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Abstract: An analytical criterion for the optimization of the small-signal settling time in three-stage
amplifiers is carried out. The criterion is based on making equal the two exponential decays of the step
response. Including slew-rate effects, a useful design strategy for the design of three-stage operational
transconductance amplifier is provided. Extensive time-domain simulations on a transistor-level
design in a 65-nm CMOS process confirm the validity of the proposed approach.
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1. Introduction

Among the various analog and mixed-signal integrated circuits, the operational
transconductance amplifier (OTA) is certainly one of the most fundamental building blocks.
Over the past few decades, the approach to their design has changed according to the tech-
nological scaling that, in turn, has been driven by the manufacturing processes of integrated
circuits (ICs). The lowering of the intrinsic gain in MOS transistors (gmrd ∼ 10), the scaling
down of the power supply voltage (VDD < 1 V) and the consequent preclusion to the
adoption of cascade configurations, moved the interest of the research towards multistage
amplifier topologies [1–8]. In this background, the ‘speed’ of OTAs has been evaluated and
compared using the gain-bandwidth product (GBW) as the main performance metric.

In the last 15 years, the extending demand for circuits with fast response to step inputs
(i.e., discrete-time or switched-capacitor circuits, data converters, voltage regulators, etc.)
has pushed the scientific community towards the design and the optimization of the settling
time in low-voltage and multistage CMOS OTAs [9–19]. A significant number of design
procedures have been proposed. However, many of them use complex relationships to
forecast the settling time from the amplifier parameters, thus becoming unpractical in a
real design. Moreover, most of them do not include the slew-rate (SR) limitations that
occur under large-signal condition and that, as known, can have a serious impact on the
time response.

Since the 1970s, the SR in OTAs has been analyzed in detail [20–27]. However, this
specific literature has either produced complex results that did not lead to manageable
design equations or provided accurate SR models that were limited to specific topologies.

Recently, in [28], the authors developed an interesting and general approach for
the design of three-stage OTAs from settling-time requirements including also SR effects.
Although the technique provides accurate results, it relies on the graphical analysis of the
contour plots of the so-called Normalized Settling Time (NST) that change with different
settling errors. Consequently, no analytical design criterion exists and, if the amplifier is
required to settle within a given settling error, a new contour plot must be produced.

In this paper, we provide an analytical design criterion for optimizing the small-signal
settling time of a three-stage amplifier, based on making equal the two exponential decays
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of the step response. This allows the designer to deal with a well-defined strategy avoiding
the generation of contour plots and the design through graphical methods. Moreover,
the approach considers large-signal effects since it also includes the slew-rate modeling
exploiting the results in [28]. The proposed strategy is used to design a three-stage OTA
from settling-time specifications. Extensive time-domain simulations confirm the validity
of the proposed design strategy.

2. Settling-Time Modeling in Three-Stage Amplifiers

In this section, we develop a model for the settling time in three-pole amplifiers. First,
we model the small-signal settling time in an all-pole amplifier (i.e., the loop gain of the
amplifier has no zeros). Then, we propose a new and analytical design criterion to optimize
the settling time that is based on making equal the two exponential decays of the step
response. Next, we extend this design criterion to practical cases of generic amplifiers with
one or more zeros in the transfer function of the open-loop gain. Finally, we extend the
settling-time model by including the effects of slew-rate limitations so that we take into
account the large-signal behavior, also.

2.1. Modeling of a Pure Three-Pole Amplifier

Pure three-pole amplifiers have no zeros in the transfer function of the open-loop gain.
They belong to the class of the all-pole amplifiers and are modeled by

T(s) = βa(s) =
βa0

1 + s
ωd

· 1
1 + a1s + a2s2 (1)

where a(s) is the direct gain of the OTA, β is the feedback factor, a0 = a(0) is the dc gain,
ωd is the frequency of the dominant pole and where coefficients a1 and a2 represent the
non-dominant poles, in general, complex-conjugate. As long as βa0 � 1, the significant
range of frequencies lies for ω � ωd and the dc gain with the dominant pole simplify into

βa0

1 + s
ωd

≈ 1
s/GBW

(2)

where GBW = βa0ωd stands for the gain-bandwidth product of the amplifier. Hence the
open-loop gain is

T(s) =
1

s
GBW (1 + a1s + a2s2)

. (3)

As explained in [29], the non-dominant poles in (3) arise because of an internal feedback
loop nested in the main (external) loop. This situation is represented in Figure 1a where
the stage of the internal loop is made up of an inner amplifier characterized by an internal
gain-bandwidth product, GBWi, and by an internal non-dominant pole, ωs.

Manipulating the internal feedback loop in Figure 1a we obtain the equivalent block
schematic in Figure 1b, where the inner stage is expressed in terms of the internal gain-
bandwidth product and of the internal separation factor, Ki = ωs/GBWi. This latter param-
eter is accountable for the stability of the internal loop (i.e., in a two-pole amplifier, the
separation factor impacts on the phase margin as K ≈ tan(PM) and, in this specific case,
the internal separation factor affects the internal phase margin, only). As a rule of thumb,
we can assume that the minimum separation factor required for stabilizing the inner stage
is Ki = 1 [30].

For Ki > 1 the inner stage is stable and, at a coarse but functional approximation,
we can disregard the term s2/(ω2

s Ki) in the ‘non-dominant poles’ block in Figure 1b.
Consequently, the whole amplifier stability depends on the ratio between the overall
second pole, GBWi, and the gain-bandwidth product, GBW, i.e., on the external separation
factor, defined as Ke = GBWi/GBW.
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internal feedback loop

Y

non-dominant poles
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Y

non-dominant poles
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Figure 1. Block schematic modeling of a pure three-pole amplifier. (a) The non-dominant poles are
due to an inner amplification stage fed back by a local loop. (b) The transfer function that models the
non-dominant poles is that of a closed-loop feedback amplifier.

Using the two separation factors, the open-loop gain becomes

T(s) =
1

s
GBW

(
1 + s

KeGBW + s2

K2
e KiGBW2

) (4)

and, if T(s) has the form expressed in (3), we can evaluate

Ke =
1

a1GBW
, (5a)

Ki =
a2

1
a2

. (5b)

Normalizing the complex frequency with respect to the GBW we obtain a dimen-
sionless version of the transfer function that allows analysis of the time response of the
amplifier in a very convenient manner. To do so, we define the dimensionless frequency
as ŝ = s/GBW and the corresponding dimensionless time as t̂ = GBW · t so that the
open-loop transfer function turns into

T(ŝ) =
1

ŝ
(

1 + ŝ
Ke

+ ŝ2

K2
e Ki

) . (6)

When the system (6) is closed in a feedback loop, its response to a unity step input is
a function of the dimensionless time, t̂, and of the separation factor vector, K = (Ke, Ki),
i.e., y = y(t̂, K). From the output response, y(t̂, K) we can evaluate the dynamic settling
error (DSE)

DSE(t̂, K) =
y(∞)− y(t̂, K)

y(∞)
(7)

and the dimensionless settling time as

t̂s(ε, K) = min
{

t̂? :
∣∣DSE(t̂, K)

∣∣ ≤ ε ∀ t̂ ≥ t̂?
}

(8)
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being ε, the accuracy level. Therefore, the final settling-time results

ts =
t̂s(ε, K)

GBW
. (9)

From (9) it is apparent that minimizing the small-signal settling time means both
maximizing the GBW and minimizing the quantity t̂s(ε, K) by a proper optimization of the
separation factor vector, K. Since the maximization of the GBW is a straightforward task,
we must find a criterion for the optimization of the dimensionless settling time, t̂s(ε, K).

In the following, to compare different settling-times at different accuracy levels, ε,
it is convenient to use the Normalized Settling Time (NST). This is defined as the set-
tling time of the amplifier under test normalized with respect to the settling time of a
single-pole amplifier with the same GBW. In a single-pole amplifier, the settling time is
ts(sp) = | ln ε|/GBW, therefore the normalized settling-time results in

NST =
GBW
| ln ε| ts =

t̂s

| ln ε| (10)

where the latter equivalence was derived from (9).

2.2. Optimization of the Dimensionless Settling Time

In a third-order system, the response to a unity step input in the time-domain takes
the form

y(t) = 1 + A1e−α1t + A2e−α2t
[

cos(ωt) +
β− α2

ω
sin(ωt)

]
(11)

whose corresponding Laplace transform is

Y(s) =
1
s
+ A1

1
s + α1

+ A2
s + β

(s + α2)
2 + ω2

. (12)

If the residues A1 and A2 are in the same order of magnitude, we may assume that the
behavior of the amplifier’s time response is mainly ruled by the two exponential decays,
α1 and α2. Therefore, a design criterion for optimizing the amplifier speed is to set equal
the two exponential decays so that α = α1 = α2. In this way none of the exponential terms
will be responsible for slowing down the time response. As known, the two exponential
decays depend on the poles of the closed-loop transfer function, G(s) = sY(s), whose
denominator is

D(s) = (s + α)
[
(s + α)2 + ω2

]
= s3 + 3αs2 +

(
3α2 + ω2

)
s + α

(
α2 + ω2

)
. (13)

Using (4), the closed-loop gain is

G(s) =
T(s)

1 + T(s)
=

K2
e KiGBW3

s3 + KeKiGBWs2 + K2
e KiGBW2s + K2

e KiGBW3 (14)

and, equating the coefficients of the denominator of (14) to the coefficients of (13), we
obtain the system of equations

KeKiGBW = 3α, (15a)

K2
e KiGBW2 = α2

[
3 +

(ω

α

)2
]

, (15b)

K2
e KiGBW3 = α3

[
1 +

(ω

α

)2
]

. (15c)
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Manipulating (15) we obtain the constraint that set equal the two exponential decays
in terms of Ke and Ki

KeKi − 3− 2
9

KeK2
i = 0 (16)

or, relating Ke in terms of Ki,

Ke =
3

Ki
(
1− 2

9 Ki
) (17)

whose plot is reported in Figure 2. Observe that since the condition in (16) is independent
of the GBW, it represents a design criterion for the optimization of the dimensionless
settling time, t̂s.
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Figure 2. Plot of Ke versus Ki for making the same exponential decay in the time response to a step
input. The optimum bias point is for K? = (9/4, 8/3).

Among the possible constraints set by (16), the most convenient is represented by
the point K? in Figure 2, placed at the minimum value of Ke. Using (17) to find this
minimum yields

K? = (K?
e , K?

i ) =

(
8
3

,
9
4

)
. (18)

The plot of the phase margin, PM, versus Ki for an ideal three-pole system designed
with the constraint in (16) is shown in Figure 3. The point PM? = 68.4 deg identifies the
phase margin observed at the optimum bias point set by (K?

e , K?
i ) = (8/3, 9/4).

To further demonstrate the goodness of our design criterion, in Figure 4 we plot the
normalized settling time, NST, versus the internal separation factor, Ki, for a three-pole
system designed with the constraint in (16) and for different accuracy levels, ε. The colored
spots, all at the point of abscissa K?

i = 9/4, identify the normalized settling-times observed
at the optimum bias point. Even if the proposed criterion does not identify the absolute
minimum settling time, a satisfactorily settling time is established in a very simple manner.
This is more evident considering that as reported in [29], a circuit designed for obtaining
the minimum possible settling time always deviates from its target when unavoidable
statistical variations of process or design parameters are taken into account.
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Figure 3. Plot of the phase margin, PM, versus the internal separation factor, Ki, for a three-pole
system designed with the constraint in (16). The point PM? = 68.4 deg identifies the phase margin
observed at the optimum bias point set by (K?

e , K?
i ) = (8/3, 9/4).
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Figure 4. Plot of the normalized settling time, NST, versus the internal separation factor, Ki,
for a three-pole system designed with the constraint in (16) and for different accuracy levels, ε.
Colored spots identify the normalized settling-times observed at the optimum bias point set by
(K?

e , K?
i ) = (8/3, 9/4).

2.3. Extension to Generic Three-Pole Amplifiers

A generic three-pole amplifier has one or two zeros in the loop gain, i.e.,

T(s) =
1 + b1s + b2s2

s
GBW (1 + a1s + a2s2)

. (19)
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As demonstrated in [28] and briefly reported in Appendix A, if the frequency of the
GBW lies below the zeros of T(s), two global separation factors can be introduced

K̂e =
(1 + b1GBW)2

a1GBW + b2GBW2 , (20a)

K̂i =

(
a1GBW + b2GBW2

)2

a2GBW2(1 + b1GBW)
. (20b)

The global separation factors can be used to make the condition of a time response
with two equal exponential decays. More specifically, the dimensionless settling time
of the generic three-pole amplifier is optimized by setting K̂e and K̂i to the same values
that we would choose for the pure three-pole amplifier, i.e., setting K̂e = K?

e = 8/3 and
K̂i = K?

i = 9/4.
To verify the correctness of our approach, we designed the ideal amplifier in Figure 5

making K̂e = 8/3 and K̂i = 9/4 and compared its time response to that of an ideal pure
three-pole amplifier with the same GBW and designed with Ke = 8/3 and Ki = 9/4. We
expect similar behaviors, i.e., very small NSTs, in the interval 0.4–0.6, for both circuits.

Gm1
Gm2

vin

vout

CC2

CL

Gm3

CC1

Figure 5. Block schematic of a three-stage amplifier. Capacitors CC1 and CC2 perform the Reversed
Nested-Miller Compensation (RNMC).

The amplifier in Figure 5 exploits the well-known Reversed Nested-Miller Compensa-
tion (RNMC) for which the coefficients of the transfer function in (19) are

GBW =
Gm1

CC1
, (21a)

a1 =
CLCC2

CC1Gm3
+

CC2

Gm3
− CC2

Gm2
, (21b)

a2 =
CC2CL

Gm2Gm3
, (21c)

b1 = − CC2

Gm2
, (21d)

b2 = − CC1CC2

Gm2Gm3
. (21e)

In our design, we assumed that the amplifier required a GBW of 100 Mrad/s (about
15.5 MHz) for driving a load capacitor CL = 2 pF. Supposing that Gm1 = 100µA/V was
set by noise specifications, from (21a) we obtained CC1 = 1 pF. Then we substituted (21)
into (20) and finalized our design by solving for

(
K̂e, K̂i

)
= (8/3, 9/4). The procedure led

to CC2 = 1.1 pF and Gm2 = Gm3 = 752µA/V. The time response of this ‘generic amplifier’
is depicted in Figure 6. For an effective comparison, the time response of a ‘pure three-pole
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amplifier’ with the same GBW is depicted also. It is observed a good matching between
the two curves.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 10 20 30 40 50

v
O

U
T
 [

V
]

time [ns]

input

generic amplifier

pure three-pole amplifier

Figure 6. Time-domain behavior of two three-pole amplifiers in response to a unity step input. The
two amplifiers are designed with the same GBW and separation factors.

The details, in terms of settling time and NST, are reported in Table 1 for the two
amplifiers. As expected, the approach for the optimization of the ‘generic amplifier’
produces a time response nearly as fast as the time response of the pure three-pole one.

Table 1. Evaluation of the settling time, ts, for the generic amplifier and for the pure three-pole
amplifier, at different accuracy levels. The amplifiers are designed setting K̂e = 8/3 and K̂i = 9/4.
The NST is also reported for an effective comparison.

ε Generic Amplifier Pure Three-Pole Amplifier
% ts (ns) (NST [–]) ts (ns) (NST [–])

1.0 20.4 (0.44) 23.5 (0.51)
0.5 21.8 (0.41) 25.3 (0.48)
0.2 30.4 (0.49) 29.2 (0.47)
0.1 35.8 (0.52) 40.4 (0.58)

2.4. Extension to Slew-Rate Modeling

Slew-rate effects in operational amplifiers can be included using the simple model
introduced in [31] and analyzed in detail in [28].

The model assumes that the slew-rate limitation is in the first stage of the amplifier
and, in particular, that it depends on the capacitor that determines the dominant pole. If
this assumption is not satisfied, the amplifier can experience a positive feedback connection
during its slewing period that degrades its speed performance and results in an inefficient
design. In a good design, this inefficiency must be avoided either using slew-rate enhancers
or class-ab topologies [30,32,33] in the stages placed after the first one.

As a second constraint, the model assumes that the amplifier is designed so to exhibit
NST ≤ 1 in small-signal condition. In our case, this simply means that the amplifier can be
designed in the optimum bias point set by (K̂e, K̂i) = (8/3, 9/4).
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If the two assumptions described above are satisfied, the dimensionless settling time
of the amplifier is bounded by

t̂s ≤


| ln ε| for

∣∣∣∣∆Y
ν

∣∣∣∣ < 1

| ln ε|+ ∆Y
ν
−
(

1 + ln
∆Y
ν

)
for
∣∣∣∣∆Y

ν

∣∣∣∣ ≥ 1
(22)

where ∆Y is the output step voltage of the amplifier and

ν =
Io1

βGm1
(23)

defines the equivalent saturation limit of the first stage, expressed in terms of its maximum
short-circuit output current, Io1, of its small-signal transconductance, Gm1, and of the
overall feedback factor, β.

Also, in this case, to compare different settling-times at different accuracy levels, ε,
we can define the NST by normalizing the settling time of the amplifier under test with
respect to the small-signal settling time of a single-pole amplifier with the same GBW. From
this definition and considering (10), the NST comes from dividing (22) by | ln ε|, i.e.,

NST ≤


1 for

∣∣∣∣∆Y
ν

∣∣∣∣ < 1

1 +
∆Y
ν −

(
1 + ln ∆Y

ν

)
| ln ε| for

∣∣∣∣∆Y
ν

∣∣∣∣ ≥ 1

. (24)

3. The Design Strategy with Settling-Time Constraints

In this section, we propose a design strategy based on settling-time constraints. It
relies on two design equations. The first design equation is represented by the system
in (20) and refers to the small-signal behavior. Using this system of equations, we guarantee
that the small-signal settling time of the amplifier is less than (or comparable to) the settling
time of a single-pole amplifier with the same GBW.

The second design equation stems from the dimensionless settling time in (22) and
accounts for the large-signal effects in terms of slew-rate. Considering that t̂s = GBW · ts,
the settling-time constraint allows us to dimension the GBW from

GBW =
| ln ε|+ ∆Y

ν −
(

1 + ln ∆Y
ν

)
ts

, (25)

where the maximum possible value for ∆Y/ν must be considered. Considering (23) we
obtain that

∆Y
ν

= β
Gm1

Io1
∆Y. (26)

The feedback factor, β, is a parameter that is specified by the application and cannot
be freely chosen by the designer. In some particular cases the feedback factor can be
programmed in a range of values (i.e., in switched-capacitor circuits, β can be selected
by changing the connections of a proper array of capacitors) so that β = βmax must be
considered in the design equation.

Concerning the ratio Gm1/Io1, it depends on the quiescent point of the first stage and,
in the common case of a CMOS source coupled differential pair, it is

Gm1

Io1
=

Γ
2

, (27)

where Γ is the gm-over-ID ratio of the input transistors [34]. The plot of the gm-over-ID
versus the gate-source overdrive is reported in Figure 7 for two complementary devices
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of a 65-nm CMOS process. Other nanometer CMOS processes have similar plots with no
practical differences compared to the curves in Figure 7 [35]. Since, in the analog design
context, transistors are biased so that VGS ∼ VTH, the choice of the gm-over-ID ratio has a
limited range (typically, 8 V−1 ≤ Γ ≤ 16 V−1).

 0

 5

 10

 15

 20

 25

 30

 35

−0.4 −0.3 −0.2 −0.1  0  0.1  0.2  0.3  0.4

subthreshold region

saturation region

Γ
 =

 g
m

/I
D

 [
1

/V
]

VGS−VTH [V]

NMOS W/L=1.0/0.06

NMOS W/L=1.0/0.18

PMOS W/L=1.0/0.06

PMOS W/L=1.0/0.18

Figure 7. Plot of the gm-over-ID ratio versus VGS–VTH for two standard-threshold complementary
devices of a 65-nm CMOS process. The plots for two different channel lengths are shown. The darker
area identifies the subthreshold region. The lighter one, identifies the saturation region.

Finally, for the maximum output step, ∆Y, we can consider the highest possible value
set by the power supply, VDD.

From all these considerations, based on the required settling time, the GBW is dimen-
sioned according to

GBW =
| ln ε|+ β Γ

2 VDD −
[
1 + ln

(
β Γ

2 VDD

)]
ts

. (28)

The draft of the proposed design strategy is reported in the flow-chart in Figure 8.
More specifically, once that the GBW is determined based on the settling time specification,
the designer has two design equations that allows him to set two suitable parameters of
the OTA. The remaining parameters can be chosen freely or based on other constraints set
by noise, power dissipation or other critical figures of merit that, in general, depend on the
application or on the amplifier topology.

Known parameters are

VDD, CL, β, ts, ε

Choose the gm/ID (Γ) 

of the first stage

Evaluate 

the required GBW 

from (28)

With T(s) as in (19), determine 

ai and bj in terms of the OTA 

parameters (i.e., Gmi, Cj, etc.)

Use (20) with Ke=8/3 and Ki=9/4

for dimensioning two proper 

unknown parameters of the OTA

Figure 8. Flow-chart of the proposed design strategy.
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4. Design Example and Validation

To demonstrate and confirm the proposed design strategy, we apply it to the design of
an appropriate three-stage OTA for the switched-capacitor (SC) application depicted in
Figure 9.

φ1φ2

φ1
φ2IN

Cout

OUT

Cs

Cf

S1

S2S3

S4

(n-1)Ts

(n-1/2)Ts

nTs

(n-3/2)Ts

φ1

φ2

t

t

Figure 9. Forward-Euler SC integrator.

Here the circuit acts as a forward-Euler SC integrator and, assuming Ts is the sampling
period, it works as follows. During the sampling phase, φ1 at time t = (n − 1/2)Ts,
switches S1 and S2 close, the sampling capacitor, Cs, charges at the input voltage, vIN,
while the feedback capacitor, C f , maintains the charge processed at the previous time,
t = (n− 1)Ts. During the evaluation phase, φ2 at time t = nTs, the sampling capacitor, Cs,
discharges through the virtual ground node and transfers its charge to capacitor C f , thus
updating the output. The charge balance is represented by ∆QCs = ∆QC f and leads to

vOUT(n) = vOUT(n− 1) +
Cs

C f
vIN(n− 1/2), (29)

where we omitted the obvious dependance on the sampling period, Ts, and used the
equivalence vOUT(n− 1/2) = vOUT(n− 1).

During the sampling phase, φ1, the OTA does not change its output and remains in the
‘hold’ condition. During the evaluation phase, φ2, the output is fed back to the inverting
terminal by the voltage divider composed by C f and Cs so that the OTA experiences a
feedback factor β = C f /(Cs + C f ). At the same time, the OTA is loaded by an equivalent
capacitor given by CL = Cout +CsC f /(Cs + C f ). These two parameters shall be considered
during the design of the OTA.

In our design example, we assume that the capacitors of the integrator in the figure are
Cs = C f = Cout = 0.4 pF. Therefore, the OTA has to be designed considering CL = 0.6 pF
and β = 0.5. We assume that the integrator operates with a sampling frequency of 25 MHz
and that the target settling time is 20 ns within a 0.5% error. The power supply is VDD = 1 V.

We apply the design strategy to the transistor-level amplifier in Figure 10 made up
of a differential pair (M1–M5) and two common-source stages (M6–M7 and M8–M9). The
compensation is achieved through capacitors CC1 and CC2, using a modified Reverse
Nested-Miller Compensation, named RNMC-ICBFF. More specifically, capacitor CC2 is
connected between the output and the input nodes of the second stage. Capacitor CC1 is
connected between the output of the third stage and the input of the second one. In this
latter connection the mandatory signal inversion is accomplished through the Inverting
Current Buffer (ICB) made up of the current mirror M3–M4. Transistor M9, which provides
the bias current to the third stage, acts also as a feed-forward (FF) stage, Gmf.

The slew-rate enhancer, M10, is added in parallel to M9 to improve the SR performance
at the output node during negative steps. Since M10 is a high-threshold transistor, it is
normally off in bias condition. When node v2 goes high and M8 switches off, M10 switches
on and sinks the extra current required by the load.
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Figure 10. Transistor-level schematic of a three-stage OTA compensated with the Reversed Nested-
Miller Compensation with Inverse Current Buffer and Feed-Forward stage (RNMC-ICBFF).

Using the equivalent block schematic in Figure 11, we evaluate the open-loop trans-
fer function of the amplifier. Neglecting the contributions of transconductors’ output
resistances and parasitic capacitors, it takes the form in (19) where

GBW =
βGm1

CC1
, (30a)

a1 =
CC2

Gm3

(
1− Gm3

Gm2
+

CL

CC1
+

Gmf
Gb

)
, (30b)

a2 =
CC2CL

Gm3Gb
, (30c)

b1 =
CC1

2Gb
+

(
Gmf
2Gb
− Gm3

Gm2

)
CC2

Gm3
, (30d)

b2 = − CC1CC2

2GbGm3

(
1 +

Gm3

Gm2

)
. (30e)

CC1

Gb

ib

ib

ICB

Gm1/2

vin

vout

CL

CC2

v1
v2

Gm2
Gm3

Gmf

Gb

ib

ib

ICB

v1

Figure 11. Block schematic of a three-stage OTA compensated with the Reversed Nested-Miller
Compensation with Inverse Current Buffer and Feed-Forward stage (RNMC-ICBFF). Referring to the
block schematic in Figure 1a, we can identify (1) the block responsible for the dominant pole and
the GBW of the amplifier (light-yellow area); (2) the internal block with two real poles (light-green
area); (3) the internal feedback across the internal block (light-red area). The overall feedback that
will connect the output vout to the input vin is not drawn.

For the input transistors of the differential pair we choose Γ = 16 V−1 and, just for
simplifying the design, the same value is adopted for the gm-over-ID of all the remaining
transistors of the amplifier. Then, using (28), we obtain the minimum required GBW of
55 MHz. Observe that, in case of nanometer technologies, due to the low transistor intrinsic
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gain (gmrd ∼ 10), Equation (30a) overestimates the actual GBW that, in this specific case, is
better approximated by

GBW =
βGm1

CC1
· 1

1 + CC2/CC1
Gm3Ro3

, (31)

being Ro3 the output resistance of the third stage. To make up for this error, which can be
as high as 20%, we dimension the GBW by increasing the value obtained from (28) by 20%.
Hence, we consider GBW = 66 MHz in our design equations.

The condition of making the same gm-over-ID ratio implies that transistors that share
the same current have the same transconductance or, in other words, that Gb = Gm1 and
Gm3 = Gmf. Therefore, defining

n =
Gm3

Gm2
, (32)

m =
Gmf
Gb

=
Gm3

Gm1
, (33)

T =
CC2

Gm3
GBW, (34)

χ =
CL

CC1
, (35)

we write the following normalized coefficients

a1GBW = (1− n + m + χ)T, (36a)

a2GBW2 = βχT, (36b)

b1GBW =
β

2
−
(

n− m
2

)
T, (36c)

b2GBW2 = − β

2
(1 + n)T, (36d)

that can be substituted in (20) to obtain

K̂e =
(1 + b1GBW)2

a1GBW + b2GBW2 =

[
1 + β

2 −
(
n− m

2
)
T
]2[

1− n + m + χ− β
2 (1 + n)

]
T

, (37a)

K̂i =

(
a1GBW + b2GBW2

)2

a2GBW2(1 + b1GBW)
=

[
1− n + m + χ− β

2 (1 + n)
]2

T

βχ
[
1 + β

2 −
(
n− m

2
)
T
] (37b)

where K̂e = 8/3 and K̂i = 9/4.
Setting different values for n and m, we use MATLAB to solve (37) for T and χ and to

evaluate the remaining amplifier parameters from

CC1 =
CL

χ
, (38a)

Gm1 = Gb =
CC1

β
GBW, (38b)

Gm3 = Gmf = mGm1, (38c)

Gm2 =
Gm3

n
, (38d)

CC2 =
T

GBW
Gm3. (38e)
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The results of the dimensioning procedure are reported in Table 2 for different val-
ues on n and m. The table reports also the estimated current dissipation of the OTA
as IDD = (2Gm1 + Gm2 + Gm3)/Γ, the Figure-of-Merit (FOM) that computes the speed-
dissipation-load trade-off as FOM = GBW · CL/(VDD · IDD) and, neglecting the flicker
noise for the sake of simplicity, the square root of the input noise spectral density, estimated
as Sn = 2 · 4KT(2/3)(1/Gm1)(1 + Gm1/Gb). As it can be observed, if the noise is satisfac-
torily to our application, the best choice in terms of current dissipation and FOM is the
design corresponding to the row with n = 1 and m = 4.

Table 2. Results of the dimensioning procedure.

n m Gm1,Gb Gm2 Gm3,Gmf CC1 CC2 IDD FOM Noise
– – (µA/V) (µA/V) (µA/V) (pF) (pF) (µA) (–) (nV/Hz

1
2 )

1 1 2000 2000 2000 2.40 2.40 500 0.50 4.70
1 2 464 929 929 0.56 0.51 174 1.42 9.76
1 3 252 756 756 0.30 0.27 126 2.00 13.2
1 4 172 687 687 0.21 0.18 107 2.29 16.0
2 1 663 332 663 0.80 1.33 145 1.71 8.16
2 2 6611 6611 13221 7.97 17.7 2066 0.12 2.58
2 3 658 987 1975 0.79 1.14 267 0.93 8.19
2 4 309 619 1239 0.37 0.45 155 1.62 11.9

We design the circuit in the Cadence environment and the corresponding transistors’
aspect ratios are reported in Table 3.

Table 3. Transistors’ aspect ratios for the RNMC-ICBFF OTA.

Transistor Aspect Ratio

M1 *, M2 * 2.5/0.12
M3, M4 2.2/0.25

M5 8/0.25
M6, M9 8.8/0.25

M7 16/0.25
M8 9.4/0.12

M10 ** 10/0.12
MB 4/0.25

* Low-voltage transistors; ** High-voltage transistors.

The open-loop gain of the circuit in Figure 9 is simulated and reported in Figure 12 in
terms of Bode diagram. The reported GBW is 62 MHz with a phase margin of 61 deg.

All the following transient simulations deal with the time response of the SC inte-
grator during the evaluation phase, φ2. In particular, all the steps are referred to the
output signal and are centered around the analog ground, VAGND = VDD/2 = 0.5 V.
This means that to simulate an output step of ∆V = +100 mV, we first precharge the
output node at vOUT(n− 1) = VAGND − ∆V/2 = 0.45 V and then we apply a constant in-
put signal vIN = (C f /Cs)∆V. In this manner, from (29), the output jumps at vOUT(n) =
vOUT(n− 1) + ∆V = 0.55 V.

The output step responses of the closed-loop amplifier to different step amplitudes
are shown in Figure 13. Figure 13a,b depict the transient behavior of a ±100-mV output
step for the rising edge and the falling one, respectively. The simulated settling-times
are 12.2 ns (NST = 0.92) and 15.0 ns (NST = 1.13), respectively, for an accuracy level of
0.5%. Figure 13c,d show the transient behavior of a ±800-mV output step. In this case,
the signal excursion is close to the rail-to-rail situation but still ensuring that no transistor
exit from the saturation region. As expected, the slew-rate increases the 0.5% settling time
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up to 13.2 ns (NST = 0.99) and 17.8 ns (NST = 1.34), for the rising edge and the falling
one, respectively.
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Figure 12. Bode diagram of the open-loop gain of the circuit in Figure 9.

Figure 14 shows the plot of the 0.5% settling time versus the step amplitude at the
output node. The curve of the single-pole case, evaluated from (22), is also reported. As
expected, for the rising edge, the settling time remains well below the single-pole limit up
to 0.9 V. Above this value, some transistors enter the triode region, and the settling time
goes out specifications. The falling output step suffers from slew-rate limitation at the
output node. This is mitigated by the SR enhancer that allows the settling time to follow
the single-pole limit up to 0.9 V, also in this case.
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(a) Output step ∆V = +100 mV.
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(b) Output step ∆V = −100 mV.
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(c) Output step ∆V = +800 mV.
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(d) Output step ∆V = −800 mV.

Figure 13. Transient simulation of the closed-loop OTA compensated with the RNMC-ICBFF. The
steps are centered around VAGND = 0.5 V and are related to the output voltage by ∆V = vOUT(n)−
vOUT(n− 1).
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Figure 14. Settling time versus output step amplitude for the closed-loop amplifier compensated
with the RNMC-ICBFF. The plot shows also the single-pole limit evaluated using (22) with (9).

A 400-run Monte-Carlo simulation is performed to estimate how the circuit behaves
under both global and local process variations. The results are condensed in the histograms
in Figure 15. Figure 15a,b refer to the ±100-mV output step cases. Figure 15c,d refer to the
±800-mV output step cases. Except for a small number of samples in the 800-mV falling
step case (Figure 15d), all the runs fall inside the settling-time specifications of 20 ns, a very
good result considering that the circuit was not designed to be robust against process
variations. However, it is easy to extend the design strategy to the worst-case corner of a
PVT scenario or to integrate it with the approach described in [29].
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Figure 15. Monte-Carlo simulation of the settling time of the closed-loop OTA compensated with the
RNMC-ICBFF.
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5. Conclusions

In this paper, we provided an analytical design criterion for the optimization of
the small-signal settling time in a three-stage amplifier, based on making equal the two
exponential decays of the step response. Included the slew-rate effects to the design
criterion we carried out a design strategy that was used to design a three-stage OTA from
settling-time specifications. Extensive time-domain simulations confirmed the validity of
the proposed design strategy.
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Appendix A. Global Separation Factors

Closing in feedback the pure three-pole system in (4) leads to the following closed-loop
transfer function

G(s) =
G0

1 + c1s + c2s2 + c3s3 , (A1)

where

c1 =
1

GBW
, (A2a)

c2 =
1

Ke GBW2 , (A2b)

c3 =
1

K2
e Ki GBW3 . (A2c)

In this situation, the two separation factors can be evaluated from the coefficients of
the closed-loop transfer function as

Ke =
c2

1
c2

, (A3a)

Ki =
c2

2
c1c3

. (A3b)

In the case of a generic three-pole amplifier, the transfer function includes two zeros
in the loop gain, as in (19), and the resulting closed-loop transfer function is

G(s) = G0
1 + b1s + b2s2

1 + c1s + c2s2 + c3s3 (A4)
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where

c1 =
1

GBW
+ b1, (A5a)

c2 =
a1

GBW
+ b2, (A5b)

c3 =
a2

GBW
. (A5c)

As long as the GBW remains below the zeros of G(s) we can assume that the amplifier
time response is mainly determined by the poles of its closed-loop transfer function.
This consideration allows us to define the equivalent or global separation factors using the
coefficients of its closed-loop gain, as we did in (A3), so that

K̂e =
c2

1
c2

=
(1 + b1GBW)2

a1GBW + b2GBW2 , (A6a)

K̂i =
c2

2
c1c3

=

(
a1GBW + b2GBW2

)2

a2GBW2(1 + b1GBW)
. (A6b)

Therefore, we can optimize the step response of the generic three-pole amplifier by
design the amplifier so that K̂e = 8/3 and K̂i = 9/4. Once again, since the coefficients are
normalized with respect to the GBW, the optimization will affect the dimensionless settling
time, only.
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