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Abstract: Microwave imaging of targets enclosed in circular metallic cylinders represents an interest-
ing scenario, whose applications range from biomedical diagnostics to nondestructive testing. In this
paper, the theoretical bases of microwave tomographic imaging inside circular metallic pipes are
reviewed and discussed. A nonlinear quantitative inversion technique in non-Hilbertian Lebesgue
spaces is then applied to this kind of problem for the first time. The accuracy of the obtained dielec-
tric reconstructions is assessed by numerical simulations in canonical cases, aimed at verifying the
dependence of the result on the size of the conducting enclosure and comparing results with the
conventional free space case. Numerical results show benefits in lossy environments, although the
presence and the type of resonances should be carefully taken into account.

Keywords: inverse scattering; tomography; conducting cylinders

1. Introduction

Since the end of the past century [1], inverse electromagnetic scattering problems
aimed at microwave imaging have experienced a widespread interest among researchers.
Indeed, while still at a prototyping level in many applications, microwave imaging is
evolving to a mature technique in many fields of civil engineering, industrial testing,
medicine, and so on [2,3]. Although a comprehensive review about the topic is outside the
scope of the present paper, the interested reader is referred to [4–7], where many of the
theoretical aspects of microwave imaging as well as a variety of practical applications are
considered and discussed, and a wide literature is suggested.

Among the various possible configurations of the microwave imaging problem, a sce-
nario that is acquiring an increasing interest is represented by targets enclosed inside
conducting enclosures [8,9]. Indeed, this kind of configuration may be useful in systems
for biomedical diagnostics [10–13], as well as to inspect the content of pipes [14] or storage
containers [15] in industrial processes and agriculture.

On the one hand, the use of conductive enclosures shields the investigation and
measurement domains from external interferences and provides well-defined boundary
conditions. Moreover, the container bounded by the outer conductor may be filled with
proper (liquid or gel) matching media, which are particularily useful in medical applica-
tions. On the other hand, the electromagnetic (EM) field is usually strongly perturbed by
the presence of the outer conductor, which should be taken into account inside the inverse
scattering algorithm.

In this paper, we consider the cylindrical configuration schematized in Figure 1.
In particular, we are interested in conductive circular enclosures, which can be part of the
tomographic imaging system themselves, as for example it is in some devices for breast or
head imaging, or can stand for the boundary of the domain to be imaged, as it could be in
the case of monitoring inside pipelines.
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Figure 1. Schematic geometry of the considered problem.

As to the solution of microwave inverse scattering problems, innovative techniques
are continuously proposed by the research community [16–22]. It is also worth noting that
some specific approaches have been investigated for the imaging inside metallic enclosures,
such as eigenfunction-based inversion algorithms [23,24]. Among the various possible
inversion schemes, Newton-based methods look promising in many contexts, for their
effectiveness in dealing with the intrinsic nonlinearity of the problem at hand [25–27].
Furthermore, it has been shown that facing the problem in non-Hilbertian Lebesgue
spaces [28–30] may allow a more accurate reconstruction of the dielectric properties of the
imaged domain in various configurations [31,32].

In this paper, we investigate the possibility of exploiting a Newton-based inversion
method in non-Hilbertian Lebesgue spaces [33] for the microwave imaging of targets lo-
cated inside conducting cylinders, illuminated by antennas modeled as line-current sources
in the axial direction. In particular, only perfectly electric conducting (PEC) enclosures
are taken into account. The adoption of the configuration of Figure 1 reflects in a change
of the Green’s function and consequently of the kernel of the integral operators used to
describe the electromagnetic problem, with non-negligible effects on results. The proposed
inversion technique is assessed with a set of numerical simulations in canonical cases,
aimed at verifying the dependence of the imaging performance on the size of the enclosure
and the loss of the infill dielectric medium, also comparing results with the free space case.
Furthermore, for a fixed size of the imaging chamber, a comparison with conventional L2

regularization is presented.
The paper is organized as follows. The electromagnetic scattering problem is for-

mulated in Section 2, highlighting the specific issues associated with the presence of a
conducting enclosure. Section 3 briefly outlines the structure of the adopted inverse scatter-
ing method. Numerical results are described and discussed in Section 4. At the end of the
paper, Section 5 draws some concluding considerations.

2. Problem Formulation

In this paper, two-dimensional (2D) configurations are assumed, where the geometry
is invariant along the z axis. Under z-polarized transverse magnetic (TM) illumination
conditions, all the involved quantities only depend on the position in the transverse plane,
which is indicated by cylindrical coordinates ρ, ϑ as defined in Figure 2. Time-harmonic
electromagnetic fields are assumed with a time dependence ejωt. Nonmagnetic materials
are considered, characterized by a permeability µ = µ0 = 4π × 10−7 H/m. The scattering
object(s) under test (OUT) are placed inside a circular conducting cylinder of internal radius
a, which is centered at the axes origin. The cylindrical enclosure is filled by a background
medium with a possibly complex dielectric permittivity εb = ε0 ε̃r,b = ε0εr,b− jσb/ω, where
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ε0 ' 8.85× 10−12 F/m is the vacuum dielectric permittivity, εr,b is the relative permittivity,
and σb is an (equivalent) background conductivity. Illumination field is provided by an
ideal infinite line of current of complex amplitude Iz placed at (ρi, ϑi), i.e.:

J̄(ρ, ϑ) =
Iz

ρ
δ(ρ− ρi)δ(ϑ− ϑi)ẑ (1)

where
1
ρ

δ(ρ− ρi)δ(ϑ− ϑi) is the Dirac δ-function for cylindrical coordinates and z invari-

ance [34].

Circular PEC

Measurement

boundary

Current source

domain

ϑ

ρ

x

z

y

a

D

Figure 2. Assonometric projection of the transverse plane, and the related coordinate systems.

Let us denote as ei(ρ, θ) the z component of the incident electric field inside the
cylinder, which is a solution to the scalar Helmholtz equation:

∇2ei(ρ, ϑ) + k2
b ei(ρ, ϑ) = jωµ0

Iz

ρ
δ(ρ− ρi)δ(ϑ− ϑi) (2)

where kb = ω
√

µ0εb is the wavenumber, subject to the boundary condition ei(a, θ) = 0.
If some scattering object is present inside the cylinder, the (z-directed) total electric

field et(ρ, θ) can always be written as the sum:

et(ρ, θ) = ei(ρ, θ) + es(ρ, θ) (3)

where es(ρ, θ) is the (z-directed) scattered field.
According to the volume equivalence theorem [35], the scattering field can be ex-

pressed in an integral form

es(ρ, θ) = −k2
b

∫
D

τ(ρ′, ϑ′)et(ρ
′, ϑ′)g(ρ, ϑ; ρ′, ϑ′)dρ′dϑ′ (4)

where D is the considered investigation domain (which as reported in Figure 2, is a circular
region located in the transverse plane) and

τ(ρ, ϑ) =
ε̃r(ρ, ϑ)

ε̃r,b
− 1 (5)

is the so-called object function, accounting for the dielectric properties of the scatterers by
means of the space-dependent complex relative dielectric permittivity ε̃r(ρ, ϑ), and finally
g(ρ, ϑ; ρ′, ϑ′) is the Green function for the problem.

Green’s Function of the Considered Problem

The Green’s function inside a circular PEC cylinder of radius a (Figure 1) is the solution
of the following Helmholtz equation:

∇2g(ρ, ϑ; ρ′, ϑ′) + k2
b g(ρ, ϑ; ρ′, ϑ′) =

1
ρ

δ(ρ− ρ′)δ(ϑ− ϑ′) (6)
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subject to the boundary condition g(a, ϑ; ρ′, ϑ′) = 0.
The solution to this equation is discussed in many articles and textbooks (see, for

example [35–38]), and can be expressed in some different forms. In this work the following
expression will be used [35]:

g(ρ, ϑ; ρ′, ϑ′) = −1
4



+∞

∑
n=−∞

[
Jn
(
kbρ′

)
Yn(kba)− Jn(kba)Yn

(
kbρ′

)]
×

× Jn(kbρ)

Jn(kba)
ejn(ϑ−ϑ′) ρ < ρ′

+∞

∑
n=−∞

[Jn(kbρ)Yn(kba)− Jn(kba)Yn(kbρ)]×

× Jn(kbρ′)

Jn(kba)
ejn(ϑ−ϑ′) ρ > ρ′

(7)

where Jn and Yn are the Bessel functions of the first and of the second kind, respectively,
of order n. Without going in too much theoretical details (which were the subject of other
works, such as [8]) here we want just to stress two aspects of the problem, making it much
more tricky than the analogous in free-space:

• while in free space the scattering field can be expanded into a simple sum of pro-
gressing waves, in the present problem the solution is made by a sum of complicated
standing waves, and many resonant modes can arise inside the cavity;

• the incident field is also strongly affected by the cavity boundaries: while the line
current produces a simple circular wave in free space, in the present problem the inci-
dent field has the same form of the Green’s function (compare Equations (2) and (6)),
hence it contains many contributions, made of standing waves depending on the
cavity dimensions.

In (7), the presence of the term Jn(kba) causes g to assume high values when it ap-
proaches zero (in particular, g→ ∞ when Jn(kba) = 0). In the lossless case, the positions
of TMnl resonances can be found based on the l-th root of the Bessel function of first kind
with order n.

Investigation about the zeros of Bessel’s functions is a problem that is not new in
physics and the first comprehensive works about this topic date back the second half of the
19th century [39,40]. Many of these and other findings (e.g., [41]) about Bessel’s functions
are collected and extended in the monumental book by Watson [42]. Further studies were
since then carried out and this topic is presently still an open research field for mathematics.
A complete review of the literature about Bessel’s functions is outside the scope of the
present paper; however we refer the reader to some papers [43–53], containing relevant
results for the problem faced in the present work. It is worth nothing that also some works,
aimed at other goals, contain notable insight about the zeros of Bessel’s functions [54–58].

In particular, in order to underline the behavior of resonances within the enclosure,
some properties of the zeros of Bessel’s functions are worth recalling. Please note that such
properties can be valid for any real order ν, but we focus on integer order n. Let ζn,l denote
the l-th (l ≥ 1) zero of the Bessel function of first kind with order n. Then:

a. limn→∞(ζn,l+1 − ζn,l) = π;

b. ζn,1 < ζn+1,1 < ζn,2 < ζn+1,2 < ζn,3 < . . . ;

c. ζn,l > n + lπ +
π

2
− 1

2
;

d. ζn,l <

(
l +

n
2
− 0.965

4

)
π − n2

2

[(
l +

n
2
− 0.965

4

)
π

]−1
n > 0;

e. ζn,1 < 2(n + 1)(n + 5)(5n + 11)/(7n + 19) n > −1.
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The first property states that, for each n, the zeros approaches a regular distribution,
in accordance with the asymptotic behavior of Jn. The second statement is about the
interlacing property of the zeros. This should explain how the zeros of Bessel’s functions
of any order tend to distribute. In particular, it should be stressed that between two
consecutive zeros of Jn lies exactly one zero of Jn+1. Furthermore, property (c) provides a
lower bound for the zeros, and it can be seen that “zeros are strictly increasing functions of
both index and order” [58]. Therefore, properties (a), (b), and (c) show that the number of
zeros in an interval (x− ∆, x + ∆) strictly increases as x becomes larger.

The number of zeros in an interval could also be estimated by using upper bounds
that exists for the zeros of Bessel functions. Properties (e) and (d) are about two simple
upper bounds. More sharp (and complicated) bounds can also be found in the literature
(e.g., [45,47,48,59,60]); however, for the problem faced in the present work, the number of
zeros is small enough to allow computing to a high accuracy the position of each zero.

Previous analysis is strictly related to the problem dealt with in the present work,
since, as the radius of the enclosure increases, the number of possible resonances increases,
too, and their distribution follows the behavior of Bessel zeros. As an example, zeros
corresponding to the resonances of a conducting enclosure filled with vacuum and with
radius a, ranging between 0 and 3λ, have been evaluated, and their number have been com-
puted in each of the intervals (x− ∆, x + ∆), ∆ = 0.25λ, x = [0.25 + m/2]λ, m = 0, . . . , 5.
In Figure 3 the histogram of the results is shown. As can be seen, the predicted behavior is
perfectly confirmed. For convenience, the first TMnl resonances versus the radius of the
PEC cylinder (up to 3λ) are reported in Table 1.

Table 1. First TMnl resonances versus the radius of the conducting enclosure (for radiuses up to 3λ).

Order, n Root, l Radius, a/λ Order, n Root, l Radius, a/λ

0 1 0.382565575636716 9 1 2.12443502732519
1 1 0.609557227746547 6 2 2.16181776676093
2 1 0.816987450864820 4 3 2.28641855021103
0 2 0.878147628239934 10 1 2.30279831942887
3 1 1.01497187625880 2 4 2.35377646939679
1 2 1.11605681508930 7 2 2.35780395133906
4 1 1.20717221350811 0 5 2.37524718150666
2 2 1.33903593944348 11 1 2.48007141762091
0 3 1.37665636071269 5 3 2.49762238062566
5 1 1.39538925994123 8 2 2.55132863821835
3 2 1.55280761241691 3 4 2.58086897429352
6 1 1.58066078745604 1 5 2.62018841505947
1 3 1.61842038016315 12 1 2.65639874693837
4 2 1.76020125084557 6 3 2.70500953319621
7 1 1.76364706145171 9 2 2.74277582388405
2 3 1.84851296702361 4 4 2.80239128808070
0 4 1.87582635499932 13 1 2.83189617009082
8 1 1.94479780216248 2 5 2.85709234145654
5 2 1.96285556025129 0 6 2.87478938633534
3 3 2.07049020258037 7 3 2.90923374085231
1 4 2.11956574517874 10 2 2.93244082347851
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Figure 3. Number of resonances for an enclosure as the radius ranges from 0 to 3λ.

When the argument of a Bessel function becomes complex, as is in the case of con-
ductive media, the behavior changes in accordance to the variation on the imaginary part
={z} of the argument z = x− jy. In particular, while Jn(x) is bounded, this is no longer
the case for Jn(x− jy), where both the real and the imaginary parts tend to increase as the
argument increases. An in-depth discussion about Bessel’s function of complex arguments
is outside the scope of the present work and we refer interested readers to some specialized
literature [61,62]. However, to investigate some practical case, let us consider:

z = x− jy = kbρ = [<{kb} − j={kb}]ρ (8)

where kb is complex, while ρ is real. In particular, two effects can be observed: the
behavior with respect to lossless case gets smoothed, since there are no longer zeros, and
the amplitude of Jn(kbρ) tends to oscillate and decrease up to a certain value of ρ. For larger
values, oscillations are quickly damped and |Jn(kbρ)| begins to increase and eventually
approaches infinity. In Figure 4 an example is shown, for different orders of Bessel functions
and for different values of σb. In particular, in the upper left corner, the function giving the
larger number of zeros, namely J0, is plotted, while in lower right corner we have shown
the behavior of J13, being 13 the maximum order for which it is possible having a zero in the
considered range. The other two graphs, referring respectively to J3 and J7, are intended to
give an idea of the trend, as the order of the Bessel function varies. From the example in
Figure 4 it can be deduced that, while in general, a conductive background would be an
obstacle to the solution of an inverse scattering problem, for a certain range of values of σb
(we could consider σb / 3 mS/m in the example, with ={kb} / 0.15<{kb}) an advantage
can come from the damping of the resonances, while the losses can still be managed.
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Figure 4. Behavior of the magnitude of different Bessel’s functions Jn(kba) for a background with εb = ε0 − jσb/ω and
different values of σb, versus the radius of PEC cylinder a. In the upper left corner J0 is shown.

3. Nonlinear Inverse Scattering Method

In solving the inverse problem, the goal is to retrieve the object function τ(ρ, ϑ) inside
an investigation domain D starting from a set of measurements of the scattered field es(ρ, θ)
collected in an observation domain O. Based on (4), it can be shown that τ(ρ, ϑ) is connected
to the measured scattered electric field es(ρ, θ) by means of a nonlinear relationship:

es(ρ, θ) = AOτ(I −ADτ)−1ei(ρ, θ) = N (τ)(ρ, θ), (ρ, θ) ∈ O (9)

where the linear operators A{O,D} are given by

A{O,D}x(ρ, θ) = −k2
b

∫
D

x(ρ′, ϑ′)g(ρ, ϑ; ρ′, ϑ′)dρ′dϑ′, (ρ, θ) ∈ {O, D} (10)

The inverse scattering method is characterized by an inexact-Newton scheme, where (9)
is iteratively linearized around the reconstructed value of the object function τi(ρ, ϑ) at the
i-th step (i = 1, ..., I). Starting the iterations with an initial value τ1 = 0, the result of such a
linearization is the equation

N ′i δ = es −N (τi)︸ ︷︷ ︸
bi

(11)

where δ ∈ A, bi ∈ B and N ′i : A → B is the Fréchet derivative of the nonlinear operator
N calculated at τi. The solution of (11) in the unknown δ is again performed by an
iterative loop, which is a truncated Landweber-like method that considers A, B as Lebesgue
spaces Lp [33]. This regularized solution approach, at the k-th step (k = 1, ..., K), has been
implemented as

δk+1 = JA∗
[

JA(δk)− γN ′∗i JB
(
N ′i δk − bi

)]
(12)

where JA(·), JA∗(·) and JB(·) are defined as the duality maps of spaces A, A∗ (i.e., the dual
space of A) and B [31]; N ′∗i is the adjoint of N ′i ; γ is a real positive number. The loop
starts with δ1 = 0. Once (11) is solved by means of iterations (12), a regularized version
of the unknown of the linear problem δ̃ is available. Then, the object function inside the
investigation domain is updated as
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τi+1(ρ, θ) = τi(ρ, θ) + δ̃(ρ, θ), (ρ, θ) ∈ D (13)

and a new linearization is performed, until convergence is reached.

4. Results of Numerical Simulations

The behavior of the proposed inverse scattering technique when operating in conduct-
ing enclosures has been analyzed from a numerical point of view in canonical configura-
tions, involving circular dielectric cylinders.

The simulations have been oriented at understanding the influence of the external
conducting cylinder on the reconstruction performance. To this end, two distinct cases have
been considered, regarding a small and a large enclosure. The difference between these
two cases is related to the definition of the investigation domain D and the observation
domain O. This distinction has also been made to follow, in the case of sufficiently large
enclosures, the guidelines about the position of the observation domain with respect to
the conducting boundary provided in [8]. A background characterized by εb = ε0 − jσb/ω
has been considered. The electric field data have been simulated at the angular frequency
ω = 2π f , with f = 300 MHz, by means of a custom numerical code based on the method
of moments, and corrupted with an additive Gaussian noise with zero mean value and
signal-to-noise ratio equal to 20 dB. In all cases, the inversion method has been run with
the same parameters in order to compare results. In particular, a Lebesgue space exponent
p = 1.2 is considered; the iterative loops have been stopped when a maximum number of
inexact-Newton iterations I = 10 and a maximum number of Landweber steps K = 100 are
reached, or when the relative variation of the data residual falls below a threshold value
rth = 1%.

The results have been evaluated from a quantitative viewpoint by means of the
normalized reconstruction error (NRE)

NRE =
||τ − τact||
||τact||

(14)

For each analyzed case, N = 15 simulations with different random noise have been
executed, calculating the mean value and the standard deviation of the obtained values of
the NRE.

4.1. Small Conducting Enclosure

In the case of the small conducting enclosure, the radius of the outer PEC cylinder
has been varied in the range a ∈ [0.25, 1.025]λ with 0.025λ steps. A set of S = 30 positions,
equally spaced on a circumference with radius ρs = a− 0.1λ, have been defined to host
both sources and measurement points in a multistatic and multiview configuration (i.e.,
one of the position at a time is occupied by a source antenna, whereas all the other ones are
used to sample the scattered electric field).

The investigation domain is a circular region centered at the origin with diameter
dD = 0.25λ. This region contains a circular dielectric cylinder of diameter dc = 0.125λ,
centered at (ρc, θc) = (0.05λ, 0), characterized by a relative dielectric permittivity εr,c = 2
and electric conductivity σc = 10 mS/m. For the forward problem solution, D has been
subdivided into N f = 1976 square subdomains with side length equal to ls f = 0.005λ.
Conversely, a discretization with Ni = 1264 cells of side lsi = 0.00625λ has been adopted
inside the inversion procedure.

Figure 5 reports the NRE reconstruction error versus the size of the enclosure a, for
three different values of background loss σb = {0, 1, 10}mS/m (which correspond to loss
tangents tan δ = {0, 0.06, 0.6}). Some examples of reconstructed dielectric permittivity are
also shown in Figures 6 and 7, along with the magnitude of the Green’s function inside
the conducting cylinder for a source at (ρs, 0). All results are compared with the free space
case, where the same configuration but without the PEC enclosure have been simulated.
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Figure 5. Small conducting enclosure. Reconstruction error versus the radius of the conducting
enclosure, for three values of the background conductivity: (a) lossless, σb = 0 S/m; (b) σb = 1 mS/m;
(c) σb = 10 mS/m.
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Figure 6. Examples of Green’s functions and reconstructed distributions of the relative dielectric
permittivity with small conducting enclosure, a = λ/2. Upper row: results with σb = 1 mS/m: (a)
Green’s function magnitude for a source at (ρs, 0); (b) Reconstruction with cylindrical enclosure;
(c) Reconstruction in free space. Lower row: results with σb = 10 mS/m: (d) Green’s function for
point source located at (ρs, 0); (e) Reconstruction with cylindrical enclosure; (f) Reconstruction in
free space.
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Figure 7. Examples of Green’s functions and reconstructed distributions of the relative dielectric
permittivity with small conducting enclosure, a = 0.7λ. Upper row: results with σb = 1 mS/m: (a)
Green’s function magnitude for a source at (ρs, 0); (b) Reconstruction with cylindrical enclosure;
(c) Reconstruction in free space. Lower row: results with σb = 10 mS/m: (d) Green’s function for
point source located at (ρs, 0); (e) Reconstruction with cylindrical enclosure; (f) Reconstruction in
free space.
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As reported in the graphs, five different resonances may arise with this range of
radiuses of the PEC cylinder. For small or absent background losses, the TM01, TM11 and
TM02 modes clearly cause a significant degradation of results, impairing a correct recon-
struction of the inside dielectric cylinder. In the middle points between these significant
resonances, results are comparable or even slightly better (in average) than the free space
ones. When background losses rise, a completely different trend is observed (Figure 5c):
there are no points with higher errors due to resonances, and the average of NRE demon-
strates some advantages in adopting a conducting enclosure with respect to the free space
conditions. Clearly, as expected, errors in both situations increase by enlarging the radius
a, since this also increases the distance between the target and the observation domain O.
However, the error increase with the surrounding metallic enclosure is slightly less steep
than the free space case.

4.2. Large Conducting Enclosure

In the case of large conducting enclosure, the radius of the PEC cylinder has been
varied in the range a ∈ [1.0, 3.0]λ with 0.125λ steps. The same number of S = 30 positions
as before has been used, but this time they are located on a circumference with radius
ρs = a− 0.25λ. A multistatic and multiview configuration has been always considered.
The investigation domain is larger than the previous case, and is a circular region centered
at the origin with diameter dD = λ. A circular dielectric cylinder characterized by the
same dielectric properties as in Section 4.1, but with diameter dc = 0.2λ and centered at
(ρc, θc) = (0.2λ, 0) is placed inside the PEC enclosure.

The forward electromagnetic problem has been solved by subdividing D into
N f = 1976 square subdomains with side length ls f = 0.02λ, whereas a discretization with
Ni = 1264 cells of dimension lsi = 0.025λ has been used for the inverse problem‘solution.

The mean value and standard deviation of the NRE in this case is shown in Figure 8,
which reports the reconstruction errors versus the radius a for σb = {0, 1, 2} mS/m
(tan δ = {0, 0.06, 0.12}). Figure 9 shows some examples of the reconstructed relative
dielectric permittivity inside D and the Green’s function magnitude for a source located
at (ρs, 0). As can be noticed looking at Table 1, the number of resonances of the circular
cavity dramatically increases for a > λ. This fact determines the significantly higher
errors compared to the corresponding free space cases when no or low background loss
is present. It is actually very difficult, even with a practical construction of a metallic
chamber in mind, to avoid all the possible resonances. However, by increasing the back-
ground loss (e.g., Figure 8b) it can be observed that not all resonances are critical in the
same way. Those that cause a worst degradation of reconstruction results are again re-
lated to the TM0l modes, with l = {2, 3, 4, 5}, and can be seen in the high-error peaks at
a = {1.375, 1.875, 2.375, 2.875}λ. Moreover, similarly to the case of the small enclosure,
the TM1l resonances have a smaller but yet significant impact. The remaining ones are
sufficiently damped by the small background loss and do not produce increases in the
NRE in neighboring sizes of the PEC cylinder. Of course, the bigger the cylinder radius,
the greater is the effect of background losses.

Moreover, Figure 8c evidences some interesting facts related to the imaging in con-
ducting enclosures versus their free space counterpart. In the lossy case, reconstruction
results obtained inside conducting cylinders are always better then the free space ones,
having a smaller mean NRE and even a significantly reduced standard deviation. This is
also observed in Figures 9 and 10, where it can be seen that the free space reconstruction
have more background artifacts than those obtained in conducting enclosures. In addition,
the advantages of embedding the measurement configuration in a metallic cylinder appear
more evident if the background losses rise.
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Figure 8. Large conducting enclosure. Reconstruction error versus the radius of the conducting
enclosure: (a) σb = 0 S/m; (b) σb = 1 mS/m; (c) σb = 2 mS/m.
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Figure 9. Examples of Green’s functions and reconstructed distributions of the relative dielectric
permittivity with small conducting enclosure, a = 2.125λ. Upper row: results with σb = 1 mS/m:
(a) Green’s function magnitude for a source at (ρs, 0); (b) Reconstruction with cylindrical enclosure;
(c) Reconstruction in free space. Lower row: results with σb = 2 mS/m: (d) Green’s function for
point source located at (ρs, 0); (e) Reconstruction with cylindrical enclosure; (f) Reconstruction in
free space.
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Figure 10. Examples of Green’s functions and reconstructed distributions of the relative dielectric
permittivity with small conducting enclosure, a = 2.875λ. Upper row: results with σb = 1 mS/m:
(a) Green’s function magnitude for a source at (ρs, 0); (b) Reconstruction with cylindrical enclosure;
(c) Reconstruction in free space. Lower row: results with σb = 2 mS/m: (d) Green’s function for
point source located at (ρs, 0); (e) Reconstruction with cylindrical enclosure; (f) Reconstruction in
free space.



Electronics 2021, 10, 594 14 of 18

In order to verify how such considerations generalize, additional tests with a different
target have been carried out. In particular, a fixed imaging chamber size a = 2.125λ, with
σb = 2 mS/m and all the other parameters as before has been considered. This time, the
target is a cylinder with rectangular cross section of x, y side lengths equal to drx = 0.15λ and
dry = 0.4λ, respectively, centered at (ρr, θr) = (−0.2

√
2λ, 3π/4). It has a relative dielectric

permittivity εr,r = 2 and electric conductivity σr = 10 mS/m. Some examples of the
reconstructed dielectric profiles within the cylindrical enclosure and in free space have been
shown in Figure 11a,b, respectively. Observing these images, it is confirmed that the PEC
enclosure gives the best results even in this configuration, while the reconstruction obtained
in free space is worse and more affected by background artifacts. Similar observations
can be drawn from the reconstruction errors, reported in Table 2. As it happened with the
circular target in the same conditions, both the mean value of the NRE and its standard
deviation are significantly lower for the imaging inside cylindrical enclosure.

For comparison purposes, the same data have also been inverted by using an L2

Hilbert-space formulation (i.e., with p = 2). Results are presented in Figure 11c,d. Clearly,
in both PEC enclosure and free space, the dielectric properties of the target are underesti-
mated. Furthermore, some artifacts appear in Figure 11d. The reconstruction errors listed
in Table 2 lead to some interesting remarks. First, in all cases the proposed non-Hilbertian
formulation gives by far the best results. Second, benefits of working inside the PEC enclo-
sure still exist in the L2 case, but are more evident when the regularization is performed
outside Hilbert spaces. Third, the Hilbert-space NREs have a reduced standard deviation
compared to the others, which is due to the higher smoothing effect. Although this may
mitigate the impact of noise to some extent, it also degrades the reconstruction considerably
(over-smoothing).
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Figure 11. Rectangular cylinder. Examples of reconstructed distributions of the relative dielectric
permittivity with enclosure of radius a = 2.125λ and σb = 2 mS/m. Upper row: Lp-space results,
with p = 1.2. (a) Reconstruction with cylindrical enclosure; (b) Reconstruction in free space. Lower
row: Hilbert-space results. (c) Reconstruction with cylindrical enclosure; (d) Reconstruction in
free space.
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Table 2 also reports some computational data (time and random access memory)
required to run the inversion methods on a personal computer equipped with an Intel(R)
Core(TM) i5-2310 CPU at 2.90 GHz (Intel, Santa Clara, CA, USA) and 8 GB of RAM.
Computational time is notably higher when a cylindrical enclosure is considered, and it
shows a slight (average) increase in the proposed approach due to the number of performed
Newton iterations. When the number of iterations is the same, there are no significant
differences between methods. Furthermore, the present implementation of the case of PEC
enclosure requires more random access memory than the free space case, but the amount
of needed RAM is still similar for the Lp and the L2 methods.

In summary, these results confirm the advantages of adopting a non-Hilbertian for-
mulation for the imaging of targets inside conducting enclosures, and extend the previous
analyses carried out in open space configurations [33].

Table 2. Rectangular cylinder. Reconstruction errors (NRE), computational times (mean value± stan-
dard deviation) and required random access memory (RAM) with the proposed Lp-space approach
compared with a Hilbert-space formulation.

Proposed Approach Hilbert-Space

Cylindrical enclosure
NRE 0.526 ± 0.020 0.706 ± 0.008

Time (s) 90.24 ± 10.60 85.05 ± 0.203
RAM (MB) 129.4 ± 0.254 129.5 ± 0.205

Free space
NRE 0.622 ± 0.049 0.774 ± 0.020

Time (s) 12.34 ± 0.347 8.937 ± 2.695
RAM (MB) 20.79 ± 0.233 20.78 ± 0.240

5. Conclusions

In this paper, the nonlinear microwave imaging of targets enclosed in circular conduct-
ing cylinders has been addressed. This particular imaging configuration, which presents
some relevant potential applications in industrial nondestructive testing and medical di-
agnostics, has been considered within an inexact-Newton inversion method formulated
in non-Hilbertian Lp spaces for the first time. The presence of the circular enclosure has
been modeled with a proper Green’s function as kernel of the integral operators used to
formulate the imaging problem.

A brief discussion about the theoretical background has underlined that the problem
faced in this paper is much more tricky than the analogous in free-space. Actually, while in
free space the scattering field can be expanded into a simple sum of progressing waves,
in the present problem the solution is made by a sum of complicate standing waves, and
many resonant modes can arise inside the cavity. Furthermore, also the incident field
is strongly affected by the cavity boundaries and contains many modal contributions,
depending on the cavity dimensions.

The behavior of the proposed inverse scattering technique when operating in PEC
enclosures has been analyzed from a numerical point of view in canonical configurations,
involving circular dielectric cylinders. In particular, the simulations have been oriented at
understanding the influence of the conducting enclosure on the reconstruction performance.
Two distinct classes have been considered, regarding small and large enclosures, with
different amounts of background loss.

As expected, for small enclosures without background losses, the first resonances cause
a significant degradation of results, impairing a correct reconstruction of the inside dielectric
cylinder. On the contrary, in the middle points between these significant resonances, results
are comparable or even slightly better (in average) than the free space ones. Instead,
when a slightly dissipative background is used, numerical experiments show a completely
different behavior, since resonances are smoothed, and the average error seems to show
some advantages in using a conducting enclosure with respect to the free space conditions.
While, as expected, errors rise when enlarging the enclosure and moving measurement
points away from targets, the error increase with the enclosure is slightly less steep than
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the free space case. Moreover, in the lossy case, reconstruction results obtained inside
large conducting cylinders are always better then the free space ones, having a smaller
mean error on the dielectric characterization of the targets and even a significantly reduced
standard deviation. The advantages of embedding the measurement configuration in a
metallic cylinder appear more evident if the background losses rise.

As it is well known, the selection of proper operating frequencies represents a crucial
problem in time-harmonic microwave imaging. The presence of conducting enclosures
further complicates this issue, due to the possible resonance phenomena. If the inversion
method does not takes explicitly advantage from resonant modes, and low-loss configu-
rations should be adopted, a general suggestion is to choose the working frequency so
as to be sufficiently away from critical resonances, which can be computed based on the
behavior of Bessel’s functions. However, avoiding resonances may be very difficult as the
size of the imaging chamber rises. As proven by the presented results, this problem is
mitigated when the infill medium has non-negligible losses.

In conclusion, the adoption of a non-Hilbertian Lebesgue-space formulation seems
promising for the imaging inside metallic cylinders, and may lead to more accurate di-
electric reconstructions compared to the standard L2 approach. Although some relevant
differences may be observed based on the size of the outer metallic cylinder, ad-hoc cham-
bers of appropriate dimensions can enhance results in the presence of lossy backgrounds.
This could be exploited in many applications where not only boundaries can be controlled,
but also the imaging devices can benefit from the use of circular enclosures, such as the
case of biomedical imaging where the process requires a tight coupling of the investigated
region with the surrounding background media.
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