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Abstract: With the limitedness of the sub-6 GHz bandwidth, the world is exploring a thrilling
wireless technology known as massive MIMO. This wireless access technology is swiftly becoming
key for 5G, B5G, and 6G network deployment. The massive MIMO system brings together antennas
at both base stations and the user terminals to provide high spectral service. Despite the fact that
massive MIMO offers astronomical benefits such as low latency, high data rate, improved array
gain, and far better reliability, it faces several implementation challenges due to the hundreds of
antennas at the base station. The signal detection at the base station during the uplink is one of
the critical issues in this technology. Detection of user signal becomes computationally complex
with a multitude of antennas present in the massive MIMO systems. This paper proposes a novel
preconditioned and accelerated Gauss–Siedel algorithm referred to as Symmetric Successive Over-
relaxation Preconditioned Gauss-Seidel (SSORGS). The proposed algorithm will address the signal
detection challenges associated with massive MIMO technology. Furthermore, we enhance the
convergence rate of the proposed algorithm by introducing a novel Symmetric Successive Over-
relaxation preconditioner (SSOR) scheme and an initialization scheme based on the instantaneous
channel condition between the base station and the user. The simulation results show that the
proposed algorithm referred to as Symmetric Successive Over-relaxation Preconditioned Gauss-Seidel
(SSORGS) provides optimal BER performance. At BER = 10−3, over the range of SNR, the SSORGS
algorithm performs better than the traditional algorithms. Additionally, the proposed algorithm
is computationally more efficient than the traditional algorithms. Furthermore, we designed a
comprehensive hardware architecture for the SSORGS algorithm to find the interrelated components
necessary to build the actual physical system.

Keywords: 5G; B5G; 6G; BER; Gauss–Siedel; system complexity; SSORGS; hardware architecture;
massive MIMO; MIMO; uplink signal detection

1. Introduction

With globalization, wireless data traffic has seen a tremendous surge over the past two
decades. To cope up with this colossal increment in wireless data traffic, the cellular base
station is deployed within a few hundred-meter distance. Along with cellular broadband,
state-of-the-art technologies such as the Internet of Things (IoT), smart cities, mobile cloud,
smart vehicular communication, Augmented Reality (AR), Virtual Reality (VR), and Mixed
Reality (MR) are also adding to the increasing data traffic. A complete wirelessly joined
globe is anticipated in the next few decades, predominantly depicted by the colossal
increase in users, increased wireless data traffic, connectivity, and a great collection of
wireless applications. Recent research has shown that by the end of 2024, the total traffic
per month will be higher than 130 billion gigabytes. The 5G, beyond 5G (B5G), and 6G
networks will be carrying the majority of this load [1].
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The 5G, B5G, and 6G networks are envisioned to address these globally rising demands
in wireless information traffic. With the development of massive MIMO, an intriguing wire-
less access technology, there are some promises to supply the needs of these indispensable
demands. Massive MIMO is contemplated as the breakthrough technology for the future
generation 5G, B5G, and 6G networks. Massive MIMO technology is an upgraded version
of prevalent MIMO technology. Currently, MIMO technology is an essential element on
HSPA+ (3G), WiMAX, 4G Long Term Evolution (4G LTE), IEEE 802.11n (Wi-Fi), and IEEE
802.11ac (Wi-Fi) technology. Massive MIMO, to serve the tens of users, uses hundreds of
base station antennas simultaneously [2–5]. The pivotal benefit of the massive MIMO is the
array gain that it attains due to the thousands of the base station antenna [5]. The hundreds
of antenna elements at the base station assists in focusing energy on a confined region which
helps this technology to achieve benefits such as high spectral efficiency and increased
data rate. During the downlink, the 3D beams radiated from the base station becomes
more narrower and directed towards the intended user. These narrow beams reduce the
interference to the neighboring users and improve the throughput for the intended user [6].
A massive MIMO downlink and uplink system are shown in Figure 1. Apart from high
energy and spectral efficiency, massive MIMO also provides superior data rate, low power
consumption, ultra-low latency, robustness to interference and jamming, strengthened
security [7].

Figure 1. A Massive MIMO uplink system M base station antennas (M >> N) and N single antenna
users with channel matrix H. All the user signal are superimposed at the base station.

1.1. Relevant Prior Art and Motivation

Despite the fact that massive MIMO provides tremendous advantages for future gen-
eration networks, it faces numerous implementation challenges created by the multitude
of base station antenna elements. Uplink signal detection is one of the underlying issues
in massive MIMO deployment. With a large number of antennas, there arises an issue of
computational complexity and poor error performance. Apart from that, all the user signals
transmitted by tens and hundreds of users simultaneously at the base station superimposes
thereby creating unwanted interference. This adds more complexity in separating user
signals transmitted by different users.

Various algorithms have been proposed to discover an optimal detector by both
academia and industry research for massive MIMO uplink signal detection. Still, a need
for a near-optimal solution is imminent. The near-optimal solution should be designed
to boost the error performance with acceptable computational complexity. Several linear
and non-linear detectors have been proposed. The linear detectors such as Maximum
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Likelihood (ML), Zero Forcing (ZF), and Minimum Mean Square Error (MMSE) have been
considered for massive MIMO signal detection [8–10]. ML detection provides optimal
performance, but it is computationally infeasible for a system such as massive MIMO in-
volving thousands of antennas. The ZF method provides the mitigation of the inter-antenna
interference. However, for a channel with ill-conditioned matrices, more noise is added,
which reduces the optimal performance [11]. Compared to the ZF detector, the MMSE
detector provides superior error performance. This is because MMSE takes noise power
into account during the signal detection at the base station [12]. All the linear detection
methods include intricate matrix inversion, and for a system with hundreds of antenna
terminals such as massive MIMO, computational complexity increases dramatically. The al-
gorithm presented in [13] combines the ZF and MMSE algorithm with the Successive
Interference Cancellation (SIC) method. The combined algorithms were called ZF-SIC and
MMSE-SIC and were designed to reduce the interference from formerly detected sym-
bols. However, the performance was far from near-optimal in the combined algorithms.
Apart from these linear detectors, several non-linear detectors were also considered for a
massive MIMO system. The non-linear detectors such as Sphere Decoder (SD) provide
the appropriate error performance. Another non-linear detector known as SIC provides
acceptable error performance. However, for these non-linear detectors, computational
complexity was still the biggest issue for a system with a greater number of antennas,
making them inefficient to be used in massive MIMO systems [14,15]. Several iterative
methods were also taken into consideration for a massive MIMO system. Neumann Series
Approximation (NSA) [16], Approximate Message Passing (AMP) [17], Jacobi method [18],
and Richardson method [19] were presented, but the complexity was reduced moderately
when compared to the traditional linear and non-linear methods. The popular iterative
methods such as Gauss–Seidel (GS) [20], Least-square regression selection [21], Jacobi [22],
and Conjugate Gradient (CG) [23] were taken into account for massive MIMO detection.
Still, the near-optimal result was far from acceptable. Several other methods such as Hu-
ber fitting-based ADMM (Alternating Direction Method of Multipliers) and conventional
ADMM method [24] were also considered recently for uplink signal detection, but for a
system with a large number of antennas, these algorithms do not provide a good trade-off
between the error and the complexity. Recently, various optimal algorithm are designed
for the uplink signal detection [25–30].

In this paper, we present a novel preconditioned and accelerated Gauss-Siedel method
to address the concerns in massive MIMO uplink signal detection. The convergence
of the proposed algorithm is enhanced by introducing a novel Symmetric Successive
Over-relaxation preconditioner (SSOR) scheme and an initialization scheme based on the
instantaneous channel condition between the base station and the user. The proposed
algorithm is referred to as Symmetric Successive Over-relaxation Preconditioned Gauss–
Seidel (SSORGS). The results from the matlab simulation show that the proposed SSORGS
algorithm provides an optional BER performance. Apart front the BER performance,
the proposed SSORGS algorithm has achievable computational complexity. Additionally,
a comprehensive hardware architecture is designed for the the proposed SSORGS algorithm.
This hardware design will find the interrelated components necessary to build the actual
physical system.

1.2. Contributions

The key contributions of this work are summarized as follows:

1. We study the uplink signal detection issue in the massive MIMO system. We propose
an efficient iterative algorithm and its hardware architecture referred to as SSORGS to
address the signal detection problem in the massive MIMO systems.

2. We analyze the error performance and time complexity of the proposed SSORGS algo-
rithm. We compare the performance of the SSORGS algorithm with the conventional
algorithms such as CG, GS, ZF, MMSE, and ML.
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3. The results from the matlab simulation show that the proposed SSORGS algorithm
outperforms the traditional iterative algorithms. The algorithm achieves near-optimal
BER performance with acceptable computational complexity.

1.3. Paper Outline

The remainder of the paper is structured as follows: Section 2 lays out the system
model adapted for conducting the simulations. Additionally, Section 2 also presents the
proposed SSORGS algorithm. The simulation setup and numerical results are presented in
Section 3. Furthermore, the analysis of the simulation is discussed in Section 3. Section 4
describes the designed hardware architecture. Additionally, in Section 4, we compute the
computational complexity of the proposed SSORGS algorithm and compare the complexity
with the traditional MIMO detection algorithms. The Section 5 summarizes this work by
outlining the key ideas and the future work.

1.4. Notations

In this paper, the lower-case letters denote column vectors, and upper-case letters
denote matrices. The inverse and transpose of the matrix are represented by (.)−1 and
(.)′ respectively. The hermitian transpose is represented by (.)H . The CN (0, V) denote
the circular symmetric complex Gaussian distribution with zero mean and co-variance
V, and CM denote the space of M-element complex vectors. IM denotes the M × M
identity matrix.

2. System Model and Proposed Algorithm
2.1. System Model

We took into account M antennas equipped at the base station in a massive MIMO
uplink system in a single cell system as shown in Figure 2. These M antennas are continu-
ously communicating with N (M� N) single-antenna users at the same time. The data
from the user terminal is transmitted via the uplink channel, including the pilot signal.
The uplink signal transmission in a massive MIMO system is shown in Figure 3.

Figure 2. A Single Cell Massive MIMO uplink system M base station antennas and K single an-
tenna users.
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Figure 3. A typical massive MIMO uplink operation with K single antenna users, M base station
antenna (M >> K), and channel matrix H. The uplink signal from simultaneously communicating
users are superimposed at the base station. The decoder then separates the superimposed signals
into individual data streams.

The most commonly used Rayleigh fading channel model is considered between
the BS and the user terminals. Rayleigh fading channel is accurate model to represent
the channel with multi-path propagation. This model assumes that the magnitude of a
signal that has passed through communication channel will fade randomly, according
to a Rayleigh distribution, and it is seen as the most appropriate model for modeling
wireless signal propagation. For σ > 0, and y > 0, the Rayleigh distribution is a continuous
distribution with the probability density function:

f (y; σ) =
y
σ2 ∗ exp

−y2

2σ2 (1)

To reduce the effect of Inter-Symbol Interference, we assumed a long cyclic prefix and
each users bit streams are represented into a constellation point [21,24]. The user signal
received at the base station:

y = Hx + nuplink (2)

where x ∈ CN is the signal or pilot signal transmitted by the user, H is the channel
matrix,and y ∈ CM is the signal received at the base station. Each element of vector H ∈
CM×N have unit variance and zero mean. In addition, each element is i.i.d (independent
and identically distributed), i.e., H ∼ CN (0, 1). The nuplink ∈ CM is the noise at the receiver
with added interference, where nuplink = nuplink−inter f erence + nnoise. The interference added
in the noise is variable as it may get affected by the channel vector H. The user signal x
estimated by the linear detector MMSE is:

x = (HH H +
N0

Es
I)−1HHy (3)

where N0
Es

is the ratio of the signal power and noise power. Equation (3) can be
represented as:

x = A−1B (4)

where A = (HH H + N0
Es

I) and B = HHy. We can reinterpret Equation (4) as the linear
equation to avoid the computationally complex matrix inversions. The overall complexity
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of the algorithm is considerably reduced if we can eliminate the complex matrix inversion
in the algorithm. The linear equation representation of Equation (4) is given as:

B = Ax (5)

To apply the preconditioner in the above uplink system, we need to make matrix A
sparse. Making the matrix sparse will speed up data processing and save a significant
amount of memory. Additionally, the sparse matrix does not perform unnecessary low-
level arithmetic; thus, they improve the execution time.

Â = sparse(A) (6)

Using Equation (6) in Equation (5):

B = Âx (7)

Now, Lets consider splitting of matrix A on to upper, lower, and diagonal matrix as:

Â = D−U − L (8)

where D represents a diagonal matrix, −U represents an upper triangular matrix, and −L
represents a lower triangular matrix. Then, the Equation (8) can be solved using conven-
tional GS method as:

xi+1 = (D−U)−1(B + Lxi) (9)

where the approximated user signal during the ith iteration is xi. If the matrix H is
a Hermitian positive definite matrix, then for any initial value of x, the Equation (9)
converges. The initial value of x is denoted by x0. To make Equation (9) converge faster,
preconditioning is applied before the iteration. Preconditioning transforms the system into
a simple equivalent mathematical form, which can be solved using an iterative method.
We applied SSOR preconditioning to accelerate the convergence of the proposed algorithm.
To improve the convergence, an identical preconditioned system for (4) can be created to
apply the preconditioner. The identical system is presented as:

P−1Y = P−1 Âx (where P ≈ Â) (10)

where the preconditioner matrix P is positive definite and symmetric. The preconditioner
will estimate Â−1 as ||I − P−1 Â|| < 1 [31]. In this work, SSOR preconditioner is applied to
precondition our initial system. The SSOR preconditioner is given as:

MSSOR =
1

r(2− r)
(D− rL)D−1(D− rU) (11)

where r is the relaxation parameter. In massive MIMO systems this relaxation parameter
can be approximated by Equation (12) [32]:

r =
2

1 +

√√√√2

(
1−

((
1 +

√
N
M

)2
− 1

)) (12)

Here the relaxation parameter only depends on the number of base station anten-
nas (M) and the number of users (N) of the massive MIMO system. The convergence
of this optimal relaxation parameter is presented in [32]. Since the relaxation parameter
depends only upon the number of base station antennas and the number of users, the re-
laxation parameter value is constant once the massive MIMO configuration has been fixed.
Thus, we do not have to compute the relaxation parameter MSSOR even if the channel
conditions change with time. Since the relaxation parameter is only computed once for
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each configuration, we avoid its computation during each algorithm iteration, making it
computationally efficient.

For additional acceleration and convergence, we introduced an initialization scheme
to instantiate the user signal x. Usually, a zero vector is used as an initial solution x0 in
conventional iterative methods such as the GS method. The initial solution with a zero
vector is far from the final solution. Thus, it requires more number of iterations to reach the
final solution. The number of increased iteration increases computational complexity and
decreases the convergence rate. Due to the large number of antennas in the massive MIMO
systems, each iteration has a very high computational cost. Thus, finding the optimal
solution with fewer iterations is crucial for implementing massive MIMO for 5G, B5G,
and 6G networks. The proposed initial solution is simple, and it only depends on the
received signal and the matrices computed during preconditioning. The estimated initial
solution is approximated as:

x0 = (D− L−U)−1B (13)

The diagonal, upper, and lower triangular matrix values were already determined
during the computation of the preconditioner. Thus, the proposed initial solution does not
add extra complexity to the system. Also, this factor is computed only once outside of the
algorithm iteration to reduce complexity.

2.2. Proposed Algorithm

This section summarizes the proposed SSORGS algorithm. The step-wise summary
of proposed SSORGS algorithm is presented in Algorithm 1. The accelerator and precon-
ditioner applied in the method improve the convergence rate. The faster convergence of
an algorithm reduces the number of iteration required to reach the final solution. The low
number of iteration reduces the complexity of the algorithm noticeably. Besides, the hard-
ware architecture designed for the SSORGS algorithm identifies the necessary elements
and the relationships between those components. The primary inputs given to the system
are y, H, N0, Es, N, and M, where y is the composite signal at the base station, N0 is the
complex noise variance per receive antenna (noise power), Es is the average symbol energy
(signal power), and N is the number of users simultaneously communicating with the base
station, M is the number of antennas at the base station, and H is the channel matrix. All
the matrix-vector multiplication is done during the preprocessing. Since preprocessing is
done outside of the iteration loop, doing complex calculations outside of the loop reduces
the complexity of the algorithm. A = (HH H + N0

Es
I) is the gramian matrix, where N0 is

noise power and Es is the signal power. To boost the rate of convergence of the proposed
algorithm, SSOR preconditioning is applied to the matrix A. This preconditioning is done
in advance of computing the diagonal matrix, lower triangular matrix, and an upper trian-
gular matrix. We need these upper triangular, lower triangular, and diagonal matrix during
the user signal x-update. We also designed a novel initialization matrix x0 presented in
Equation (13). This initializer will further enhance the convergence rate for the proposed
SSORGS algorithm. This Equation (13) is used the initialize the user signal xi. The GS
method is presented in Equation (9). This equation is used during algorithm iteration to
estimate the user signal xi. The advantage of using the proposed method is the simplicity.
We do not have to compute any complex matrix operation or matrix inversion at any point
during the user signal estimation. This feature makes this algorithm way less complicated
compared to the conventional iterative, linear, and non-linear algorithms used for signal
detection in massive MIMO. The complete details of all the computations performed in
Algorithm 1 are presented in Section 2.1.
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Algorithm 1 SSORGS Algorithm Proposed for Massive MIMO Uplink Singal Detection
Inputs: y, H, N0, Es, N, M
Pre-processing:

1. A =
(

N0
Es
∗ I
)
+ ((HH) ∗ H)

2. B =
(
(HH) ∗ y

)
3. Â = sparse(A)
4. Compute :

U = upper(Â)
D = diagonal(Â)
L = lower(Â)

5. r = 2

1+

√√√√2

(
1−
((

1+
√

N
M

)2
−1

))
6. MSSOR = 1

r(2−r) (D− rL)D−1(D− rU)

7. Ã = (MSSOR)
−1 Â

8. B̃ = (MSSOR)
−1B

9. Compute :
Ũ = upper(Ã)
D̃ = diagonal(Ã)
L̃ = lower(Ã)

10. x0 = (D̃− L̃− Ũ)−1B̃
11. for i = 1 to imax do
12. xi+1 = [(D̃− Ũ)−1 ∗ (L̃xi + B̃)]
13. End for

Output: xi

3. Simulation Setup and Simulation Results
3.1. Simulation Setup

This section presents the simulation setup used to evaluate the performance of the
proposed SSORGS algorithm. To assess the performance of the proposed algorithm, we
compare it with traditional massive MIMO uplink detection algorithms. A massive MIMO
system is considered with 16 to 512 BS antenna terminals. These base station antenna
terminals are concurrently communicating with single-antenna users. We assumed that 16
users are communicating with the base station at a time. The bandwidth is considered to
be 20 MHz. We considered the Rayleigh Fading channel model between the user terminals
and the base station. Rayleigh fading channel is a standard statistical model to represent
the channel with multi-path propagation. This model is seen as the most appropriate model
for modeling wireless signal propagation [33,34]. Different modulation schemes are used
during the simulation. The modulation schemes used during the simulations are 64-QAM
(Quadrature Amplitude Modulation), 16-QAM, QPSK (Quadrature Phase Shift Keying),
and Binary Phase Shift Keying (BPSK). The simulations were executed in Matlab under
Windows OS, with a 1.5 GHz Intel Core i5 processor and 8GB of RAM. All the simulation
parameters are shown in Table 1.
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Table 1. Simulation Parameters.

Parameter Value

Carrier Frequency 3.7 GHz
System Bandwidth 20 MHz

Signal to Noise Ratio 0 dB–25 dB
Antenna Numbers at Base Station 16–256

Channel Model Rayleigh Fading Channel Model (Uncorrelated)
Signal Variance 2

Users 16 Single Antenna Users
Frame duration 10 ms

Sub-frame duration 1 ms
Slot duration 0.5 ms

Variance in Noise Changes with SNR
Modulation Scheme 64-QAM, 16-QAM, QPSK, BPSK

3.2. Simulation Results

This section presents the overall simulation results and analysis of the performance of
the proposed SSORGS algorithm. Figure 4 shows the antenna beam pattern with different
antenna configurations that we used in our simulations. We can see that with the increase
in the number of antennas, antenna directivity increases. With a 16 base station antenna
configuration as shown in Figure 4a, the signal will spread in a wider direction. Thus,
the users at the edge of the cell will receive lower signal strength, whereas unintended
users near the antenna will receive higher signal strength. For the unintended users, this
higher signal strength actually becomes interference as the signal is not intended for them.
If we increase the number of the base station antenna to 32, the beams become narrower.
These narrow beams are spatially focused toward the user. Still, with the 32 antenna
configuration as shown in Figure 4b, we will have substantial side lobes near the antenna,
which will cause interference to the unintended users. With further increase in base station
antenna (64 and 128 antenna configuration), the beams became more narrower and focused
toward the users.

With 64 and 128 antenna configuration, the users at the edge of the cell are also
receiving higher signal strength. In a system with 64 and 128 antennas, we can see that
the side lobes are almost diminished; thus, there will be little to no interference to the
unintended users.

3.3. BER Performance

The proposed SSORGS algorithm’s error performance was estimated with various
antenna configurations and modulation schemes. Then, the performance was compared
with conventional iterative MIMO detection algorithms. For any communication system,
BER is defined as the “ratio of the number of error bits transmitted to the total number of
bits transmitted during a specific time” [35]. The ML algorithm is the optimal algorithm
that provides theoretically maximum performance. ML is used as the benchmark for
assessing the performance of massive MIMO detection algorithm measurement for every
algorithm has to achieve.
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(a) 16 × 16 (b) 16 × 32

(c) 16 × 64 (d) 16 × 128
Figure 4. Beam Pattern with different antenna configuration. (a) 16 base station antenna and 16 single antenna users.
(b) 32 base station antenna and 16 single antenna users. (c) 64 base station antenna and 16 single antenna users. (d) 128 base
station antenna and 16 single antenna users.

Figure 5 shows the BER performance of the proposed SSORGS algorithm chang-
ing base station antenna. This experiment was conducted with 16QAM modulation and
16 users. As shown in Figure 5a, with the 16 base station antenna configuration, the pro-
posed SSORGS algorithm’s performance surpass the traditional CG and GS algorithm.
The BER performance was closing the optimal value with a higher value of SNR. Figure 5b
shows the BER performance of the proposed algorithm with a base station equipped with
32 antennas. The BER performance of the proposed algorithm outperformed the traditional
algorithms, and it was found to be near-optimal. With the further increase in base station
antenna as shown in Figure 5c,d, the proposed algorithm performed even better, and the
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performance was closing the optimal ML algorithm. It should also be noted that the BER
performance for every algorithm simulated has improved largely with the increasing num-
ber of the antenna at the base station. This is due to beamforming that happens due to
the array gain provided by thousands of antenna terminals at the base station. With the
increase in the number of antennas, antenna directivity increases, which improves the
signal received by the intended user and reduces the interference.

(a) (b)

(c) (d)

Figure 5. Bit error rate (BER) performance of proposed SSORGS algorithm with 16 user terminals, 16QAM modulation and
changing base station antenna. (a) 16 user terminals and 16 base station antenna. (b) 16 user terminals and 32 base station
antenna. (c) 16 user terminals and 64 base station antenna (d) 16 user terminals and 128 base station antenna.
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We then assessed the proposed SSORGS algorithm’s performance by increasing the
number of antennas at the base station. We did this simulation with just 16 single antenna
users using 16-QAM modulation. The error performance of the SSORGS algorithm with
various antenna configuration is shown in Figure 6. We achieved 4.8 dB gain at BER = 10−3

by growing the base station antenna from 32 to 64. An additional 3.9 dB gain was achieved
when the antenna number was increased to 128. Thus, the error performance of the
algorithm was improved drastically by increasing the number of antennas at the base
station. The higher number of antennas improves the link reliability through spatial
diversity and provides more degrees of freedom in the spatial domain. Massive MIMO
also makes efficient use of beamforming techniques to improve SNR, latency, and error
performance. The beamforming simply allows the base station to adjust the radiation
pattern. This adjustment by the base station improves the spectral efficiency of the system
as it allows more users to send the information at the same time [7,36].

Figure 6. BER performance of proposed SSORGS algorithm with various base station antenna configu-
ration. This simulation was conducted with 16 user terminals and 16-QAM modulation configuration.

We then conducted a simulation by applying different modulation schemes. This sim-
ulation was conducted with 16 base station antennas and 16 user terminals. For these sim-
ulations, we used four different modulation schemes: 64-QAM, 16-QAM, QPSK, and BPSK.
We can see the result of the simulation in Figure 7. At BER = 10−3, a gain of 6 dB was
achieved when we changed the modulation scheme from 64QAM to 16QAM. An additional
7 dB gain was achieved when the modulation scheme was changed to QPSK from 16-QAM.
Thus, the BER performance for the proposed detection algorithms deteriorates when we
increase the modulation order. This is due to the fact that the higher-order modulations
have more number of symbols. The more the symbols are close to each other in the constel-
lation diagram, the more likely it is that noise will corrupt the signal. This error can only
be avoided by increasing the transmission power. Although the higher modulation order
has poor error performance, they provide a higher data rate since more bits are transmitted
simultaneously. Thus, for applications where we require a higher data rate and do not care
much about error performance, higher modulation order is useful. Thus, modulation order
becomes an all-important design factor to consider in massive MIMO systems.
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Figure 7. BER performance of proposed SSORGS algorithm by switching the modulation order. This
simulation was conducted with 16 user terminals (N) and 16 base station antennas (M) configuration.

4. Hardware Architecture and Complexity Analysis

The hardware architecture designed for the SSORGS algorithm is analyzed in this
section. We compared the computational complexity of the SSORGS algorithm and the
traditional detection algorithms. Figure 8 shows the hardware architecture for the proposed
SSORGS massive MIMO detection algorithm. The designed hardware architecture has
five different units to do different tasks independently. The five units in the design are the
preprocessing unit, initialization/acceleration unit, SSOR preconditioning unit, SSORGS
unit, and SINR computation unit. This hardware needs several inputs to function. Some of
the major functional inputs to the hardware are channel matrix H, average symbol energy
Es, the received signal at the base station y, and noise variance per receive antenna N0.
The first unit preprocessing unit takes all the inputs and does the preprocessing required
before the iteration begins. Most of the complex computations required during the iteration
are computed during preprocessing, which reduces the overall complexity of the proposed
algorithm. Complex operations such as gram matrix calculation and matrix-vector multi-
plications are done during the preprocessing. The SSOR preconditioning unit applies the
SSOR preconditioner to the gram matrix to improve the algorithm’s convergence. The up-
per triangular, lower triangular, and diagonal matrices are computed in this unit, required
during the x-update of the proposed SSORGS algorithm. The initialization/acceleration
unit further improves the algorithm’s convergence by applying the proposed novel ini-
tialization scheme. The user signal that will be estimated by the algorithm is initialized
with the initial solution generated by this unit. This initial solution uses the diagonal,
upper, and lower triangular matrix. The diagonal, upper, and lower triangular matrices
were already determined in the preconditioning unit. Thus, the proposed initial solution
does not add extra complexity to the algorithm. Finally, the user signal is estimated at the
SSORGS method unit. This is the unit that detects all the different signals sent by the users.
Then we have the SINR computation unit, which simply computes the SNR for every user
signal that has been detected.

Since we are dealing with a generous number of antennas in the massive MIMO
systems, evaluating the complexity of the system becomes indispensable before it can
be used in real-world scenarios. For all the iterative algorithms such as the proposed
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SSORS algorithm, computational complexity is majorly resting on the number of complex
iterations. To assess the performance of the proposed SSORGS algorithm, we computed
the worst-case time complexity of the system. The complexity was then compared with
the conventional iterative algorithms. The renowned Big O notation was used to evaluate
the work’s worst-case scenario. Big O is the most common metric for calculating the
time complexity of the iterative algorithms [37–39]. The Big O complexity of the SSORGS
algorithms was in the order of O(iN2). Here i is the number of complex iteration during
the user signal estimation. The proposed algorithm converges in a relatively fewer iteration.
The proposed algorithm’s computational complexity is almost similar to the conventional
iterative algorithms such as GS and CG. The computational complexity of the CG and GS
are also in the order of O(iN2). The traditional massive MIMO algorithms such as ZF and
MMSE have computational complexity in order of O(MN2) [40]. The number of antennas
at the base station is significantly higher than the number of iterations in the proposed
algorithm (M� i).

Thus, the computational complexity of the proposed SSORGS algorithm is much
lower when compared to traditional algorithms such as ZF and MMSE. The complexity
performance of the traditional massive MIMO uplink signal detection algorithm and the
proposed SSORGS algorithm are summarized in Table 2.

Table 2. Complexity comparison for proposed SSORGS algorithm.

Algorithm Complexity

ZF O(MN2)
MMSE O(MN2)

GS O(iN2)
CG O(iN2)

SSORGS O(iN2)

SINR
Computation

Unit

`

Matched
Filter 

Hermitian
Conjugate

Preprocessing	Unit

SSORGS	Unit

Diagonal

Gram
Matrix

Hermitian
Conjugate -1

-1

Sparse

DiagonalHermitian
Conjugate

-1

-1

Initialization/Acceleration	Unit

Gram
Matrix

D

SSOR	Preconditioning	Unit

Figure 8. The proposed hardware architecture with all the required components designed for the
SSORGS algorithm.

5. Conclusions

Massive MIMO technology is an emerging wireless access technology used in 5G,
B5G, and6G networks. Given the pressing need for an efficient uplink signal detection
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method in massive MIMO systems, a limited amount of research has been conducted to
find an algorithm that can provide near-optimal performance with acceptable complexity.
This paper introduces an efficient uplink signal detection algorithm for detecting user
signals at the base station in massive MIMO systems. The proposed algorithm provides
an exceptional balance between the system complexity and the BER performance. Thus,
the proposed algorithm is an appropriate candidate to be used in a massive MIMO sys-
tem. The proposed SSORGS algorithm uses a novel initialization scheme and the SSOR
preconditioner to accelerate the convergence and improve its performance. The hardware
architecture presented in the paper reveals all the interrelated physical elements required
to design the system physically. The results from all the simulations demonstrate that the
proposed SSORGS algorithm attains optimal error performance and performs way better
than the traditional algorithms for massive MIMO systems. At BER = 10−3, over the range
of SNR, the SSORGS algorithm performs better than the traditional algorithms such as
Gauss–Seidel and Conjugate Gradient algorithm. At the same BER of = 10−3, we achieved
8.7 dB by increasing the base station antenna from 32 to 128. The change in modulation
order from 64-QAM to QPSK achieved the gain of 13 dB at BER value = 10−3. The compu-
tational complexity of the proposed algorithm is significantly better when compared to
conventional detection algorithms. The proposed SSORGS algorithm has remarkably better
performance with the larger number of the base station antenna and lower modulation
order. The benefits that the proposed algorithm provides makes it a suitable candidate for
massive MIMO signal detection. Thus, the algorithm may help us realize the immense
applications that 5G, B5G, and 6G networks can provide.

In the future, we are planning to test the design with multi-antenna user terminals
and with a higher number of base station antennas. It would be fascinating to see the use
of machine learning and deep learning technology for signal detection in massive MIMO
systems. There are many hurdles and challenges still on the way for this developing wire-
less technology. Other than signal detection issues, there are several other challenges such
as pilot signal contamination, energy efficiency, and convergence with older infrastructure.
These challenges should be studied further to achieve the promising advantages of 5G, 6G,
and beyond networks.
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Abbreviations
The following abbreviations are used in this manuscript:

MIMO Multiple-input multiple-output
SSOR Successive Over-relaxation preconditioner
SSORGS Symmetric Successive Over-relaxation Preconditioned Gauss–Seidel
BER Bit Error Rate
M2M Machine to machine
AR Augmented Reality
VR Virtual Reality
MR Mixed Reality
3GPP 3rd Generation Partnership Project
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HSPA+ High speed packet access
WiMAX Worldwide interoperability for microwave access
LTE Long term evolution
ZF Zero-Forcing
IoT Internet of things
ML Maximum Likelihood
MMSE Minimum mean square error
SIC Successive interference cancellation
NSA Neumann Series Approximation
GS Gauss Seidel
CG Conjugate Gradient
ADMM Alternating Direction Method of Multipliers
CSI Channel State Information
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