the FILTER instruction.
It is worth noticing the SETTING GEOMETRY option: it derives the ~geometry field
of each output document by aggregating single geometries of documents within
the DistrictSegs array (remember that these geometries represent the fragment
of bike lane that intersect the specific district); specifically, the Aggregate function
unites single geometries, obtaining either a GeometryCollection or a MultiPoint, or
a MultiLineString, or a MultiPolygon (see the specification of GeoJSON [3]) as value
of the ~geometry field.

• The FILTER instruction at line 13 is necessary to actually select documents whose value
of the NumOfDistricts field is no less than 2. This is done by the CASE WHERE clause.
Then, the GENERATE action further restructures selected documents, in order to get
the final structure: in particular, only the BikeLaneName field is kept, as well as the
geometry obtained by the FILTER instruction at line 12. The lower part of Listing 7
reports an excerpt of the resulting temporary collection t13.

• The query terminates (line 14) by saving the final temporary collection t13 into a per-
sistent database. In particular, the SAVE AS instruction saves the temporary collection
into the toShare database with name BikeLanesCrossingDistricts.

With respect to previous works [9,10], J-CO-QL has been slightly modified. So, this
section is not a mere summary of the language, but presents the latest state of its evolution.
In particular, the GROUP instruction has been provided with the DROP GROUPING FIELDS
option (that allows for removing grouping fields from within grouped documents). Another
major improvement is the novel REMOVE DUPLICATES option, which has been added to the
FILTER, SPATIAL JOIN, JOIN and MERGE instructions (the latter two instructions are not
used in this paper), in order to let the user decide whether to force removal of duplicates.
Furthermore, many minor and very detailed lexical and syntactic changes were made.
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Figure 4. Districts (black lines) and bike lanes (red lines) in Milan (Italy), described by documents in collections
Milan_Districts and Milan_BikeLanes sketched in Listing 6.

We make some considerations about the general philosophy behind the J-CO-QL
language. Its instructions are declarative, so analysts without any specific procedural
programming skills can effectively use them (feature Orientation to Analysts in Table 1).
Furthermore, even though queries can be seen as procedures, they are not procedural
programs; in contrast, they are “piped” (sequential) applications of declarative instructions.
In this sense, we say that J-CO-QL is a high-level language, compared with procedural
programming languages.

Notice that avoiding procedural programming was a design requirement, because
our target users are analysts and geographers. For example, consider the SPATIAL JOIN
instruction (just to cite one): the user can perform such a non-trivial operation simply
by specifying how to spatially join documents and then by specifying how to restructure
joined documents. In [10], we introduced a large variety of spatial predicates for this
purpose. The user can easily exploit them, in a totally independent way with respect to
actual processing/querying capability provided by specific JSON storage systems: no
pre-indexation of collections is necessary; spatial joins can be performed on the fly, when it
is necessary, on temporary collections.
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Listing 6. Excerpt of documents generated by SPATIAL JOIN (line 10).
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Listing 6 Excerpt of documents generated by SPATIAL JOIN (line 10).

Within SPATIAL JOIN (line 10) and before CASE WHERE:

[{"D": {"ID": 83,
"Name": "BRUZZANO",
"~geometry": {"type": "MultiPolygon",

"coordinates": [ ... ] } },
"B": {"Name": "River-side",

"~geometry": {"type": "LineString",
"coordinates": [ ... ] } },

"~geometry": {"type": "LineString",
"coordinates": [...]}

},
{"D": {"ID": 74, "Name": "SACCO",

"~geometry": {"type": "MultiPolygon",
"coordinates": [ ... ] } },

"B": {"Name": "River-side",
"~geometry": {"type": "LineString",

"coordinates": [ ... ] } },
"~geometry": {"type": "LineString",

"coordinates": [...] }
...]

At the end of SPATIAL JOIN at line 10, temporary collection t10 :

[{"DistrictName": "BRUZZANO",
"BikeLaneName": "River-side",
"~geometry": {"type": "LineString",

"coordinates": [...] }},
{"DistrictName": "SACCO",
"BikeLaneName": "River-side",
"~geometry": {"type": "LineString",

"coordinates": [...] }},
...]

Listing 7. Excerpt of documents generated by the GROUP instruction (line 11) and by the FILTER
instruction at line 13 and saved into the persistent database toShare (line 14).
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Listing 7 Excerpt of documents generated by the GROUP operator (line 11) and by the FILTER
operator at line 13 and saved into the persistent database toShare (line 14).

At the end of GROUP (line 11), temporary collection t11: :

[{"BikeLaneNameName": "River-side",
"DistrictSegs": [

{"DistrictName": "BRUZZANO",
"~geometry": {"type": "LineString",

"coordinates": [...] }},
{"DistrictName": "SACCO",
"~geometry": {"type": "LineString",

"coordinates": [...] }}]
},
...]

Temporary collection t13 (line 13) and persistent collection BikeLanesCrossingDistricts:

[{"BikeLaneName": "River-side",
"~geometry": {"type": "MultiLineString",

"coordinates": [...] }
},
...]

5. J-CO-UI: The User Interface of the J-CO Framework

The most recent component of the J-CO Framework that we are introducing in this
paper is named J-CO-UI: it is the user interface that analysts can use to write complex
integration and transformation processes. J-CO-UI is a stand-alone application written in
Java; it is installed on analysts’ PCs, so that they can comfortably work on remotely-stored
data sets sitting in their office.

Figure 5 reports a screenshot of the main window. The lower text area allows for
writing J-CO-QL instructions to execute; the Execute button sends the content of the text
area to the J-CO-QL Engine service which the application is connected to; if no error is
signaled by the engine, the executed instructions are appended to the above text area
(not editable). In the screenshot, we connected to a database named MyDB on a MongoDB
server pre-configured as mongo1; the GET COLLECTION instruction retrieved the collection
named SampleCollection from the database; the FILTER instruction selected only those
documents with the Approved field; finally, the SET INTERMEDIATE instruction saved the
temporary collection into the Intermediate Results database IR.

The Save button allows for saving the overall sequence of executed instructions to a text
file; the Show Console button allows for showing the console with the trace of communication
between the application and the J-CO-QL Engine.
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5. J-CO-UI: The User Interface of the J-CO Framework

The most recent component of the J-CO Framework that we are introducing in this
paper is named J-CO-UI: it is the user interface that analysts can use to write complex
integration and transformation processes. J-CO-UI is a stand-alone application written in
Java; it is installed on analysts’ PCs, so that they can comfortably work on remotely-stored
data sets sitting in their office.

Figure 5 reports a screenshot of the main window. The lower text area allows for
writing J-CO-QL instructions to execute; the Execute button sends the content of the text
area to the J-CO-QL Engine service which the application is connected to; if no error is
signaled by the engine, the executed instructions are appended to the above text area
(not editable). In the screenshot, we connected to a database named MyDB on a MongoDB
server pre-configured as mongo1; the GET COLLECTION instruction retrieved the collection
named SampleCollection from the database; the FILTER instruction selected only those
documents with the Approved field; finally, the SET INTERMEDIATE instruction saved the
temporary collection into the Intermediate Results database IR.

The Save button allows for saving the overall sequence of executed instructions into a
text file; the Show Console button allows for showing the console with the trace of commu-
nication between the application and the J-CO-QL Engine.

Figure 5. Main window of the J-CO-UI application.

The current query-process state can be inspected by pressing the Inspect state button,
that opens the window (named Inspection Window) reported in Figure 6. In the left-hand
pane, we find buttons to inspect the current temporary collection tc, as well as collections
stored within the Intermediate Results database IR. If the user chooses to inspect the
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temporary collection or selects a collection in the IR database, its content is shown in the
right-hand pane. Buttons on the bottom of the window acts on the content of the right-hand
side area: the Expand button shows the full structure of documents (as in this case); the
Save button saves the documents into a text file.

Figure 6. Inspection window of the J-CO-UI application.

If the user understands that the query process took a non-satisfactory way, the process
can be backtracked (or rolled-back): by pressing the Backtrack button in the main window
(Figure 5), the last executed instruction is removed from the process and the query-process
state before its execution is restored. This way, complex processes can be written by
adopting a trial-and-error approach, which is coherent with data-analysis tasks, where the
final goal of the process often is not known in advance. The analysts can explore more than
one solution, possibly rolling back when the followed way is not satisfactory.

This functionality exploits the Interactive Mode provided by the J-CO-QL Engine (presented in
Section 3.3), which would be ineffective and useless without a user interface specifically designed.

We conclude this section with a final consideration. Instead of developing a stand-
alone application, an alternative solution for developing J-CO-UI could be a web appli-
cation. When we designed J-CO-UI, we thought that this solution is less flexible: in fact,
a web server must be set up and kept running on a dedicated computational resource.
Furthermore, an additional communication tier would be added (instead of a direct com-
munication between analyst’s PC and J-CO-QL Engine instance, the web server would be in
the middle). In contrast, the stand-alone application allows for a free composition of user
interfaces and computational resources. However, web applications are very familiar for
and appreciated by users; thus, we are considering to develop a web user interface.

6. Performance Evaluation

In order to assess the real possibility of using the J-CO Framework to deal with large
collections of JSON documents, we performed an experimental evaluation. The goal is to
evaluate its capability to scale with increasing size of collections.

The critical component of the framework is the J-CO-QL Engine, that actually executes
J-CO-QL instructions.
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We decided to build the data sets to analyze scalability by moving from the same data
sets used to build the running example, i.e., the Districts collection and the BikeLanes
collection. Then, by using a multiplication factor denoted as f , we generated the other data
sets: given a value for f , a collection that contains f times the districts in the Districts
collection and a collection that contains f times the bike lanes in the BikeLanes collection
were created. Table 2 reports the full list of data sets we created for the experiments.
The same query presented in Section 4 is used to perform experiments. We decided to
adopt this strategy to build data sets for various reasons. First of all, this way the query
always obtains the same results, independently of the size of the source data sets, because
redundant copies of documents are removed by the SPATIAL JOIN instruction (remember
the REMOVE DUPLICATES option); second, the number of document pairs created by the
SPATIAL JOIN instruction before removing duplicates is not random, but it can be obtained
by multiplying the pairs obtained for the DS_1 data set by f 2 (this way, we exactly control
how execution time should scale).

Table 2. Data sets used for analyzing scalability.

Data Set Id Factor f N. of Districts N. of Bike Lanes

DS_1 1 88 422
DS_10 10 880 4220
DS_25 25 2200 10,550
DS_50 50 4400 21,100
DS_75 75 6600 31,650
DS_100 100 8800 42,200
DS_150 150 13,200 63,300
DS_200 200 17,600 84,400

Experiments were conducted on a PC powered by a Processor Intel quad-Core i7-8550-
U, running at 1.80 GHz, equipped with 16 GB RAM and 250 GB Solid State Drive. The
version of the Java Virtual Machine (JVM) was 1.8.0_251.

6.1. Scalability of the J-CO-QL Engine

First of all, we tested the execution of the query five times on the basic data set DS_1,
in order to check for the stability of the J-CO-QL Engine. Table 3 reports the measured
execution times. Rows from 1 to 14 correspond to each single instruction in the query
(see Listings 3 and 4) , while the bottom row reports the overall execution times. The Avg.
column reports the average values of the 5 executions, while columns from Exec. 1 to
Exec. 5 report times measured during each single execution.

We can notice that the overall query has an average execution time of about 1.8 s,
which is acceptable if we consider the complexity of dealing with geometries of districts,
which are not simple. In fact, the most time consuming instruction is the SPATIAL JOIN, as
we expected, which has an average execution time of 0.7 s (on the overall time of 1.8 s).

The other time-consuming instructions are GET COLLECTION, SET INTERMEDIATE and
SAVE AS, although their order of magnitude is at least 2/3 times less; in this sense, observe
that the SPATIAL JOIN instruction gets collections from the IR DB, which is managed
though the file system, so we can consider that 0.2 s on 0.7 s are necessary to get the two
input collections into main memory.

Comparing column Exec. 1 with columns Exec. 2 to Exec. 5, we can notice how the
first execution of the query is significantly slower than the next ones, i.e., more than 3.9 s
vs. 1 s (for Exec. 5). This fact is mitigated by the average, but it is surprising: we think it is
the Java Virtual Machine that during the first execution has to do extra work that is not
performed during subsequent executions.
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Table 3. Execution times (in ms) for data set DS_1 on one single process of the J-CO-QL Engine.

Instruction Avg. Exec. 1 Exec. 2 Exec. 3 Exec. 4 Exec. 5

1. USE DB 0.31 0.99 0.31 0.16 0.04 0.03
2. USE DB 0.03 0.05 0.02 0.03 0.03 0.03
3. USE DB 0.02 0.03 0.02 0.03 0.02 0.02
4. GET COLLECTION 306.55 1,088.70 138.00 122.97 99.64 83.46
5. FILTER 2.43 9.99 0.86 0.30 0.50 0.51
6. SET INTERMEDIATE 164.39 247.16 172.25 126.64 162.62 113.25
7. GET COLLECTION 59.27 100.33 64.47 63.80 31.84 35.90
8. FILTER 220.29 409.07 241.38 150.78 143.52 156.72
9. SET INTERMEDIATE 99.56 157.43 103.85 94.21 74.21 68.09
10. SPATIAL JOIN 706.82 1,417.74 677.38 489.00 507.97 442.00
11. GROUP 5.82 18.64 3.20 2.34 2.31 2.62
12. FILTER 133.85 302.74 111.68 99.64 89.16 66.03
13. FILTER 1.58 2.72 1.70 1.46 0.93 1.06
14. SAVE AS 98.17 172.54 84.16 91.87 81.15 61.12

Total (ms) 1,799.08 3,928.10 1,599.28 1,243.23 1,193.96 1,030.84

Consequently, we decided to repeat the experiment by using the DS_10 data set (see
Table 2), in order to check if the above-mentioned phenomenon still appears. Table 4
reports the measured execution times. We can notice that the first execution (the Exec. 1
column) is still significantly slower than next executions. However, typically users perform
the same query only once, so we decided to run next experiments in a different way: we
considered again 5 executions of the query, but each time the J-CO-QL Engine was shut
down and restarted, so as to have the JVM in the same initial state. With such a setting, we
obtained stable execution times for all 5 repetitions of the same query.

Table 4. Execution times (in ms) for data set DS_10 on one single process of the J-CO-QL Engine.

Instruction Avg. Exec. 1 Exec. 2 Exec. 3 Exec. 4 Exec. 5

1. USE DB 0.04 0.08 0.04 0.03 0.03 0.02
2. USE DB 0.03 0.02 0.02 0.02 0.03 0.03
3. USE DB 0.02 0.02 0.02 0.01 0.02 0.01
4. GET COLLECTION 0.01 0.02 0.01 0.01 0.02 0.01
5. FILTER 5.47 20.14 3.01 1.34 1.49 1.36
6. SET INTERMEDIATE 800.51 1075.87 874.02 671.30 670.68 710.68
7. GET COLLECTION 214.74 437.30 167.66 151.11 147.97 169.66
8. FILTER 1196.96 2173.38 989.40 904.84 927.73 989.45
9. SET INTERMEDIATE 486.41 713.83 417.10 403.20 416.89 481.03
10. SPATIAL JOIN 11,475.88 16,998.58 10,088.89 10,032.71 10,074.85 10,184.37
11. GROUP 4.12 12.07 2.96 2.10 1.45 2.03
12. FILTER 70.84 128.41 56.46 56.87 56.32 56.11
13. FILTER 0.65 1.02 0.56 0.53 0.55 0.57
14. SAVE AS 82.80 144.41 87.49 58.31 57.59 66.22

Total (ms) 14,338.48 21,705.16 12,687.65 12,282.40 12,355.62 12,661.57

After the preliminary experiment previously discussed, we performed the experiments
for all the data sets reported in Table 2, i.e., DS_1, DS_10, DS_25, DS_50, DS_75, DS_100,
DS_150 and DS_200.

Table 5 reports the measured execution times (average of five executions, performed
shutting down the J-CO-QL Engine after each execution). For each test, the total execution
time is reported in ms in the Total (ms) row; the Total (min) row reports the same times
converted to minutes (for example, 1.25 min), while the Total (min′s′ ′) row converts them
to the form minutes and seconds (for example, 1′15′ ′). Finally the SPATIAL JOIN % row
reports the percentage of execution time taken by the SPATIAL JOIN instruction on the
overall query execution time, while the Rest of the query % row reports the percentage of
query execution time without the SPATIAL JOIN.

First of all, the reader can notice that instructions from 11 to 14, that are executed
after the SPATIAL JOIN, are not affected by the increasing size of data sets. This is due to
the fact that documents in the source collections are obtained by duplicating the original
documents in the DS_1 data set. So, the spatial join would generate multiple copies of
the same documents; however, the REMOVE DUPLICATES option (see Listing 4) removes
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duplicate documents from the output temporary collection generated by the SPATIAL
JOIN instruction; thus, this temporary collection is always the same, independently of the
data set.

Table 5. Execution times (in ms) for data sets DS_1, DS_10, DS_25, DS_50, DS_75, DS_100, DS_150 and DS_200.

Instruction DS_1 DS_10 DS_25 DS_50 DS_75 DS_100 DS_150 DS_200

1. USE DB 2 1 1 1 1 1 1 1
2. USE DB 0 0 0 0 0 0 0 0
3. USE DB 0 0 0 0 0 0 0 0
4. GET COLLECTION 951 1,598 2,368 3,726 5,177 5,733 7,966 9,831
5. FILTER 8 22 36 52 55 57 59 66
6. SET INTERMEDIATE 214 952 1,885 3,362 4,338 5,201 8,180 10,505
7. GET COLLECTION 83 374 893 1,020 1,368 1,747 2,566 3,911
8. FILTER 324 1,841 2,938 5,340 8,344 9,872 15,747 20,460
9. SET INTERMEDIATE 136 654 1,230 2,340 3,669 3,958 6,349 8,657
10. SPATIAL JOIN 857 13,095 56,513 207,209 445,508 737,696 1,652,120 3,021,693
11. GROUP 9 8 11 12 14 13 14 11
12. FILTER 228 92 125 130 121 134 103 121
13. FILTER 3 1 1 1 1 1 1 1
14. SAVE AS 153 126 130 126 127 174 118 124

Total (ms) 2,966 18,764 66,132 223,319 468,722 764,587 1,693,224 3,075,381
Total (min) 0.05 0.31 1.10 3.72 7.81 12.74 28.22 51.26
Total (min′s′ ′) 0′03′ ′ 0′19′ ′ 1′06′ ′ 3′43′ ′ 7′49′ ′ 12′45′ ′ 28′13′ ′ 51′15′ ′

SPATIAL JOIN % 28.90% 69.79% 85.45% 92.79% 95.05% 96.48% 97.57% 98.25%
Rest of the query % 71.10% 30.21% 14.55% 7.21% 4.95% 3.52% 2.43% 1.75%

Figure 7 plots the execution times, with respect to the size of the data sets. On the x
axis, we report the multiplication factor f we used to generate each single data set. Three
lines are plotted: the red line shows the overall execution times; the blue line shows the
execution time taken by the SPATIAL JOIN instruction; the green line shows the overall
execution time without the time taken by the SPATIAL JOIN instruction. The three lines
clearly show how the execution time is dominated by the SPATIAL JOIN instruction. In fact,
the rest of the query (green line) scales very well and its contribution becomes substantially
negligible for the large data sets.
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Figure 7. Overall query vs. SPATIAL JOIN vs. Rest of the query (execution times).

This behavior is further highlighted by Figure 8, which plots two curves: the blue
line shows the percentage of execution time taken by the SPATIAL JOIN instruction; the
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green line shows the percentage of the overall execution time without the time taken by
the SPATIAL JOIN instruction. The reader can clearly see how the quadratic complexity of
the SPATIAL JOIN instruction dominates as long as the size of data sets increases.
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Figure 8. Percentage weight of SPATIAL JOIN on the overall query.

Nevertheless, the reader can notice that the J-CO-QL Engine performs quite well,
even with large data sets. In fact, DS_200 contains 17,600 documents in the Districts
collection and 84,400 documents in the BikeLanes collection; this means that the SPATIAL
JOIN instruction has to compute the intersection of geometries for 1,485,440,000 pairs and
remove duplicates accordingly; it takes 50 min, which is a quite acceptable execution time,
considering the size of the data set. We obtained this good performances by exploiting
multi-threading, so as to exploit all the cores in the CPU. In the near future, we plan to
investigate the adoption of spatial indexes computed on the fly, i.e., immediately before
the execution of the SPATIAL JOIN instruction; in particular, we will have to understand
the threshold above which it becomes advantageous to spend time to build spatial indexes,
so as to introduce some heuristics to decide whether to use them.

We conclude this part of the experimental evaluation by considering the behavior of
the FILTER instruction. To this end, we rely again on Table 5.

First of all, consider the first two FILTER instructions at line 5 and line 8, where
the former selects districts, while the latter selects bike lanes. They both scale linearly.
Furthermore, the execution times remain very low for the FILTER instruction at Line 5
(from 8 ms to 66 ms), while the FILTER instruction at Line 8 takes longer (from 324 ms to
more than 20 s). This is due to many reasons: the first one is the fact that the BikeLanes
collection contains more than 4 times documents than those in collection Districts; the
second reason is that the FILTER instruction at line 8 builds the internal representation of
the ~geometry field (based on the JTS Java Topology Suite library), which is expensive to
do. In fact, the FILTER instruction at line 5 does not have to do that, since documents in the
Districts collection already have the ~geometry field, so that their internal representation
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is built during the GET COLLECTION instruction at line 4. The reader can see that the GET
COLLECTION instruction at line 7 is much faster than the one at line 4, because it does not
have to build the internal representation of the geometry, which is done during the GET
COLLECTION instruction at Line 4.

We now consider the FILTER instructions at Lines 12 and 13. Due to the fact that all
data sets are obtained by cloning documents in the original DS_1 data set, the SPATIAL
JOIN instruction at Line 10 produces exactly the same documents for each data set, because
it removes duplicates. Consequently, the two FILTER instructions at Lines 12 and 13
should be independent of the data set. While the latter is stable and very fast (the FILTER
instruction selects a very small number of very simple documents), we cannot say the same
for the former one. We noticed this behavior and we investigated it. It depends on the way
the Java Virtual Machine (JVM) manages main memory; strangely, it is slower with the
smallest data set (228 ms) and faster with DS_10 (92 ms), while it does not exceed 134 ms
in the worst case (excluded DS_1).

We can conclude this analysis stating that two main factors affect the execution times
of the FILTER instruction. They are the size of the input temporary collection (as far as
the number of documents is concerned) and the fact that the internal representation of
geometries must be built or not. Nevertheless, its execution times are always negligible if
compared with the SPATIAL JOIN instruction.

6.2. J-CO-DS vs. MongoDB

Another test we performed is comparing performance of J-CO-DS, the storage service
developed as an integral part of the framework, and MongoDB. Table 6 reports the times
needed to execute the GET COLLECTION instruction to retrieve the Districts collection,
from the various data sets generated for the experimental campaign; once loaded, this
temporary collection was saved (by means of the SAVE AS instruction) to a MongoDB
database as well as to a J-CO-DS database. Table 6 reports the measured execution times.
The From MongoDB row and the From J-CO-DS row report the execution times (in ms)
to perform the GET COLLECTION instruction from the MongoDB database and from the
J-CO-DS database, respectively; Figure 9 depicts the results (the green bars correspond
to tests performed on MongoDB, while the blue bars correspond to tests performed on
J-CO-DS). Similarly, in Table 6 the To MongoDB row and the To J-CO-DS row report the
execution times to perform a SAVE AS instruction to the MongoDB database and to the
J-CO-DS database, respectively; Figure 10 depicts the results (green bars and blue bars
correspond to tests performed on MongoDB and on J-CO-DS, respectively).

Table 6. Performance comparison between MongoDB and J-CO-DS.

Dataset DS_1 DS_10 DS_25 DS_50 DS_75 DS_100 DS_150 DS_200

From MongoDB 922 847 979 1,915 2,686 3,713 5,535 7,537
From J-CO-DS 173 954 1,529 3,039 4,550 6,327 9,222 12,435

To MongoDB 100 655 1,324 2,728 4,033 5,303 8,050 11,034
To J-CO-DS 180 858 1,325 2,480 3,784 4,856 7,547 10,154

From Figure 9, we notice that execution times to get collections from MongoDB for
the DS_1, DS_10 and DS_25 data sets are not affected by their size; probably, this is due
to the time needed to connect to the database. With the other (and larger) data sets, the
execution time increases linearly, as we expected. In contrast, getting collections from the
J-CO-DS database behaves in a more regular way, being substantially linear for all the data
sets, because J-CO-DS is based on the file system and the connection time is negligible.
However, as the size of the collection increases, J-CO-DS becomes slower than MongoDB,
because J-CO-DS stores collections as text files, which are larger than the BSON binary
representation used by MongoDB.
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Figure 9. Performance comparison between MongoDB and J-CO-DS (for getting collections).

Figure 10 depicts the results for writing collections to the databases. Both the databases
show a regular behavior. Notice that as long as the size of the collection increases, J-CO-DS
becomes a little faster. We think that this is due to the fact that documents in the collection
to save to MongoDB must be converted into the BSON binary format before sending them,
while J-CO-DS receives documents in the JSON text format.

So, the BSON representation gives a little advantage to MongoDB for reading collec-
tions, but at the same time it gives a little disadvantage for writing collections. Nevertheless,
we can see that there are no substantial differences between the two storage systems; con-
sequently, J-CO-DS can be effectively used in place of MongoDB to store large collections of
JSON documents, without the limitation that characterizes MongoDB (single documents
cannot have a BSON representation larger than 16 MByte).
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Figure 10. Performance comparison between MongoDB and J-CO-DS (for saving collections).

7. Conclusions

We can now conclude the paper. First of all, we report the summary of the paper.
Second, we discuss possible future work.

7.1. Summary

In this paper, we presented J-CO, a platform-independent framework for managing
JSON data sets. The platform-independent approach is motivated by the large variety of
data storage systems that could be involved in analysis activities performed by analysts
(such as geographers) based on Big Data and Open Data sources, as well as social media
data and volunteered information. Very often, such information is geo-tagged, because
it describes features concerning territories, movements of people on the Earth globe, and
so on. Consequently, the framework is oriented to (spatial) analysts and is built around a
language, named J-CO-QL, that natively deals with spatial representation and provides
spatial operations.

When we say that the J-CO Framework is oriented to analysts, we also mean that it is
designed to support integration and cross-analysis of data coming from different JSON
stores possibly powered by different technologies with various processing capabilities. It is
not at all designed to support operational OLTP activities, like a classical DBMS. In fact, the
J-CO Framework is not at all a database management system: it is a unifying framework
for analysis activities, since it provides a platform-independent view of JSON stores and
JSON data sets. Components in the J-CO Framework are loosely-coupled; storage systems,
execution engines and user interfaces are possibly delocalized over the Internet and are
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connected each other when it is necessary. This loosely-coupled design provides flexibility
and ease of cooperation among people all around the world working together by sharing
data sets.

In this paper, we presented the current state of development of the J-CO Framework,
which has finally become exploitable by analysts, thanks to the addition of two novel
components, i.e., the data-storage service for large single JSON documents named J-CO-
DS and the user interface named J-CO-UI, as well as thanks to the re-engineering of the
J-CO-QL Engine. Furthermore, for the first time, we report the results of an experimental
evaluation that we conducted to test scalability of the execution engine. The results show
that the J-CO-QL Engine performs quite fast with small data sets and scales well with large
data sets, being able to process a query based on a SPATIAL JOIN instruction on the largest
data set we built in about 50 min. This fact allows us to claim that the J-CO Framework is
actually suitable to work on data sets whose size is large, although we cannot talk about Big
Data. We also compared J-CO-DS and MongoDB, as far as reading and writing collections
are concerned: we discovered that the two storage systems have comparable performances,
both when reading collections and when writing collections; consequently, since J-CO-DS
does not pose any limitation to the size of documents, it is a complementary tool for storing
huge JSON documents; furthermore, since J-CO-DS provides a simple interface (in that it
does not provide a query language), it can be easily adopted by users that need a simple
tool to store JSON data sets.

7.2. Future Work

Even though the reader could think that we are at the end of the development of the
J-CO Framework, this is not true. In fact, we plan to work on the framework by following
many development directions.

First of all, we will further improve the J-CO-QL Engine. The first topic we are going
to address is concerned with performance. In fact, with the current stage of development
we demonstrated the feasibility of the idea. Now, we are going to devise and implement
specific optimizations, in particular for spatial operations: in fact, we think that the adoption
of spatial indexes computed on the fly could improve the capability of dealing with very
large data sets; however, due to the loosely-coupled approach (that makes the J-CO-QL
Engine able to process data sets coming from JSON stores having no processing capability),
as well as due to the fact that the SPATIAL JOIN can be performed on temporary collections,
it is not possible to rely on pre-built spatial indexes; the engine will have to build them on
the fly, task that needs additional execution time; thus, it will be important to understand
when to adopt spatial indexes.

We will also investigate the possibility to integrate the J-CO-QL Engine with a Map-
Reduce platform, such as Spark, that we successfully experimented for building a blind
querying engine for Open Data sets [49] and for JSON data sets stored within JSON
document stores [50]. In fact, in order to process actual Big Data, this solution appears
to be promising; nonetheless, we will maintain the loosely-coupled approach, so as to
keep user interfaces independent of computational resources actually adopted to process
J-CO-QL queries.

The second topic we are going to address is the evolution of J-CO-QL. Apart from the
definition of new instructions for specific analysis tasks (such as operators for perform-
ing data mining and/or machine learning tasks on JSON data sets) and location-based
queries [51,52], we will try to make J-CO-QL to meet the data-independence principle. In
fact, a weakness of the current proposed instructions is that users need to be aware of the
structure of JSON documents; in fact, the current level of J-CO-QL is higher than tradi-
tional procedural programming languages, since its instructions are declarative, although
composed in a “piped” way; so its level is not sufficiently high. In our next evolution of
J-CO-QL, we aim at defining two layers of instructions: the user-layer will provide instruc-
tions that will be directly invoked by users; the hidden layer will provide instructions that
will be automatically invoked by translating instructions in the user layer by a mediator.
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As defined in [53], “A mediator is a software module that exploits encoded knowledge
about certain sets or subsets of data to create information for a higher layer of applications”:
sources are encapsulated by wrappers (which access their data sources in a transparent
way to mediators) to present data in the form needed by a mediator.

Finally, we argued that web sources that publish JSON data sets as well as GeoJSON
documents, such as Open Data portals, could play the role of read-only JSON stores. In
fact, we are planning to develop a new component to add to the framework, that will create
virtual JSON stores by connecting to web sources of interest. The J-CO-QL Engine will
connect to these virtual JSON stores in a seamless way: in fact, such virtual JSON stores
will not have any computational capability, thus the platform-independent design will be
effective for them too.
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