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Abstract: A basic but expensive operation in the implementations of several famous public-key
cryptosystems is the computation of the multi-scalar multiplication in a certain finite additive
group defined by an elliptic curve. We propose an adaptive window method for the multi-scalar
multiplication, which aims to balance the computation cost and the memory cost under register-
constrained environments. That is, our method can maximize the computation efficiency of multi-
scalar multiplication according to any small, fixed number of registers provided by electronic devices.
We further demonstrate that our method is efficient when five registers are available. Our method
is further studied in detail in the case where it is combined with the non-adjacent form (NAF)
representation and the joint sparse form (JSF) representation. One efficiency result is that our method
with the proposed improved NAF n-bit representation on average requires 209n/432 point additions.
To the best of our knowledge, this efficiency result is optimal compared with those of similar methods
using five registers. Unlike the previous window methods, which store all possible values in the
window, our method stores those with comparatively high probabilities to reduce the number of
required registers.

Keywords: public-key cryptosystem; multi-scalar multiplication; adaptive window method; non-
adjacent form (NAF); joint sparse form (JSF); register-constrained environment

1. Introduction

The notations in Table 1 are used throughout this paper, often without further defini-
tion. Others are defined where they are first used and in Appendix A.

A basic but expensive operation in the implementations of several famous public-
key schemes, for instance, Digital Signature Algorithm (DSA) [1], Elliptic Curve Digital
Signature Algorithm (ECDSA) [2], and the Schnorr signature scheme [3], is the computation
of the multi-scalar multiplication in a certain finite additive group defined by an elliptic
curve or the multi-exponentiation in a certain finite multiplication group. Moreover,
many public-key protocols, such as [4–7], also require one or more of the multi-scalar
multiplication/multi-exponentiation operations.

For a better understanding of this, we adopt the symbol system of the multi-scalar
multiplication herein. Without loss of generality, all techniques discussed in this paper can
also be directly applied to the computation of the multi-exponentiation. The multi-scalar
multiplication can be written as follows: given two integers x and y, and points A ∈ E

(
Fq
)

and B ∈ E
(

Fq
)
, compute xA + yB. Due to the large operands, the computation of the

multi-scalar multiplication requires a large number of processing steps and is thus time
consuming. Since cryptographic implementations on embedded devices provided with
little computation and memory power are often desired, a challenging problem is how to
reduce the costs for the computation of the multi-scalar multiplication.
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Table 1. Description of notations.

Term Definition

Fq Finite field with q elements
E
(

Fq
)

Elliptic curve group E defined over a finite field Fq
O The point at infinity on E

(
Fq
)

A, B Any two points on E
(

Fq
)

A + B The point addition applied to A ∈ E
(

Fq
)

and B ∈ E
(

Fq
)

2A The point doubling applied to A ∈ E
(

Fq
)
, i.e., A + A

xA The scalar multiplication by an integer x applied to A ∈ E
(

Fq
)
, i.e.,

A + A + . . . + A︸ ︷︷ ︸
x times

(xn−1xn−2 · · · x0)2, (yn−1yn−2 · · · y0)2 The binary representations of the integers x and y

(xn−1xn−2 · · · x0)SD,(yn−1yn−2 · · · y0)SD
Any signed binary representations of the integers x and y, i.e.,

xi, yi ∈ {−1, 1, 0}
(xn−1xn−2 · · · x0)NAF,(yn−1yn−2 · · · y0)NAF The non-adjacent form (NAF) representations of the integers x and y(

xn−1xn−2 · · · x0
yn−1yn−2 · · · y0

) The signed sequence pair of the integers x and y, where xn−1xn−2 · · · x0 and
yn−1yn−2 · · · y0 are, respectively, the certain signed binary representations of

the integers x and y

n The bit length of the integers x and y using the binary representations or the
signed binary representations

1̂ Any bit −1 or 1

w(n) The performance factor of a certain multi-scalar multiplication algorithm, i.e.,
the number of point additions required by the algorithm

wST(n) The performance factor of Shamir’s trick using the binary representation
wNAF−4(n) The performance factor of Shamir’s trick using the NAF representation

wJSF−4(n)
The performance factor of Shamir’s trick using the joint sparse form

(JSF) representation

wBNAF−5(n)
The performance factor of the 5-register adaptive window method using the

NAF representation

wINAF−5(n)
The performance factor of the 5-register adaptive window method using the

improved NAF representation

wJSF−5(n)
The performance factor of the 5-register adaptive window method using the

JSF representation
Pr(EV) The probability that the event EV occurs

Pr(EV1|EV2) The conditional probability of the event EV1 given the event EV2

1.1. Previous Work

Obviously, we can separately compute the scalar multiplication values xA and yB,
and then add them together. Gordon [8] surveyed the key techniques for the computation
of the scalar multiplication. However, since the public-key cryptosystems do not require
the intermediate values xA and yB, Shamir [9] suggested a simple but efficient trick
for speeding up the multi-scalar multiplication by doing the two scalar multiplications
simultaneously. Figure 1, describes Algorithm Shamir’s trick. Indeed, start from C ← O

in Step 2. In Step 3, scan the bit pair of
(

xi
yi

)
for i = n− 1, n− 2, . . . , 1 simultaneously

from left to right. In Step 3.1, always do C ← 2C and it means that this step requires n− 1

point doublings. Then, if the current bit pair of
(

xi
yi

)
are

(
1
0

)
,
(

0
1

)
, or

(
1
1

)
, add

by A, B, or A + B in Step 3.2 accordingly. For example, to compute 51A + 169B, write the
binary expansion of 51 and 169 as 51 = (00110011)2 and 169 = (10101001)2 and apply the
rules above so that the successive values of C are at each step O, B, 2B, A + 5B, 3A + 10B,
6A + 21B, 12A + 42B, 25A + 84B, and finally 51A + 169B.
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Figure 1. Algorithm Shamir’s trick.

It needs to be pointed out that more sophisticated techniques can potentially improve
Step 3.2 to reduce the number of point additions. The value w(n) is equal to the number of

bit pairs
(

xi
yi

)
, in which at least one bit, i.e., xi or yi, is nonzero. It therefore implies that

the performance factor is

wST(n) =
3n
4

(1)

on average.
Based on the frame of Shamir’s trick, the improved multi-scalar multiplication algo-

rithms are divided into two categories. The first category codes the integers x and y so

that the number of zero bit pairs, i.e.,
(

xi
yi

)
=

(
0
0

)
, increases. Whereas the binary

representation for an integer is unique, the signed binary representation by −1, 1, and 0 is
not. Since the cost of computing the inverse of a point is negligible compared to the point
addition over the elliptic curve group, the improved multi-scalar multiplication algorithms,
detailed in [10–17], require only one extra register to store the value A –B in Step 1 of
Algorithm Shamir’s trick in Figure 1. The NAF representation [18,19] is optimal for one
integer. The performance factor wNAF−4(n) can be improved to 5n/9 on average, when the
algorithm uses the NAF representation instead. The JSF [11] is the optimal signed binary
representation for two integers. The performance factor wJSF−4(n) can further hit n/2 on
average, when the algorithm uses the JSF representation instead. Due to its optimality
property, a disadvantage of the coding approach is that the best performance factor cannot
exceed the value wJSF−4(n). The second category, in contrast, scans and processes the w-bit
pair in Step 3.2 of Algorithm Shamir’s trick in Figure 1, where w is an integer, and w > 1.
To reduce the number of point additions, all possible values for w-bit pairs should be
pre-computed and stored in Step 1 of Algorithm Shamir’s trick in Figure 1. Certainly, the
wide scanning approach [20–25], including the m-ary method and the sliding window
method, always combines with the coding approach, such as the NAF representation and
the JSF representation, in practice. However, the approach requires a large number of extra
registers to store all possible values for w-bit pairs, even with a moderate w.

Finally, some works [26,27] are dedicated to presenting the parallel algorithms for the
multi-scalar multiplication, because the chip manufacturers are increasing the number of
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cores inside the processors. Other works [28,29] focus on the algorithms to speed up a
group of the multi-scalar multiplications under cryptosystem configurations.

1.2. Motivation and Contribution

As low-cost computing devices, such as smartcards and RFID tags, are becoming
ever more pervasive, new security threats are growing very quickly. However, these
devices cannot always provide enough computation, memory, and electric power resources
to implement the standard public-key schemes. We give several examples of potential
crypto-oriented devices under register-constrained environments. One example is the
ATmega128, which is part of the megaAVR family from Atmel [30] and has been widely
used in embedded systems, automotive environments, and sensor-node applications. The
ATmega128 features 128 KB of flash memory and 4 KB of internal SRAM. Additionally,
it has only 32 8-bit general-purpose registers (R0 to R31) and the 16-bit result is stored in
the registers R0 (lower word) and R1 (higher word). Another example is the ARM7TDMI
(ARM7 Thumb Debug Multiplier ICE) [31], which was introduced by ARM in 1994 and
has been used in a wide range of applications, e.g., mobile devices produced by Nokia
and Motorola, Apple’s iPod, video game consoles integrated by companies such as SEGA
and Sony, routers, and automobile systems. For the standard ARM operating mode, 16
general-purpose registers (R0 to R15) are available to users. In the Thumb mode, only
eight registers are available, i.e., R0 to R7, which in general limits the applicability for
many cryptographic algorithms. Moreover, even if these devices will be more powerful
as a result of Moore’s Law, the manufacturer may still prefer those that are less powerful
but more cost competitive. As a result, cryptographic engineers are always faced with a
situation where the number of available registers is not sufficient for the ideal cryptographic
implementation of multi-scalar multiplication.

Therefore, under register-constrained environments, this paper focuses on the design
and analysis of the multi-scalar multiplication algorithms, which can flexibly improve the
computation efficiency based on the available registers. We present an adaptive window
method, which codes the integers x and y in the forms such as the NAF. Our adaptive
window method can practically improve the computation efficiency of multi-scalar mul-
tiplication according to the small, fixed number of the registers provided by the register-
constrained computing devices. To illustrate this, we further give an example with five
registers. To be more precise, we consider the 5-register adaptive window method using
the NAF and JSF, respectively. Additionally, the computational complexity is analyzed by
modeling the scan process as the Markov chain. Furthermore, the performance factor for
the adaptive window method using our improved NAF representation can achieve

wINAF−5(n) =
209n
432

, (2)

on average, which is slightly smaller than using the JSF representation. To the best of our
knowledge, when only five registers are allowed, our method with the improved NAF rep-
resentation is the most efficient one for the computation of the multi-scalar multiplication.

2. Adaptive Window Method

Assume that the register-constrained computing devices can provide t registers for the
computation of multi-scalar multiplication. Figure 2 describes the Algorithm adaptive win-
dow method. The integers x and y are coded by a certain signed binary representation, i.e.,

x =
n−1

∑
i=0

xi2i = (xn−1xn−2 · · · x0)SD (3)

and

y =
n−1

∑
i=0

yi2i = (yn−1yn−2 · · · y0)SD, (4)
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where xi, yi ∈ {−1, 1, 0}. Let w denote the window size. In Step 3 of Algorithm Adaptive
window method in Figure 2, scan x and y in the ordinary signed binary representations
from left to right for the largest bit(s) pair within the window such that the pair has a value
already precomputed in Step 1 and its first 1-bit sub-pair is nonzero.
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To compute the multi-scalar multiplication, previous window methods require to
store all possible values for w-bit pairs. However, our adaptive window method merely
pre-computes and stores part of the values for these pairs (See Step 1 of Algorithm Adaptive
window method in Figure 2), when the available registers (whose number is denoted by t)
are not enough. Thus, our method may spend more than one point addition for w-bit pairs
using Steps 3.1 and 3.2 of Algorithm Adaptive window method in Figure 2. Obviously, to
reduce the number of point additions as much as possible, Step 1 of Algorithm Adaptive
window method in Figure 2 should select the pairs with comparatively high probabilities

in the signed sequence pair
(

xn−1xn−2 · · · x0
yn−1yn−2 · · · y0

)
and store their corresponding values.

As a result, the achievement of our adaptive window method is that the computation
efficiency of the multi-scalar multiplication can be flexibly improved according to the
registers provided by the register-constrained computing devices. Comparatively, previous
window methods require the fixed number of registers based on the window size w.

Compared with Shamir’s trick using the NAF representation or the JSF represen-
tation, Algorithm Adaptive window method in Figure 2 at least requires five registers
to improve the computation efficiency of the multi-scalar multiplication. Therefore, in
the next section, we provide an example of the adaptive window method. That is, a de-
tailed design and analysis for t = 5 is presented with the NAF representation and the JSF
representation, respectively.

3. A Case Study: Adaptive Window Method for Five Registers
3.1. Using NAF Representation

Algorithm The 5-register algorithm using the non-adjacent form (NAF) representation
in Figure 3 illustrates the basic version of the adaptive window method combined with
the NAF representation, when five registers are available. In this case, we find that
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the pairs
(

1̂
0

)
,
(

0
1̂

)
,
(

1̂
1̂

)
,
(

1
0

0
1

)
, and

(
−1
0

0
−1

)
have comparatively high

probabilities in the NAF sequence pair
(

xn−1xn−2 · · · x0
yn−1yn−2 · · · y0

)
on average. Hence, Step 1 of

Algorithm The 5-register algorithm using the non-adjacent form (NAF) representation in
Figure 3 correspondingly requires the values A, B, A + B, A− B, and 2A + B. Additionally,

Step 3 scans and collects the pairs
(

1̂
0

)
,
(

0
1̂

)
,
(

1̂
1̂

)
,
(

1
0

0
1

)
, and

(
−1
0

0
−1

)
in the NAF sequence pair

(
xn−1xn−2 · · · x0
yn−1yn−2 · · · y0

)
and then computes their corresponding

values. For example, to compute 51A + 169B, write the NAF expansion of 51 and 169
as 51 = (010− 1010− 1)NAF and 169 = (10101001)NAF and apply the defined rules in
Steps 1, 3.1, 3.2, 3.3, 3.4, 3.5, and 4 so that the successive values of C are at each step O, B,
2A + 5B, 3A + 10B, 6A + 21B, 13A + 42B, 26A + 84B, and finally 51A + 169B.
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Due to the frame of Shamir’s trick, the above 5-register algorithm still requires n− 1
point doublings. Thus, we only need to consider its performance factor, which directly
determines the number of point additions. We have the following result.

Theorem 1. The performance factor of Algorithm The 5-register algorithm using the non-adjacent
form (NAF) representation in Figure 3 is

wBNAF−5(n) =
n
2

(5)

on average, when n→ ∞ .
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The proof of Theorem 1 appears in Appendices B and C.
According to Theorem 1, the basic version of the above 5-register algorithm has the

same performance factor as that of Shamir’s trick coupled with the JSF representation,
which merely needs four registers. However, the basic version can be further improved to
reduce its performance factor. We propose the recoding rules for the input NAF sequence

pair
(

xn−1xn−2 · · · x0
yn−1yn−2 · · · y0

)
as follows:

Rule A1.
(

1 0 −1
0 −1 0

)
→
(

0 1 1
0 −1 0

)
;

Rule A2.
(
−1 0 1
0 1 0

)
→
(

0 −1 −1
0 1 0

)
;

Rule A3.
(

0 1 0
1 0 −1

)
→
(

0 1 0
0 1 1

)
;

Rule A4.
(

0 −1 0
−1 0 1

)
→
(

0 −1 0
0 −1 −1

)
;

Rule A5.
(

1 0 −1 0
0 0 0 1

)
→
(

0 1 1 0
0 0 0 1

)
;

Rule A6.
(
−1 0 1 0
0 0 0 −1

)
→
(

0 −1 −1 0
0 0 0 −1

)
;

Rule A7.
(
−1 0 1 0
0 −1 0 −1

)
→
(

0 −1 −1 0
0 −1 0 −1

)
;

Rule A8.
(

1 0 −1 0
0 1 0 1

)
→
(

0 1 1 0
0 1 0 1

)
.

After Step 1 of Algorithm The 5-register algorithm using the non-adjacent form (NAF) rep-

resentation in Figure 3, the improved 5-register algorithm converts
(

xn−1xn−2 · · · x0
yn−1yn−2 · · · y0

)
into

(
x′n−1x′n−2 · · · x′0
y′n−1y′n−2 · · · y′0

)
by replacing according to the above recoding rules from left

to right. If the replacement is due to Rule A1, A2, A3, or A4, then discard the left two
columns that have been replaced and consider the next three or four columns for fu-
ture replacement. If a replacement is due to Rule A5, A6, A7, or A8, then discard all
columns that have been replaced and consider the next three or four columns for future
replacement. If no replacement is possible, then discard one column and consider the
next three or four columns for future replacement. The improved version of the 5-register
algorithm is fully the same as its basic version except for the replacement operation by
above recoding rules. For example, to compute 51A + 169B, write the NAF expansion
of 51 and 169 as 51 = (010− 1010− 1)NAF and 169 = (10101001)NAF, apply Rule A3 so
that 51 = (0100− 1− 10− 1) and 169 = (10101001), and further use Steps 1, 3.1, 3.2, 3.3,
3.4, 3.5, and 4 of Figure 3 so that the successive values of C are at each step O, B, 2A + 5B,
4A + 10B, 7A + 21B, 13A + 42B, 26A + 84B, and finally 51A + 169B. We further have the
following result.

Theorem 2. The performance factor of the improved Algorithm The 5-register algorithm using the
non-adjacent form (NAF) representation in Figure 3 is about

wINAF−5(n) =
209n
432

(6)

on average, when n→ ∞.

The proof of Theorem 2 appears in Appendix D.



Electronics 2021, 10, 605 8 of 17

3.2. Using JSF Representation

Assume that the JSF representation [11] is used for the integers x and y as the inputs
of Algorithm Adaptive window method in Figure 2. Additionally, assume that the window
size w = 2 in Algorithm Adaptive window method in Figure 2. According to the proper-

ties of the JSF representation, all possible 1-bit and 2-bit pairs are
(

0
0

)
,
(

1̂
0

)
,
(

0
1̂

)
,(

1̂
1̂

)
,
(

1 0
0 1

)
,
(
−1 0
0 −1

)
,
(

1 0
0 −1

)
,
(
−1 0
0 1

)
,
(

0 1
1 0

)
,
(

0 −1
−1 0

)
,(

0 1
−1 0

)
,

(
0 −1
1 0

)
,

(
1 1
1 0

)
,

(
−1 −1
−1 0

)
,

(
1 1
−1 0

)
,(

−1 −1
1 0

)
,
(

1 0
1 1

)
,
(
−1 0
−1 −1

)
,
(
−1 0
1 1

)
, and

(
1 0
−1 −1

)
in the JSF se-

quence pair
(

xn−1xn−2 · · · x0
yn−1yn−2 · · · y0

)
. Therefore, the values A, B, A + B, A − B, 2A + B,

2A − B, A + 2B, A − 2B, 3A + 2B, 3A − 2B, 2A + 3B, and 2A − 3B can be selectively
pre-computed and stored during Step 1 of Figure 2. Now, we can consider designing the
5-register algorithm using the JSF representation. In fact, if the NAF is replaced with the
JSP, then Algorithm The 5-register algorithm using the non-adjacent form (NAF) represen-
tation in Figure 3 is a 5-register algorithm using the JSF representation. We can obtain the
following result.

Theorem 3. The performance factor of the 5-register algorithm using the JSF representation is

wJSF−5(n) =
31n
64

. (7)

on average, when n→ ∞ .

The proof of Theorem 3 appears in Appendices E and F.
Unlike the NAF, no recording rule is found in the JSF, and thus no further improvement

can be provided.

4. Experiments and Comparison

For performance evaluation, we have simulated the adaptive window method and
other similar methods in the Visual C++ platform. Those methods include Shamir’s trick
using, respectively, the NAF representation and the JSF representation, and the interleaving
method using the w-NAF [21,32]. Here, we only consider the multi-scalar multiplication
algorithms, which require at most five registers in the pre-computation process. For the
multi-scalar multiplication xA + yB, we assume that the bit lengths of integers x and y
using any representation are all n. To compare the number of point additions in terms of
bits, a performance factor constant is defined as the ratio of the performance factor w(n)
to the bit length n, i.e., w(n)/n. During the experiments, we generate randomly 1,000,000
pairs of 160-bit integers and calculate the performance factor constant for each method. The
results are summarized in Table 2. In the 5-register case, the experiments on the adaptive
window method using Ruan-Katti’s representation [14] are also conducted for comparison.
However, the improvement from Ruan-Katti’s representation is not so much as from the
NAF and JSF representations.

The asynchronous method [23] mandatorily requires six or eight registers. When
six registers are available, the asynchronous method is actually the same as the adaptive
window method using the NAF representation. Additionally, the asynchronous method
using eight registers is the corresponding sliding window method [21] with the window
size w = 2. Hence, the asynchronous method can be treated as a special case of the
adaptive window method. The interleaving method using the w-NAF is not directly
suitable for optimizing computation efficiency based on the available registers. If all five
available registers are required to be used, Shamir’s trick with the 4-NAF and 1-NAF
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interleaving is the only choice. However, it makes no sense, since its performance factor
constant is 8/15, even larger than that of Shamir’s trick with the 3-NAF interleaving
(See Table 2). When five registers are available, the adaptive window method using our
improved NAF representation requires the least number of point additions compared to
the known methods.

Table 2. Comparison with the related methods.

Algorithms Number of Registers Performance Factor Constant
Theoretical Value

Performance Factor Constant
Experimental Value

Figure 3 5 1/2 = 0.5 0.499962
Figure 3 with our improved NAF 5 209/432 ≈ 0.483796 0.483781

Figure 3 using JSF 5 31/64 = 0.484375 0.484313
Shamir’s trick with NAF 4 5/9 = 0.555556 0.555466
Shamir’s trick with JSF 4 1/2 = 0.5 0.500036

Shamir’s trick with 3-NAF
interleaving [32] 4 1/2 = 0.5 0.500014

We also verify the efficiency results in the real mobile phone. We use Eclipse to edit the
Java code and the C code of those five algorithms in Table 2. Additionally, JNI (Java Native
Interface) is employed to realize the interaction between the C code and the Java code. The
interaction process of the five algorithms’ codes is shown in Figure 4. Here, the C code is
responsible for operating the CPU registers of the five algorithms. We then use Android
Studio to implement them in the Android 10 system. For those five algorithms, the elliptic
curve group is based on NIST’s P-192 curve [1]. For each algorithm, the computation of
1,000,000 multi-scalar multiplications is carried out, and the average value of the running
time is taken as the final result (see Figure 5). It can be seen that the efficiency results
achieved on the physical device are basically consistent with our theoretical expectation.
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5. Future Work

Three possible directions for future improvement are as follows.
(1) The optimal signed binary representation for the adaptive window method. In

practice, the improved NAF representation in Section 3.1 can achieve the minimal perfor-
mance factor among all well-known representations. However, we still do not know how
to find the one with the best performance factor among all signed binary representations.
Hence, it remains an open problem to find the optimal one for the adaptive window method
with a fixed number of registers.

(2) The on-line strategy for the adaptive window method. To compute the multi-
scalar multiplication xA + yB, the m-ary method and the sliding window method need to
pre-compute and store all possible values for the w-bit pairs, where the integer w is the
window size, and w > 1. However, the adaptive window method only computes and
stores part of them based on the number of available registers. Thus, it would be useful to
check each w-bit pair in the sequence pair according to on-line input integers x and y, and
then determine the high frequency values among all possible values in real time. Clearly,
should those high frequency values be pre-computed and stored, the adaptive window
method could be further improved in practical implementations. It might be interesting to
investigate this on-line strategy further.

(3) The register-constrained implementation for the adaptive window method. We
use the Java code linked with the C code to implement several multi-scalar multiplica-
tion algorithms on the mobile phone and obtain their corresponding efficiency results.
However, both the device and the development tool are not perfect in consideration of
the register-constrained environment. Embedded hardware microprocessors, such as
Atmega and ARM, and the assembly code, are more suitable to simulate our proposed
multi-scalar multiplication algorithms and verify their performance results. Addition-
ally, the novel optimization implementation technique on our proposed algorithms may
be designed according to the particular embedded hardware microprocessor. Hence, it
is valuable work to further implement the adaptive window method in the embedded
hardware microprocessors.

6. Conclusions

We have studied the cryptographic implementations of multi-scalar multiplication
under register-constrained environments. In order to make the best of the available reg-
isters, our idea is not to store all possible values in the window, but only to store those
with comparatively high probabilities. The computational complexity analysis and the ex-
perimental results show that the proposed adaptive window method achieves the notable
computation efficiency with one more register provided. For embedded cryptographic
applications, it is especially convenient for our method to balance the performance and
the costs according to the computation and memory abilities of the embedded devices. We
also expect that our research will inspire others to work in the fascinating algorithms of
multi-scalar multiplication under resource-constrained environments.
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Appendix A. Some Notations Using in the Appendixes

Let (xn−1xn−2 · · · x0)SD and (yn−1yn−2 · · · y0)SD be the signed binary representations.
Supposing n→ ∞ , we write

(1) Pr(αdαd−1 · · · α0) denotes the probability of any xixi−1 · · · xi−d = αdαd−1 · · · α0;
(2) Pr(αdαd−1 · · · α0|β f β f−1 · · · β0) denotes the conditional probability of any xi− f−1

xi− f−2 · · · xi− f−1−d = αdαd−1 · · · α0, given that xixi−1 · · · xi− f = β f β f−1 · · · β0;

(3) Pr
(

αdαd−1 · · · α0
βdβd−1 · · · β0

)
denotes the probability of any xixi−1 · · · xi−d = αdαd−1 · · · α0

and yiyi−1 · · · yi−d = βdβd−1 · · · β0;

(4)Pr

((
α1

d α1
d−1 · · · α1

0
α2

d α2
d−1 · · · α2

0

)∣∣∣∣
(

β1
f β1

f−1 · · · β1
0

β2
f β2

f−1 · · · β2
0

))
denotes the probability

of any xi− f−1xi− f−2 · · · xi− f−1−d = α1
dα1

d−1 · · · α
1
0 and yi− f−1yi− f−2 · · · yi− f−1−d = α2

dα2
d−1

· · · α2
0 , given that xixi−1 · · · xi− f = β1

f β1
f−1 · · · β

1
0 and yiyi−1 · · · yi− f = β2

f β2
f−1 · · · β

2
0.

For example, Pr(01̂00), Pr(0 − 1|01̂), Pr
(

0 1 0 −1
1 0 1̂ 0

)
, and

Pr
((

1̂ 0
0 1̂

)∣∣∣∣( 1̂ 0
0 1̂

))
, respectively, mean Pr(xixi−1xi−2xi−3 = 01̂00),

Pr(xi−2xi−3 = 0− 1
∣∣xixi−1 = 01̂) , Pr

((
xi xi−1 xi−2 xi−3
yi yi−1 yi−2 yi−3

)
=

(
0 1 0 −1
1 0 1̂ 0

))
,

and Pr
((

xi−2 xi−3
yi−2 yi−3

)
=

(
1̂ 0
0 1̂

)
|
(

xi xi−1
yi yi−1

)
=

(
1̂ 0
0 1̂

))
, when n→ ∞ .

Appendix B. Some Facts of NAF Representation

To analyze the computational complexity of our proposed algorithms, we need first
review two well-known properties of the NAF representation [18,19] as follows.

Lemma A1. The NAF representation of an integer is unique. No two nonzero digits are adjacent
in the representation.

Lemma A2. For any bit of the NAF representation, the probabilities of 0, 1, and−1 are, respectively,
2/3,1/6, and 1/6. That is,

Pr(0) =
2
3

(A1)

and
Pr(1) = Pr(−1) =

1
6

. (A2)

We can further give three useful properties of the NAF representation. The following
three properties can be easily derived from the NAF coding algorithm.

Lemma A3. For any two consecutive bits of the NAF representation,

Pr(00) =
1
3

(A3)

and
Pr(01) = Pr(0− 1) = Pr(10) = Pr(−10) =

1
6

. (A4)

Lemma A4. For any three consecutive bits of the NAF representation,

Pr(000) = Pr(010) = Pr(0− 10) =
1
6

, (A5)
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Pr(001) = Pr(00− 1) = Pr(100) = Pr(−100) =
1

12
, (A6)

and
Pr(−101) = Pr(10− 1) = Pr(−10− 1) =

1
24

. (A7)

Lemma A5. For any four consecutive bits of the NAF representation,

Pr(0000) = Pr(0010) = Pr(00− 10) = Pr(0100) = Pr(0− 100) =
1

12
, (A8)

Pr(0001) = Pr(000− 1) = Pr(1000) = Pr(−1000) = Pr(0101) = Pr(0− 101)= Pr(010− 1) =

Pr(0− 10− 1) = Pr(1010) = Pr(−1010) = Pr(10− 10) = Pr(−10− 10) =
1

24
,

(A9)

and
Pr(1001) = Pr(−1001) = Pr(100− 1) = Pr(−100− 1) =

1
48

. (A10)

Appendix C. Proof of Theorem 1

Proof. Consider that Figure 3 scans the input NAF sequence pair
(

xn−1xn−2 · · · x0
yn−1yn−2 · · · y0

)
. Let

P0, P1, P2, P3, P4, P5, P6, and P7, respectively, be the corresponding scanning states
(

0
0

)
,(

1
0

0
1

)
,
(
−1
0

0
−1

)
,
(

1
0

)
,
(
−1
0

)
,
(

0
1

)
,
(

0
−1

)
, and

(
1̂
1̂

)
. It means that

one of Steps 3.1, 3.2, 3.3, 3.4, 3.5, and 4 is executed in Figure 3. Note that the NAF
representations of the integers x and y are independent from each other. Based on the
properties of the NAF representation, we can compute all one-step transition probabilities
for the scanning states Pi=0,1,2,3,4,5,6,7. For example, we can compute

Pr(P0|P0) = Pr
((

0
0

)∣∣∣∣( 0
0

))
= Pr(0|0)Pr(0|0) = Pr(00)

Pr(0)
Pr(00)
Pr(0)

=
1
4

(A11)

by Lemmas A2 and A3;

Pr(P0|P7) = Pr
((

0
0

)∣∣∣∣( 1̂
1̂

))
= Pr(0|1̂)Pr(0|1̂) = 1 (A12)

by Lemma A1;

Pr(P2|P1) = Pr
((

−1 0
0 −1

)∣∣∣∣( 1 0
0 1

))
= Pr(−10|10)Pr(0− 1|01)=

Pr(10− 10)
Pr(10)

Pr(010− 1)
Pr(01)

=
1
16

(A13)

by Lemmas A3 and A5;

Pr(P3|P5) = Pr
((

1 0
0 0

)∣∣∣∣( 0
1

))
+ Pr

((
1 0
0 −1

)∣∣∣∣( 0
1

))
=

Pr(10|0)Pr(00|1)+Pr(10|0)Pr(0− 1|1) = Pr(010)
Pr(0)

Pr(100)
Pr(1)

+
Pr(010)

Pr(0)
Pr(10− 1)

Pr(1)
=

3
16

(A14)

by Lemmas A2 and A4.
Thus, the one-step transition probability matrix of the states Pi=0,1,2,3,4,5,6,7 is
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
Pr(P0|P0) Pr(P1|P0) · · · Pr(P7|P0)
Pr(P0|P1) Pr(P1|P1) · · · Pr(P7|P1)

...
...

. . .
...

Pr(P0|P7) Pr(P1|P7) · · · Pr(P7|P7)

 =



1
4

1
32

1
32

3
32

3
32

1
8

1
8

1
4

1
2

1
16

1
16

3
16

3
16 0 0 0

1
2

1
16

1
16

3
16

3
16 0 0 0

2
3 0 0 0 0 0 1

3 0
2
3 0 0 0 0 1

3 0 0
1
2

1
16

1
16

3
16

3
16 0 0 0

1
2

1
16

1
16

3
16

3
16 0 0 0

1 0 0 0 0 0 0 0


, (A15)

where Pr(P0≤j≤7|P0≤k≤7) denotes the conditional probability of the next state given the
current state Pk.

Since the matrix T2
BNAF−5 has all positive elements, this Markov chain is a regular

chain. Let Pr(P0≤i≤7) be the probability of the state Pi as n→ ∞ . According to the
theorems of the regular Markov chain, we have

Pr(P0) =
16
34

Pr(P1) = Pr(P2) =
1

34
Pr(P3) = Pr(P4) = Pr(P5) = Pr(P6) =

3
34

Pr(P7) =
4

34 .

(A16)

In Figure 3, we can see that the state P0 needs no point addition, and each state P1≤i≤7
needs one point addition. Thus, on average, the asymptotic performance factor is

wBNAF−5(n) =
Pr(P1) + Pr(P2) + Pr(P3) + Pr(P4) + Pr(P5) + Pr(P6) + Pr(P7)

Pr(P0) + 2Pr(P1) + 2Pr(P2) + Pr(P3) + Pr(P4) + Pr(P5) + Pr(P6) + Pr(P7)
n

=

1
34

+
1

34
+

3
34

+
3
34

+
3

34
+

3
34

+
4
34

16
34

+
2

34
+

2
34

+
3

34
+

3
34

+
3
34

+
3

34
+

4
34

n =
n
2

.
(A17)

�

Appendix D. Proof of Theorem 2

Proof. Consider the 3-bit or 4-bit pairs in the recoding rules. Based on the scanning process

of the input NAF sequence pair
(

xn−1xn−2 · · · x0
yn−1yn−2 · · · y0

)
in Figure 3, each 3-bit pair using Rule

A1, A2, A3, or A4 requires two point additions before the recoding process. However, it
requires only one point addition after the recoding process. For example, the 3-bit pair(

1 0 −1
0 −1 0

)
, consecutively, needs to pass Steps 3.3 and 3.4 of Figure 3 for the first

two columns, and Steps 3.3 and 3.4 requires in total two point additions. Comparably, the

3-bit pair
(

0 1 1
0 −1 0

)
needs to execute Steps 3.1 and 3.5 of Figure 3 for the first two

columns, which requires one point addition instead. Similarly, each 4-bit pair using Rule
A5, A6, A7, or A8 requires three point additions before the recoding process, but requires
two point additions after the recoding process.

Next, according to Rules A1, A2, A3, A4, A5, A6, A7, and A8, we calculate the prob-
abilities of those 3-bit and 4-bit pairs appeared in the NAF representation. We can obtain

Pr
(

1 0 −1
0 −1 0

)
= Pr

(
−1 0 1
0 1 0

)
= Pr

(
0 1 0
1 0 −1

)
= Pr

(
0 −1 0
−1 0 1

)
=

1
144

(A18)

and

Pr
(

1 0 −1 0
0 0 0 1

)
= Pr

(
−1 0 1 0
0 0 0 −1

)
= Pr

(
−1 0 1 0
0 −1 0 −1

)
= Pr

(
1 0 −1 0
0 1 0 1

)
=

1
576

(A19)
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by Lemmas A4 and A5.
Consequently, it follows from Theorem 1 that the performance factor of the improved

Figure 3 can be estimated as

wINAF−5(n) = wBNAF−5(n)− wRNAF−5(n) ≈
n
2
−
(

4
2

Pr
(

1 0 −1
0 −1 0

)
+

4
3

Pr
(

1 0 −1 0
0 0 0 1

))
n=

209n
432

, (A20)

where wRNAF−5(n) denotes the number of saving point additions due to Rules A1, A2, A3,
A4, A5, A6, A7, and A8.

�

Appendix E. Some Facts of JSF Representation

To analyze the 5-register algorithm using the JSF representation, we need the following
important fact of the JSF representation.

Lemma A6. Assume that the scan process of the sliding window method [22] is used

for the JSF sequence pair
(

xn−1xn−2 · · · x0
yn−1yn−2 · · · y0

)
, and the window size w = 2 .

Let η be any 2-bit pair appeared in the JSF sequence pair, that is,

η ∈
{(

1̂ 0
0 1̂

)
,
(

0 1̂
1̂ 0

)
,
(

1 1
1̂ 0

)
,
(
−1 −1
1̂ 0

)
,
(

1̂ 0
1 1

)
,
(

1̂ 0
−1 −1

)}
. On

average, the probabilities of all possible pairs are

Pr
(

0
0

)
=

1
2

, (A21)

Pr
(

1̂
0

)
= Pr

(
0
1̂

)
=

3
32

, (A22)

Pr
(

1̂
1̂

)
=

3
16

, (A23)

and
Pr(η) =

1
128

, (A24)

when n→ ∞ .

Proof. We assume that the reader is already acquainted with the results in Solinas’ technical
report [11], from which we recall a few important facts. For the JSF coding algorithm, the

JSF coding output
(

xi
yi

)
is a function of the internal current state Sj, where 0 ≤ i ≤ n− 1

and 0 ≤ j ≤ 7. We can further extend the detailed relations between the states and the
corresponding outputs as follows:

(1) S0 maps to the current output
(

0
0

)
;

(2) S1 maps to the case where the current output is
(

0
1̂

)
and the next output will

be
(

0
0

)
;

(3) S2 maps to the case where the current output is
(

0
1̂

)
and the next output will

be
(

1̂
0

)
;
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(4) S3 maps to the case where the current output is
(

0
1̂

)
and the next output will

be
(

1̂
1̂

)
;

(5) S4 maps to the case where the current output is
(

1̂
0

)
and the next output will

be
(

0
0

)
;

(6) S5 maps to the case where the current output is
(

1̂
0

)
and the next output will

be
(

0
1̂

)
;

(7) S6 maps to the case where the current output is
(

1̂
0

)
and the next output will

be
(

1̂
1̂

)
;

(8) S7 maps to the current output
(

1̂
1̂

)
.

According to Solinas’ result, the one-step transition probability matrix of the states
Sj=0,1,2,3,4,5,6,7 is

TJSF =


Pr(S0|S0) Pr(S1|S0) · · · Pr(S7|S0)
Pr(S0|S1) Pr(S1|S1) · · · Pr(S7|S1)

...
...

. . .
...

Pr(S0|S7) Pr(S1|S7) · · · Pr(S7|S7)

 =



1
4

1
8

1
16

1
16

1
8

1
16

1
16

1
4

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0


. (A25)

Since all the elements in the matrix T3
JSF are positive, this Markov chain is a regular

chain. Let Pr(S0≤j≤7) be the probability of the state Sj as n→ ∞ . According to the
theorems of the regular Markov chain, we have

Pr(S0) =
1
2

Pr(S1) = Pr(S4) =
3

32
Pr(S2) = Pr(S3) = Pr(S5) = Pr(S6) =

1
32

Pr(S7) =
3

16 .

(A26)

Because of previous relations between the states and the corresponding outputs,
we know

Pr(S0) = Pr
(

0
0

)
= 1

2

Pr(S1) = Pr
(

0
1̂

)
= Pr(S4) = Pr

(
1̂
0

)
= 3

32

Pr(S2) = Pr
(

1̂ 0
0 1̂

)
= Pr(S3) = Pr

(
1̂ 0
1̂ 1̂

)
= Pr(S5) = Pr

(
0 1̂
1̂ 0

)
= Pr(S6) = Pr

(
1̂ 1̂
1̂ 0

)
= 1

32

Pr(S7) = Pr
(

1̂
1̂

)
= 3

16 .

(A27)

Furthermore, by the JSF coding algorithm, i.e., Figure 1 in [11], all possible 2-bit pairs(
1 0
0 1

)
,
(
−1 0
0 −1

)
,
(

1 0
0 −1

)
,
(
−1 0
0 1

)
,
(

1 0
1 1

)
,
(
−1 0
−1 −1

)
,
(
−1 0
1 1

)
,
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(
1 0
−1 −1

)
,
(

0 1
1 0

)
,
(

0 −1
−1 0

)
,
(

0 1
−1 0

)
,
(

0 −1
1 0

)
,
(

1 1
1 0

)
,(

−1 −1
−1 0

)
,
(

1 1
−1 0

)
, and

(
−1 −1
1 0

)
should have the same probability. It means that

Pr(η) =
1

128
. (A28)

�

Appendix F. Proof of Theorem 3

Proof. Our 5-register algorithm using the JSF representation is almost the same as Figure 3
but with the input x and y represented in the JSF. By Lemma A6, our algorithm is opti-

mal. Because the value 2A + B is stored in Step 1 of Figure 3, the 2-bit pairs
(

1 0
0 1

)
and

(
−1 0
0 −1

)
in the JSF sequence pair

(
xn−1xn−2 · · · x0
yn−1yn−2 · · · y0

)
only require one point

addition. Therefore, the corresponding performance factor is

wJSF−5(n) =
(

16Pr(η) + Pr
(

1̂
0

)
+ Pr

(
0
1̂

)
− Pr

(
1 0
0 1

)
− Pr

(
−1 0
0 −1

)
+ Pr

(
1̂
1̂

))
n =

31n
64

. (A29)

�
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