
electronics

Article

Customizable Vector Acceleration in Extreme-Edge Computing:
A RISC-V Software/Hardware Architecture Study on VGG-16
Implementation

Stefano Sordillo , Abdallah Cheikh , Antonio Mastrandrea, Francesco Menichelli and Mauro Olivieri *

����������
�������

Citation: Sordillo, S.; Cheikh, A.;

Mastrandrea, A.; Menichelli, F.;

Olivieri, M. Customizable Vector

Acceleration in Extreme-Edge

Computing: A RISC-V

Software/Hardware Architecture

Study on VGG-16 Implementation.

Electronics 2021, 10, 518. https://

doi.org/10.3390/electronics10040518

Academic Editor: Luis Gomes

Received: 26 January 2021

Accepted: 19 February 2021

Published: 23 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of
Rome, 00185 Rome, Italy; stefano.sordillo@uniroma1.it (S.S.); abdallah.cheikh@uniroma1.it (A.C.);
antonio.mastrandrea@uniroma1.it (A.M.); francesco.menichelli@uniroma1.it (F.M.)
* Correspondence: mauro.olivieri@uniroma1.it

Abstract: Computing in the cloud-edge continuum, as opposed to cloud computing, relies on high
performance processing on the extreme edge of the Internet of Things (IoT) hierarchy. Hardware
acceleration is a mandatory solution to achieve the performance requirements, yet it can be tightly
tied to particular computation kernels, even within the same application. Vector-oriented hardware
acceleration has gained renewed interest to support artificial intelligence (AI) applications like
convolutional networks or classification algorithms. We present a comprehensive investigation of
the performance and power efficiency achievable by configurable vector acceleration subsystems,
obtaining evidence of both the high potential of the proposed microarchitecture and the advantage of
hardware customization in total transparency to the software program.

Keywords: edge-computing; processors; hardware acceleration

1. Introduction

The cloud-edge continuum computing paradigm relies on the possibility of local
processing in the edge of the IoT whenever it is convenient for reasons of energy efficiency,
reliability, or data security. As a consequence, there is a gradual shift of artificial intelligence
(AI) algorithm execution from the cloud down low power embedded IoT devices on the
edge, to be used in real-time for example to take voice commands or extract image features,
for biometric, security, or filtering purposes [1].

The resultant demand for very high processing speed on extreme edge computing
devices turns into unprecedented design challenges, especially because of the usually
limited energy budget. Therefore, the implementation of hardware acceleration on edge
devices in the IoT hierarchy has become a major trend to reach the speed and energy
efficiency requirements.

Vector computing acceleration was a major stream in high performance computing
systems for decades and is gaining renewed interest in recent development in the su-
percomputing sector [2]. Yet, it is easy to note that the vector computing paradigm can
also be applied to AI computing kernels that are run in embedded IoT devices on the
edge. Nonetheless, the limited hardware budget usually available in edge devices makes it
interesting to explore the possibility of configurable acceleration sub-systems to optimally
exploit the available hardware resources according to the specific computation kernels
being run during the application execution.

We implemented such exploration addressing the execution of the VGG-16 deep con-
volutional neural network inference, widely known for its image recognition performance
as well as for its high computing power and storage demand. The VGG-16 execution
is composed of consecutive layers having different computational characteristics. There-
fore, it well represents a stress-test of the hardware micro-architecture with a time-variant

Electronics 2021, 10, 518. https://doi.org/10.3390/electronics10040518 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3688-5950
https://orcid.org/0000-0003-4495-5960
https://orcid.org/0000-0002-0214-9904
https://doi.org/10.3390/electronics10040518
https://doi.org/10.3390/electronics10040518
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10040518
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/4/518?type=check_update&version=1

Electronics 2021, 10, 518 2 of 21

workload profile. Our target micro-architecture is an open-source RISC-V [3] processor
core supporting multi-threaded execution and featuring a highly customizable vector
acceleration subsystem [4].

The contributions of this work to the reader interested in advanced embedded system
design for IoT extreme-edge computing, are manifold:

• We report the quantitative evidence of the trade-offs in vector co-processor design
and configuration targeting simple edge-computing soft-cores;

• We present details on the small custom RISC-V compliant instruction extension suffi-
cient to support typical vector operations in a tiny soft-core;

• We present a complete yet very simple library of intrinsic functions to support ap-
plication development, and we discuss the full detail of source code exploiting the
co-processor instructions in each VGG-16 layer execution;

• We give insights into the open-source Klessydra processor core microarchitecture.

The rest of this article is organized as follows: Section 2 covers the related works on
hardware acceleration for embedded computing on the IoT edge, including configurable
solutions, Section 3 introduces the Klessydra T1 processor soft-core featuring configurable
hardware acceleration subsystem. Section 4 describes the fundamental features of the
VGG-16 application case and its implementation on Klessydra T1. Section 5 reports and
discusses the results obtained for the different sub-parts of the chosen application cases,
and Section 6 summarizes the outcomes of the work.

2. Related Works

Several previous works reported the design of hardware accelerated microcontroller
cores implemented in edge-computing silicon chips. In [5], a RISC-V processor with DSP
hardware support is presented, targeting near-threshold voltage operation. The Diet-SODA
design implements a similar approach by running its DSP accelerator in near-threshold
regime [6]. In [7–9] application specific accelerators are reported, based on highly parallel
operation and minimized off-chip data movements for energy efficiency.

All of the above works focus on silicon implementation of units tailored to specific
computations. As opposed to this view, the proposed hardware architecture study is
independent of technology assumptions, such as the supply voltage, and addresses any
physical implementation, particularly soft-cores on commercial FPGA devices, in the view
of exploiting application-driven configurability. Regarding FPGA-based implementations,
in [10] the authors present a cluster of RISC-V cores connected to a tightly-coupled scratch-
pad memory and a special purpose engine dedicated to convolutions only. Thanks to FPGA
implementation, the convolution engine can be configured at synthesis time to optimize the
execution of each convolutional layers, yet exhibiting a severe performance degradation
when executing layers it was not built to optimize.

A recently published work [11] presents a SIMD configurable CNN coprocessor con-
nected to a 32-bit RV32IM RISC-V processor. Compared to the pure SIMD Klessydra
configuration, that uses 11678 LUTs and takes 824 clock cycles for a 4 × 4 matrix convolu-
tion, the work in [11] reports 12872 LUTs and 2070 clock cycles.

In [12] the authors present a coprocessor soft-core at the edge of IoT, designed to be
energy efficient in executing CNN as well as other machine learning algorithms. In particu-
lar, they explore the potential impact of data parallelism on the energy efficiency due the
increased memory bandwidth. In our study, memory traffic as well as the memory static
power consumption are taken into account in energy estimations.

The works in [13,14] present a pipelined CNN coprocessor capable of accelerating
convolutions based on the extremely high parallelism in the coprocessor, yet limited to
convolutional computation kernels.

In [15] the authors present different coprocessor configurations integrated with a
parallel cluster of RISC-V cores and evaluated which of the configurations is the fastest and
most energy efficient. They introduce special co-processing cores dedicated to the standard
instruction subset RV32M, without exploring more sophisticated co-processor operations.

Electronics 2021, 10, 518 3 of 21

In [16] the authors provide a DCNN accelerator for IoT. The accelerator itself is
designed to work with 3 × 3 kernels, and being not configurable, in order to support
larger kernels they use a technique called kernel decomposition, which in fact increases the
waste in computational resources and decreases in the energy efficiency, similarly to the
convolution engine in [10].

The coprocessor architecture proposed in this work is general purpose in nature, being
based on vector operations, and can be tailored to support a given computation kernel
in the most efficient way. Our work builds on the preliminary developments reported
in [17,18] and complements the analysis presented in [4].

The standard “V” vector extension of RISC-V—supported for example by SiFive prod-
ucts [19] and by the EPAC accelerator within the European Processor Initiative project [2]
is a large and complex instruction set extension, to cover applications ranging from em-
bedded systems to HPC, which goes far beyond the scope of the lightweight Klessydra
soft-core vector extension. Additionally, the standard “V” extension adopts a vector pro-
cessing scheme based on a Vector Register File, while we explicitly chose to use generic
Scratchpad Memories (SPMs) as local storage for more flexibility, at the price of losing
compliance with any standard ISA extension. Rather than identifying vectors with a vector
number chosen among 32 vector registers, we use pointers within the SPM address space
to address vectors or portions of vectors. Additionally, as the number of SPMs available to
the programmer in the microarchitecture is configurable.

The Ara processor [20], as well as the Xuantie-910 processor [21] and the dual core
presented in [22], are all silicon ASIC implementations (thus not configurable as a soft-
core is) of micro-architectures, which are actually not compliant with the “V” standard
extension, yet they are still based on fixed Vector Register Files. Additionally, the Xuantie-
910 processor addresses high performance superscalar execution of general-purpose non-
vectorizable code, which is out of the scope of the Klessydra architecture.

The processor reported in [23] adopts an interesting approach based on directly
converting ARM SVE vectorized code into a non-standard vector RISC-V extension, thus
it is explicitly based on the same operation and storage scheme of ARM SVE. Klessydra
diverges from this approach, favoring a broader exploration through configurability. The
processor presented in [24] is a soft-core as Klessydra is, but it is again based on a Vector
Register File rather than on a configurable SPM-based acceleration.

3. The Klessydra T1 Customizable Architecture
3.1. Hardware Microarchitecture

Klessydra is a family of open-source, RISC-V compliant and PULPino [25] compatible
cores, which includes basic processors (T0 sub-family), hardware accelerated processors
(T1 sub-family), and fault-tolerant processors (F0 sub-family) [26]. A characteristic fea-
ture of all Klessydra cores is the hardware support for interleaved multi-threading on a
single core [27]. The RTL code and manuals of the Klessydra family are available in the
Supplementary Materials.

The hardware accelerated T1 cores are an extension of the basic T0 core, that is sketched
in Figure 1.

The T0 microarchitecture resembles a classic four-stage RISC pipeline, except for
having multiple Program Counters to support multi-threading, and replicated register files
and Control/Status Registers. Differently from a multi-core implementation, an interleaved
multi-threading single core shares all the combinational logic constituting the instruction
processing pipeline among the hardware threads (“harts” [3]), by interleaving threads in
time, while maintaining separate PCs and registers to keep the state of each thread.

Electronics 2021, 10, 518 4 of 21Electronics 2021, 10, x FOR PEER REVIEW 4 of 22

Figure 1. Klessydra T0 core microarchitecture.

The T0 microarchitecture resembles a classic four-stage RISC pipeline, except for hav-
ing multiple Program Counters to support multi-threading, and replicated register files
and Control/Status Registers. Differently from a multi-core implementation, an inter-
leaved multi-threading single core shares all the combinational logic constituting the in-
struction processing pipeline among the hardware threads (“harts” [3]), by interleaving
threads in time, while maintaining separate PCs and registers to keep the state of each
thread.

In each clock cycle a different Program Counter is used for instruction fetching, on a
rotation basis. As a result, instructions belonging to different threads of execution are in-
terleaved in the core pipeline, so that it is never possible that any two instructions in the
pipeline manifest any register, structural or branch dependency. By fetching an instruc-
tion from a new thread in each clock cycle, pipeline hazards are eliminated, while if the
same thread run for several clock cycles, its own data hazard or branching hazard would
impose introducing dependency-check logic and pipeline stalling. The only dependency
in the instruction pipeline can occur between two threads on explicit shared memory ac-
cess, which is responsibility of the programmer.

The supported number of interleaved threads is a parameter of the synthesizable RTL
code of the core.

The T1 microarchitecture (Figure 2) is derived from the T0 by adding the Vector Co-
processing Unit (VCU), being internally comprised of Multi-Purpose Functional Units
(MFU) and Scratch-Pad Memory Interface (SPMI).

LSU

Regfile Decode

FetchPC
PC

CSR

Data Memory

W B

Debug
Updater

Hart
Updater

hart a

hart b,
or c

hart c

Program Memory

EXECUTE

Figure 1. Klessydra T0 core microarchitecture.

In each clock cycle a different Program Counter is used for instruction fetching, on a
rotation basis. As a result, instructions belonging to different threads of execution are
interleaved in the core pipeline, so that it is never possible that any two instructions in the
pipeline manifest any register, structural or branch dependency. By fetching an instruction
from a new thread in each clock cycle, pipeline hazards are eliminated, while if the same
thread run for several clock cycles, its own data hazard or branching hazard would impose
introducing dependency-check logic and pipeline stalling. The only dependency in the
instruction pipeline can occur between two threads on explicit shared memory access,
which is responsibility of the programmer.

The supported number of interleaved threads is a parameter of the synthesizable RTL
code of the core.

The T1 microarchitecture (Figure 2) is derived from the T0 by adding the Vector Co-
processing Unit (VCU), being internally comprised of Multi-Purpose Functional Units
(MFU) and Scratch-Pad Memory Interface (SPMI).

At the instruction level, the T1 architecture supports the parallel execution of instruc-
tions of different types, belonging to the same hart. In fact, the LSU works in parallel with
the other units when executing memory store instructions, that cannot cause a write-back
conflict on the register file. The MFU is allowed to read operands from the register file but
can only write its results to local scratchpad memories (SPMs), thus keeping the SPMs and
the Registerfile decoupled and allowing parallel execution between instructions writing
to each of these memories simultaneously. Scalar instructions of a hart are processed by
the “Execution” unit and operate on data in the Register File, while vector instructions are
processed by the VCU and operate on data in the SPMs. Data transfers to/from the data
memory from/to the SPMs are managed by the LSU via dedicated instructions.

Electronics 2021, 10, 518 5 of 21Electronics 2021, 10, x FOR PEER REVIEW 5 of 22

LSU

Regfile Decode

FetchPC
PC

CSR

Data Memory

WB

Debug
Updater

Hart
Updater

hart a

hart a,
b, or c

hart c

Input Mapping

Add
Sub Shft Mul Accum Cmp

M
FU

Output Mapping

M
FU

 C
trl

SPM Access
Handler

FU
Enabler

FU Contention
Handler

MFU_busyMFU_req

FU

HW-LoopsException
Handler

MFU
 Config

MFU Init

Intermediate Mapping

Bank Intrlv

Bank1Bank0 BankN

SP
M

I

Data Rotate

SP
M

SPM I/O
Mapping

SPM Contention
Handler Halt

Access

LSU Rd / Wr Bus 32-bit

xF

xD

xM

xM

xN xD
xM

MFU

SPMI

Program Memory

EXECUTE

xM xM

vs1 32b xM
vs2 32b xM

vd 32b xM

Halt MFU

Halt LSU

Figure 2. Klessydra T1 core microarchitecture.

At the instruction level, the T1 architecture supports the parallel execution of instruc-
tions of different types, belonging to the same hart. In fact, the LSU works in parallel with
the other units when executing memory store instructions, that cannot cause a write-back
conflict on the register file. The MFU is allowed to read operands from the register file but
can only write its results to local scratchpad memories (SPMs), thus keeping the SPMs and
the Registerfile decoupled and allowing parallel execution between instructions writing
to each of these memories simultaneously. Scalar instructions of a hart are processed by
the “Execution” unit and operate on data in the Register File, while vector instructions are
processed by the VCU and operate on data in the SPMs. Data transfers to/from the data
memory from/to the SPMs are managed by the LSU via dedicated instructions.

The MFUs execute vector arithmetic instructions, whose latency is proportional to
the vector length. In an in-order interleaved-multi-threading pipeline, a hart requesting
access to the busy MFUs may result in stalling the whole pipeline, stalling other harts that
may not need to access the MFU. To circumvent this, in the T1 architecture, the waiting
hart executes a self-referencing jump so that the PC for that hart does not advance until
the MFU becomes free, avoiding unnecessary stalls of harts that are independent from the
MFU being busy. Figure 3 demonstrates a cycle accurate diagram of the mechanism.

Figure 3. Hart interleaving and hart stall timing diagram.

When deploying Klessydra T1 in a IoT edge device, one can configure the number of
parallel lanes D in the MFU, the number of MFUs F, the SPM capacity, the number of

Figure 2. Klessydra T1 core microarchitecture.

The MFUs execute vector arithmetic instructions, whose latency is proportional to
the vector length. In an in-order interleaved-multi-threading pipeline, a hart requesting
access to the busy MFUs may result in stalling the whole pipeline, stalling other harts that
may not need to access the MFU. To circumvent this, in the T1 architecture, the waiting
hart executes a self-referencing jump so that the PC for that hart does not advance until
the MFU becomes free, avoiding unnecessary stalls of harts that are independent from the
MFU being busy. Figure 3 demonstrates a cycle accurate diagram of the mechanism.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 22

LSU

Regfile Decode

FetchPC
PC

CSR

Data Memory

WB

Debug
Updater

Hart
Updater

hart a

hart a,
b, or c

hart c

Input Mapping

Add
Sub Shft Mul Accum Cmp

M
FU

Output Mapping

M
FU

 C
trl

SPM Access
Handler

FU
Enabler

FU Contention
Handler

MFU_busyMFU_req

FU

HW-LoopsException
Handler

MFU
 Config

MFU Init

Intermediate Mapping

Bank Intrlv

Bank1Bank0 BankN

SP
M

I

Data Rotate

SP
M

SPM I/O
Mapping

SPM Contention
Handler Halt

Access

LSU Rd / Wr Bus 32-bit

xF

xD

xM

xM

xN xD
xM

MFU

SPMI

Program Memory

EXECUTE

xM xM

vs1 32b xM
vs2 32b xM

vd 32b xM

Halt MFU

Halt LSU

Figure 2. Klessydra T1 core microarchitecture.

At the instruction level, the T1 architecture supports the parallel execution of instruc-
tions of different types, belonging to the same hart. In fact, the LSU works in parallel with
the other units when executing memory store instructions, that cannot cause a write-back
conflict on the register file. The MFU is allowed to read operands from the register file but
can only write its results to local scratchpad memories (SPMs), thus keeping the SPMs and
the Registerfile decoupled and allowing parallel execution between instructions writing
to each of these memories simultaneously. Scalar instructions of a hart are processed by
the “Execution” unit and operate on data in the Register File, while vector instructions are
processed by the VCU and operate on data in the SPMs. Data transfers to/from the data
memory from/to the SPMs are managed by the LSU via dedicated instructions.

The MFUs execute vector arithmetic instructions, whose latency is proportional to
the vector length. In an in-order interleaved-multi-threading pipeline, a hart requesting
access to the busy MFUs may result in stalling the whole pipeline, stalling other harts that
may not need to access the MFU. To circumvent this, in the T1 architecture, the waiting
hart executes a self-referencing jump so that the PC for that hart does not advance until
the MFU becomes free, avoiding unnecessary stalls of harts that are independent from the
MFU being busy. Figure 3 demonstrates a cycle accurate diagram of the mechanism.

Figure 3. Hart interleaving and hart stall timing diagram.

When deploying Klessydra T1 in a IoT edge device, one can configure the number of
parallel lanes D in the MFU, the number of MFUs F, the SPM capacity, the number of

Figure 3. Hart interleaving and hart stall timing diagram.

When deploying Klessydra T1 in a IoT edge device, one can configure the number
of parallel lanes D in the MFU, the number of MFUs F, the SPM capacity, the number of
independently accessible SPMs N in each SPMI, the number of SPMIs M, as well as the
way the MFUs and SPMI are shared between the harts. Representative configurations are
the following:

• Thread-Shared coprocessor: All harts in the core share a single MFU/SPM subsystem.
Harts in this scheme are required to execute an infinite jump when trying to access
the MFU when its busy. In this approach, instruction level parallelism is limited to
occur only between coprocessor instructions writing to the SPM and non-coprocessor
instructions writing to the main memory or register file. To mitigate the delays on
a hart executing an infinite jump, the coprocessor here may exploit pure data level
parallelism (DLP) acceleration, by SIMD execution.

Electronics 2021, 10, 518 6 of 21

• Thread-Dedicated coprocessor: Each hart is appointed a full MFU/SPM subsystem,
eliminating inter-hart coprocessor contention and allowing inter-coprocessor parallel
execution. Stalls can only happen if the next instruction of the same hart that is using
the MFU requests an MFU operation. DLP by SIMD execution can still be exploited
in this approach, but also thread level parallelism (TLP) by fully symmetric MIMD
execution, allowing execution of multiple vector instructions in parallel.

• Thread-Dedicated SPMIs with a Shared MFU: The harts here maintain a dedicated
SPM address space, yet they share the functional units in the MFU. This scheme still
allows inter-hart parallel execution of coprocessor instructions, provided they use
different internal functional units (FU) of the MFU (e.g., adder, multiplier). Harts
that request a busy internal unit in the MFU will be stalled, and their access will
be serialized until the contended unit becomes free, while harts that request a free
functional unit can work in parallel with the other active harts in the MFU. DLP by
SIMD execution can still be exploited in this approach, but also TLP by heterogeneous
MIMD execution.

Table 1 summarizes the design parameters and corresponding configurations, whose
names will be used as references in reporting performance results.

Table 1. Summary of explored hardware configurations.

M (Number of SPMI Units) F (Number of FUs) D (Number of Lanes in Each FU) Execution Paradigm

1 1 1 SISD
1 1 2, 4, 8 Pure SIMD
3 3 1 Symmetric MIMD
3 3 2, 4, 8 Symmetric MIMD + SIMD
3 1 1 Heterogenous MIMD
3 1 2, 4, 8 Heterogenous MIMD + SIMD

3.2. Programming Paradigm

By default, a Klessydra core runs the maximum number of hardware threads (which is
a synthesis parameter) allowed by the microarchitecture. The function Klessydra_get_coreID()
can read the id number of the thread executing the function from the MHARTID CSR regis-
ter, so this allows to distinguish threads and possibly have each thread to execute a different
piece of program. Figure 4 shows a generic C program skeleton in which each of the three
threads executes its own instruction flow. The functions sync_barrier_thread_registration()
and sync_barrier() allow implementing a synchronization barrier by based on inter-thread
software interrupts, to synchronize thread execution at certain points of the program.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 22

Figure 4. Code for multi-threaded execution on Klessydra-T1.

Figure 5 gives a representation of the memory map assumed by the Klessydra T1
operation.

Figure 5. Klessydra T1 memory map.

The SPM local storage is visible to the programmer as a specific address region in the
memory map. The programmer can move data to/from any point of the SPM address

sync_barrier_thread_registration(); //Executed by all threads
if (Klessydra_get_coreID()==0){

// thread_0 subroutine
}
if (Klessydra_get_coreID()==1){

// thread_1 subroutine
}
if (Klessydra_get_coreID()==2){

// thread_2 subroutine
}
sync_barrier(); //Executed by all threads

UART regs

GPIO regs

SPI MASTER regs

TIMER regs

EVENT UNIT regs

I2C regs

FLL regs

SoC CONTROL regs
1A10 7000

1A10 6000

1A10 5000

1A10 4000

1A10 3000

1A10 2000

1A10 1000

1A10 0000

SPM(0)

SPM(N)

Hart 0 Stack 128KB
Hart 1 Stack 128KB

Hart h Stack 128KB

Shared Data 1MB

SPM(1)

Hart 0 MIP reg 4b
Hart 1 MIP reg 4b

Hart h MIP reg 4b

Program
Code

Int Vector Table
MTVEC point

32KB RAM

512B ROM

MIP regs

32KB RAM

SPM
Section

Program
Memory

Boot Memory

Data
Memory

Mem
 Mapped CSR

SPM
Memory

Peripherals

0100 0000

0010 0000

000F FF00

0000 8000

001F FFFF

0000 7FFF

0000 0094
0000 0000

1 MB RAM

Figure 4. Code for multi-threaded execution on Klessydra-T1.

Figure 5 gives a representation of the memory map assumed by the Klessydra T1
operation.

Electronics 2021, 10, 518 7 of 21

Electronics 2021, 10, x FOR PEER REVIEW 7 of 22

Figure 4. Code for multi-threaded execution on Klessydra-T1.

Figure 5 gives a representation of the memory map assumed by the Klessydra T1
operation.

Figure 5. Klessydra T1 memory map.

The SPM local storage is visible to the programmer as a specific address region in the
memory map. The programmer can move data to/from any point of the SPM address

sync_barrier_thread_registration(); //Executed by all threads
if (Klessydra_get_coreID()==0){

// thread_0 subroutine
}
if (Klessydra_get_coreID()==1){

// thread_1 subroutine
}
if (Klessydra_get_coreID()==2){

// thread_2 subroutine
}
sync_barrier(); //Executed by all threads

UART regs

GPIO regs

SPI MASTER regs

TIMER regs

EVENT UNIT regs

I2C regs

FLL regs

SoC CONTROL regs
1A10 7000

1A10 6000

1A10 5000

1A10 4000

1A10 3000

1A10 2000

1A10 1000

1A10 0000

SPM(0)

SPM(N)

Hart 0 Stack 128KB
Hart 1 Stack 128KB

Hart h Stack 128KB

Shared Data 1MB

SPM(1)

Hart 0 MIP reg 4b
Hart 1 MIP reg 4b

Hart h MIP reg 4b

Program
Code

Int Vector Table
MTVEC point

32KB RAM

512B ROM

MIP regs

32KB RAM

SPM
Section

Program
Memory

Boot Memory

Data
Memory

Mem
 Mapped CSR

SPM
Memory

Peripherals

0100 0000

0010 0000

000F FF00

0000 8000

001F FFFF

0000 7FFF

0000 0094
0000 0000

1 MB RAM

Figure 5. Klessydra T1 memory map.

The SPM local storage is visible to the programmer as a specific address region in the
memory map. The programmer can move data to/from any point of the SPM address
space with no constraint except the total capacity of the SPMs, which in turn is a parameter
of the microarchitecture design.

Inter-thread data transfers may happen via shared global static variables allocated in
the main data memory or, in the case of a shared coprocessor configuration, via shared
SPM address space. As in any multi-threading execution scheme, access to shared data
must be accompanied by explicit thread synchronization, which is available in Klessydra
by means of specific intrinsic functions implementing semaphore locks compliant with
RISC-V atomic instructions, not in the scope of this work.

The custom instruction extension supported by the VCU and LSU is summarized
in Table 2. The instructions supported by the coprocessor sub-system are exposed to
the programmer in the form of very simple intrinsic functions, fully integrated in the
RISC-V gcc compiler toolchain. The compiler does not have knowledge of the hardware
configuration, so it only translates the intrinsic functions into the corresponding dedicated
vector instructions, which are then executed by the hardware according to the chosen
hardware configuration. The instructions implement vector operations working on the
memory space mapped on the local SPMs. The vector length applied by MFU operations is
encoded in a user accessible custom control/status register (CSR) named MVSIZE.

Electronics 2021, 10, 518 8 of 21

Table 2. RISC-V instruction set custom extension for Klessydra-T processors.

Assembly Syntax—(r) Denotes Memory
Addressing via Register r Function Declaration Short Description

kmemld (rd), (rs1), (rs2) kmemld((void*) rd, (void*) rs1, (int) rs2) load vector into scratchpad region
kmemstr (rd), (rs1), (rs2) kmemstr((void*) rd, (void*) rs1, (int) rs2) store vector into main memory

kaddv (rd), (rs1), (rs2) kaddv((void*) rd, (void*) rs1, (void*) rs2) adds vectors in scratchpad region
ksubv (rd), (rs1), (rs2) ksubv((void*) rd, (void*) rs1, (void*) rs2) subtract vectors in scratchpad region
kvmul (rd), (rs1), (rs2) kvmul((void*) rd, (void*) rs1, (void*) rs2) multiply vectors in scratchpad region

kvred (rd), (rs1) kvred((void*) rd, (void*) rs1) reduce vector by addition
kdotp (rd), (rs1), (rs2) kdotp((void*) rd, (void*) rs1, (void*) rs2) vector dot product into register

ksvaddsc (rd), (rs1), (rs2) ksvaddsc((void*) rd, (void*) rs1, (void*) rs2) add vector + scalar into scratchpad
ksvaddrf (rd), (rs1), rs2 ksvaddrf((void*) rd, (void*) rs1, (int) rs2) add vector + scalar into register

ksvmulsc (rd), (rs1), (rs2) ksvmulsc((void*) rd, (void*) rs1, (void*) rs2) multiply vector + scalar into scratchpad
ksvmulrf (rd), (rs1), rs2 ksvmulrf((void*) rd, (void*) rs1, (int) rs2) multiply vector + scalar into register
kdotpps (rd), (rs1), (rs2) kdotpps((void*) rd, (void*) rs1, (void*) rs2) vector dot product and post scaling

ksrlv (rd), (rs1), rs2 ksrlv((void*) rd, (void*) rs1, (int) rs2) vector logic shift within scratchpad
ksrav (rd), (rs1), rs2 ksrav((void*) rd, (void*) rs1, (int) rs2) vector arithmetic shift within scratchpad

krelu (rd), (rs1) krelu((void*) rd, (void*) rs1) vector ReLu within scratchpad
kvslt (rd), (rs1), (rs2) kvslt((void*) rd, (void*) rs1, (void*) rs2) compare vectors and create mask vector
ksvslt (rd), (rs1), rs2 ksvslt((void*) rd, (void*) rs1, (int) rs2) compare vector-scalar and create mask

kvcp (rd), (rs1) ksrlv((void*) rd, (void*) rs1) copy vector within scratchpad region
csr MVSIZE, rs1 mvsize((int) rs1) vector length setting
csr MVTYPE, rs1 mvtype((int) rs1) element width setting (8, 16, 32 bits)

csr MPSCLFAC, rs1 mpsclfac((int) rs1) post scaling factor (kdotpps instruction)

4. VGG-16 Implementation on Klessydra T1
4.1. Implementation Workflow

VGG-16 is a deep Convolutional Neural Network (CNN) used in computer vision
for classification and detection tasks, consisting of 13 convolutional layers, 5 maxpooling
layers, 2 fully-connected layers and one output/softmax layer. The original VGG-16 can
label a 224 × 224 pixel RGB image to one class out of 1000, using approximately 554 MB
space for 32-bit floating-point weights and bias values.

In the view of a realistic IoT edge embedded scenario, we implemented a VGG-16
derivation based on the widely known CIFAR-10 dataset, targeting 10 classes and 32 × 32
pixel RGB images and requiring 135 MB for weights and bias values. Table 3 reports the
breakdown of the inference algorithm layers constituting the Cifar-10 VGG-16. The layers
19 to 21 do not compute operations on matrices, rather they implement dot-product
operations between vectors of different sizes, similarly, layer 22 implements a Softmax
function on a vector of length 10.

Figure 6 illustrates the workflow to implement a Cifar-10 VGG-16 application on
the Klessydra processor platform. Notably, since the target hardware platform supports
fixed-point arithmetic, we based the implementation on fixed-point weights and data.
We set the integer part to 11 bits and the fractional part to 21 bits, which leads an accuracy
drop from 98.04% to 84.01% on the of output results of the inference. We remark that
re-training the network, as well as further algorithmic optimizations, such as quantization
and compression techniques, are not in the scope of the present work. The verification
phase of the network in fixed point arithmetic was done via MATLAB (The MathWorks,
Natick, MA, USA) Deep Learning Toolbox. In order to be able to exploit the C language
intrinsic functions of the Klessydra platform, the original MATLAB code for VGG-16
was ported to C code. This generic C code implementation was used as the basis for
the subsequent vectorization to exploit the hardware co-processor, and it was also used
to run the same algorithm on the reference platforms used for performance comparison.
We verified that no additional loss of quality is introduced by the proposed hardware
architecture, which produces an identical output to the C fixed-point version executed on a
general purpose computer.

Electronics 2021, 10, 518 9 of 21

Table 3. Cifar-10 VGG-16 inference layers.

Layer Number Computation Type Matrix Size

1 Convolution 32 × 32
2 Convolution 32 × 32
3 Max Pool 16 × 16
4 Convolution 16 × 16
5 Convolution 16 × 16
6 Max Pool 8 × 8
7 Convolution 8 × 8
8 Convolution 8 × 8
9 Convolution 8 × 8

10 Max Pool 4 × 4
11 Convolution 4 × 4
12 Convolution 4 × 4
13 Convolution 4 × 4
14 Max Pool 2 × 2
15 Convolution 2 × 2
16 Convolution 2 × 2
17 Convolution 2 × 2
18 Max Pool 1 × 1
19 Fully connected 512 × 512
20 Fully connected 4096 × 4096
21 Fully connected 4096 × 4096
22 Softmax 10

Electronics 2021, 10, x FOR PEER REVIEW 9 of 22

4. VGG-16 Implementation on Klessydra T1
4.1. Implementation Workflow

VGG-16 is a deep Convolutional Neural Network (CNN) used in computer vision for
classification and detection tasks, consisting of 13 convolutional layers, 5 maxpooling lay-
ers, 2 fully-connected layers and one output/softmax layer. The original VGG-16 can label
a 224 × 224 pixel RGB image to one class out of 1000, using approximately 554 MB space
for 32-bit floating-point weights and bias values.

In the view of a realistic IoT edge embedded scenario, we implemented a VGG-16
derivation based on the widely known CIFAR-10 dataset, targeting 10 classes and 32 × 32
pixel RGB images and requiring 135 MB for weights and bias values. Table 3 reports the
breakdown of the inference algorithm layers constituting the Cifar-10 VGG-16. The layers
19 to 21 do not compute operations on matrices, rather they implement dot-product oper-
ations between vectors of different sizes, similarly, layer 22 implements a Softmax func-
tion on a vector of length 10.

Figure 6 illustrates the workflow to implement a Cifar-10 VGG-16 application on the
Klessydra processor platform. Notably, since the target hardware platform supports
fixed-point arithmetic, we based the implementation on fixed-point weights and data. We
set the integer part to 11 bits and the fractional part to 21 bits, which leads an accuracy
drop from 98.04% to 84.01% on the of output results of the inference. We remark that re-
training the network, as well as further algorithmic optimizations, such as quantization
and compression techniques, are not in the scope of the present work. The verification
phase of the network in fixed point arithmetic was done via MATLAB (The MathWorks,
Natick, MA, USA) Deep Learning Toolbox. In order to be able to exploit the C language
intrinsic functions of the Klessydra platform, the original MATLAB code for VGG-16 was
ported to C code. This generic C code implementation was used as the basis for the sub-
sequent vectorization to exploit the hardware co-processor, and it was also used to run
the same algorithm on the reference platforms used for performance comparison. We ver-
ified that no additional loss of quality is introduced by the proposed hardware architec-
ture, which produces an identical output to the C fixed-point version executed on a gen-
eral purpose computer.

Figure 6. Workflow for the VGG-16 implementation.

Table 3. Cifar-10 VGG-16 inference layers.

Layer Number Computation Type Matrix Size
1 Convolution 32 × 32
2 Convolution 32 × 32
3 Max Pool 16 × 16
4 Convolution 16 × 16
5 Convolution 16 × 16
6 Max Pool 8 × 8
7 Convolution 8 × 8
8 Convolution 8 × 8

Figure 6. Workflow for the VGG-16 implementation.

4.2. Generic Fixed-Point C Code Porting

The generic C code used for convolutional layers is reported in Figure 7. Image
convolutions are implemented using the zero-padding technique: the feature map (FM)
matrix is converted into a new matrix having two additional rows and columns of zeros on
its borders, to avoid having filter elements without corresponding pixel values when the
centroid element of the 3 × 3 kernel slides along the borders. As a general feature of the
implementation, multiplications always need a pre-scaling and post-scaling operation in
order to re-align the fixed-point representation of the result. The convolution2D() function
performs the pre-scaling when creating the zero-padded matrix and also pre-scales the
kernel values. The convolution is carried out by nested for loops, by which the Kernel map
(KM) matrix slides across the input image with a stride of one element. The partial result of
each multiplication is pre-scaled and added to the corresponding output pixel, completing
the multiply and accumulate step. After the convolution is complete, a bias value is added
to the output feature map, and the ReLU non-linear activation function is executed across
all the matrix elements to conclude the convolutional layer.

Electronics 2021, 10, 518 10 of 21

Electronics 2021, 10, x FOR PEER REVIEW 10 of 22

9 Convolution 8 × 8
10 Max Pool 4 × 4
11 Convolution 4 × 4
12 Convolution 4 × 4
13 Convolution 4 × 4
14 Max Pool 2 × 2
15 Convolution 2 × 2
16 Convolution 2 × 2
17 Convolution 2 × 2
18 Max Pool 1 × 1
19 Fully connected 512 × 512
20 Fully connected 4096 × 4096
21 Fully connected 4096 × 4096
22 Softmax 10

4.2. Generic Fixed-Point C Code Porting
The generic C code used for convolutional layers is reported in Figure 7. Image con-

volutions are implemented using the zero-padding technique: the feature map (FM) ma-
trix is converted into a new matrix having two additional rows and columns of zeros on
its borders, to avoid having filter elements without corresponding pixel values when the
centroid element of the 3 × 3 kernel slides along the borders. As a general feature of the
implementation, multiplications always need a pre-scaling and post-scaling operation in
order to re-align the fixed-point representation of the result. The convolution2D() function
performs the pre-scaling when creating the zero-padded matrix and also pre-scales the
kernel values. The convolution is carried out by nested for loops, by which the Kernel map
(KM) matrix slides across the input image with a stride of one element. The partial result
of each multiplication is pre-scaled and added to the corresponding output pixel, com-
pleting the multiply and accumulate step. After the convolution is complete, a bias value
is added to the output feature map, and the ReLU non-linear activation function is exe-
cuted across all the matrix elements to conclude the convolutional layer.

Figure 7. (a) Convolutional layer in generic C code; (b) Convolution2D function inner operations; (c) Bias addition and
ReLU function inner operations (Layers: 1, 2, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17).

for (int i = 0; i < layer_outputs; i++){ //scan for every output matrix
output_pt = &output_fm[i][0][0];
for (int k = 0; k < layer_inputs ; k++){ //scan for every input matrix

for (int w=0; w<9; w++) kern.kernel_9[w]=layer_filters[(output_pt*9)+w];
convolution2D(MATRIX_SIZE, input_fm[k], kern.kernel_9, output_pt);

} //convolutions are completed
bias = layer_bias[i];
addBias(MATRIX_SIZE, output_pt, bias);
relu(MATRIX_SIZE, output_pt);

} //the output matrix is complete

for (i = 1; i < (size+2)-1; i++){
for (j = 1; j < (size+2)-1; j++){

output_pixel[(i-1)*size+(j-1)]
+= (FM_zeropad[i-1][j-1] * kernel[0]) >> post_scale ;

} //end of loop for first kernel element
//…
for (j = 1; j < (size+2)-1; j++){

output_pixel[(i-1)*size+(j-1)]
+= (FM_zeropad[i+1][j+1] * kernel[8]) >> post_scale ;

} //end of loop for last kernel element
} //end of loop "i"

//Adding the Bias value
for (int i = 0; i < size; i++)

for (int j = 0; j < size; j++)
matrix[j + size*i] += bias;

//ReLU function
for (int i = 0; i < size; i++)

for (int j = 0; j < size; j++)
if (input[j + size*i] < 0) {

input[j + size*i] = 0;
else continue;

a)

b) c)

Figure 7. (a) Convolutional layer in generic C code; (b) Convolution2D function inner operations; (c) Bias addition and ReLU
function inner operations (Layers: 1, 2, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17).

Figure 8 reports the C code adopted for Maxpool layers. The Maxpool layer halves
the width and height of the FMs, sliding across them a 2 × 2 window, with a stride equal
to two, filtering all the values except for the highest of the batch. In this way the most
important features detected from the image are passed at the successive layers.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 22

Figure 8 reports the C code adopted for Maxpool layers. The Maxpool layer halves
the width and height of the FMs, sliding across them a 2 × 2 window, with a stride equal
to two, filtering all the values except for the highest of the batch. In this way the most
important features detected from the image are passed at the successive layers.

Figure 8. (a) Maxpool layer in generic C code; (b) Maxpool function inner operations (Layers: 3, 6,
10, 14, 18).

The last three layers of the network are Fully Connected, corresponding to the code
in Figure 9. The fully-connected layer is implemented by a dot-product, doing the pre-
scaling of the inputs and post scaling of the results from every multiplication, needed for
fixed point alignment. This is accomplished by the fullyconnect() function after putting the
weights into local buffers and adding a bias to the output value. The results are passed
through a Softmax layer, in which the network produces the classification of the image
with a given probability.

Figure 9. (a) Fully-connected layer in generic C code; (b) Fully-connect inner operations; (c) Soft-
max layer inner operations (Fully-connected Layer: 19, 20, 21; Softmax Layer: 22).

a) b)for (k = 0; k < layer_outputs; k++) {
input_pt = &input_fm[k][0][0];
output_pt = &output_fm[k][0][0];
maxpool(input_size, input_pt,

output_size, output_pt);
}

for (int m = 0; m < size_i; m+=2){
for (int n = 0; n < size_i; n+=2){

max = FM[n + size_i*m];
for (i = m; i < m+2; i++){

for (j = n; j < n+2; j++){
if (FM[j + size_i*i] > max)

max = FM[j + size_i*i];
}

}
output[index++] = max;

}
}

a)

b) c)

pt_layer_filters = &fully_connect_filter_array[0];
pt_layer_bias = &fully_connect_fibias_array[0];
input_pt = &input_vector[0];
for (i = 0; i < layer_outputs_elements; i++) {

getWeights(pt_layer_filters, number_of_elements, buffer);
output_vector[i] = fullyconnect(number_of_elements, input_pt, buffer);
bias = getBias(pt_layer_bias);
output_vector[i]+= bias;

} //the output vector is complete

for(int i=0; i<dim ; i++){
tmp1=vect_1[i]>>pre_scale;
tmp2=vect_2[i]>>pre_scale;
output += (tmp1*tmp2)>>post_scale;

}
return output;

for (int i = 0; i < vector_lenght; i++){
sum = sum + exp(output[i]);

}
for (int i = 0; i < vector_lenght; i++){

output[i] = exp(output[i])/SUM ;
}

Figure 8. (a) Maxpool layer in generic C code; (b) Maxpool function inner operations (Layers: 3, 6, 10, 14, 18).

The last three layers of the network are Fully Connected, corresponding to the code
in Figure 9. The fully-connected layer is implemented by a dot-product, doing the pre-
scaling of the inputs and post scaling of the results from every multiplication, needed for
fixed point alignment. This is accomplished by the fullyconnect() function after putting the
weights into local buffers and adding a bias to the output value. The results are passed
through a Softmax layer, in which the network produces the classification of the image
with a given probability.

Electronics 2021, 10, 518 11 of 21

Electronics 2021, 10, x FOR PEER REVIEW 11 of 22

Figure 8 reports the C code adopted for Maxpool layers. The Maxpool layer halves
the width and height of the FMs, sliding across them a 2 × 2 window, with a stride equal
to two, filtering all the values except for the highest of the batch. In this way the most
important features detected from the image are passed at the successive layers.

Figure 8. (a) Maxpool layer in generic C code; (b) Maxpool function inner operations (Layers: 3, 6,
10, 14, 18).

The last three layers of the network are Fully Connected, corresponding to the code
in Figure 9. The fully-connected layer is implemented by a dot-product, doing the pre-
scaling of the inputs and post scaling of the results from every multiplication, needed for
fixed point alignment. This is accomplished by the fullyconnect() function after putting the
weights into local buffers and adding a bias to the output value. The results are passed
through a Softmax layer, in which the network produces the classification of the image
with a given probability.

Figure 9. (a) Fully-connected layer in generic C code; (b) Fully-connect inner operations; (c) Soft-
max layer inner operations (Fully-connected Layer: 19, 20, 21; Softmax Layer: 22).

a) b)for (k = 0; k < layer_outputs; k++) {
input_pt = &input_fm[k][0][0];
output_pt = &output_fm[k][0][0];
maxpool(input_size, input_pt,

output_size, output_pt);
}

for (int m = 0; m < size_i; m+=2){
for (int n = 0; n < size_i; n+=2){

max = FM[n + size_i*m];
for (i = m; i < m+2; i++){

for (j = n; j < n+2; j++){
if (FM[j + size_i*i] > max)

max = FM[j + size_i*i];
}

}
output[index++] = max;

}
}

a)

b) c)

pt_layer_filters = &fully_connect_filter_array[0];
pt_layer_bias = &fully_connect_fibias_array[0];
input_pt = &input_vector[0];
for (i = 0; i < layer_outputs_elements; i++) {

getWeights(pt_layer_filters, number_of_elements, buffer);
output_vector[i] = fullyconnect(number_of_elements, input_pt, buffer);
bias = getBias(pt_layer_bias);
output_vector[i]+= bias;

} //the output vector is complete

for(int i=0; i<dim ; i++){
tmp1=vect_1[i]>>pre_scale;
tmp2=vect_2[i]>>pre_scale;
output += (tmp1*tmp2)>>post_scale;

}
return output;

for (int i = 0; i < vector_lenght; i++){
sum = sum + exp(output[i]);

}
for (int i = 0; i < vector_lenght; i++){

output[i] = exp(output[i])/SUM ;
}

Figure 9. (a) Fully-connected layer in generic C code; (b) Fully-connect inner operations; (c) Softmax layer inner operations
(Fully-connected Layer: 19, 20, 21; Softmax Layer: 22).

4.3. Vectorized C Code Implementation

Program code vectorization targeting the Klessydra intrinsic function library is based
on two types of intervention: data movement to efficiently exploit the scratchpad memory
sub-system, and vector arithmetic operation exploiting the accelerator functional unit.

A loop of kmemld() functions transfer the FM and KMs operands into two SPMs, that
we refer to as spmA and spmB, from the main memory. To implement zero-padding,
when loading the feature maps into spmA, we first reset the SPM content to zero and then
proceed with loading bursts of data from the FM rows, with exact offsets that grant the
correctness of zero-padding. Figure 10a displays the code executed to set up the FM in
spmA. The offsets added to the pointers passed to the Kmemld() function allow for the
implementation zero-padding. The ksrav() function implements fixed-point pre-scaling by
performing an arithmetic right shift operation of a vector. It requires a pointer to the vector,
a pointer to store the resulting vector and a shift amount Figure 10b similarly shows the
loading and pre-scaling of the 9-element KM into spmB and also the calling sequence of
the convolution2D() function.

The Convolution2D() function requires the addresses of the FM and KM first elements in
spmA and spmB, an address pointing to a region in spmD for temporary value storage, and
the address to store the output matrix in spmC. Figure 11 reports the internal operations,
which are built upon knowing which vectors are to be multiplied as the kernel map slides
across all the input map pixels. Taking into account which elements will be multiplied
when the kernel completely slides across a row of the FM, and the fact that this process is
replicated for every row, we can multiply the FM row values with the corresponding scalar
from the KM, and update the output matrix (OM) row with a vector of partial results. This
process is straightforward and allows to fully exploit the vector coprocessor capabilities by
using matrix rows as vector operands.

Electronics 2021, 10, 518 12 of 21

Electronics 2021, 10, x FOR PEER REVIEW 12 of 22

4.3. Vectorized C Code Implementation
Program code vectorization targeting the Klessydra intrinsic function library is based

on two types of intervention: data movement to efficiently exploit the scratchpad memory
sub-system, and vector arithmetic operation exploiting the accelerator functional unit.

A loop of kmemld() functions transfer the FM and KMs operands into two SPMs, that
we refer to as spmA and spmB, from the main memory. To implement zero-padding,
when loading the feature maps into spmA, we first reset the SPM content to zero and then
proceed with loading bursts of data from the FM rows, with exact offsets that grant the
correctness of zero-padding. Figure 10a displays the code executed to set up the FM in
spmA. The offsets added to the pointers passed to the Kmemld() function allow for the
implementation zero-padding. The ksrav() function implements fixed-point pre-scaling by
performing an arithmetic right shift operation of a vector. It requires a pointer to the vec-
tor, a pointer to store the resulting vector and a shift amount Figure 10b similarly shows
the loading and pre-scaling of the 9-element KM into spmB and also the calling sequence
of the convolution2D() function.

Figure 10. (a) Zero-padded, pre-scaled FM setup in SPM; (b) Pre-scaled KM collection in SPM and calling sequence of
convolution2D() (Layers: 1, 2, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17).

The Convolution2D() function requires the addresses of the FM and KM first elements
in spmA and spmB, an address pointing to a region in spmD for temporary value storage,
and the address to store the output matrix in spmC. Figure 11 reports the internal opera-
tions, which are built upon knowing which vectors are to be multiplied as the kernel map
slides across all the input map pixels. Taking into account which elements will be multi-
plied when the kernel completely slides across a row of the FM, and the fact that this
process is replicated for every row, we can multiply the FM row values with the corre-
sponding scalar from the KM, and update the output matrix (OM) row with a vector of
partial results. This process is straightforward and allows to fully exploit the vector co-
processor capabilities by using matrix rows as vector operands.

a)
for (int i = th_output_first_OM; i < th_output_last_OM; i++) {

for (int k = 0 ; k < input_per_layer; k++){
// LOADING & PRESCALING Feature Maps (FM)
CSR_MVSIZE(Row_lenght*SIZE_OF_INT);
for (int row_pointer=0; row_pointer<Row_lenght; row_pointer++){

kmemld(
(void*) ((int*) spmA + spm_off_A + zeropadding_offset),
(void*) ((int*) input_fm[k] + row_pointer*Row_length),
SIZE_OF_INT*(Row_lenght)

);
ksrav(

(void*) ((int*) spmA + spm_off_A + zeropadding_offest),
(void*) ((int*) spmA + spm_off_A + zeropadding_offest),
(int*)conv2D_scaling_factor

);
} //end loop "row_pointer"

// LOADING&PRESCALING Kernel Maps
CSR_MVSIZE(9*SIZE_OF_INT);
kmemld(

(void*) ((int*) spmB + spm_off_B),
(void*) ((int*) pt_to_kmaps +

(9*(i*input_per_layer)+ 9*(k))),
(9*SIZE_OF_INT)

);
ksrav(

(void*) ((int*) spmB + spm_off_B),
(void*) ((int*) spmB + spm_off_B),
(int*)conv2D_scaling_factor

);
convolution2D(

(void*) ((int*) spmC + mem_off_C),
(void*) ((int*) spmA + mem_off_A),
(void*) ((int*) spmB + mem_off_B),
(Row_lenght+2)

);

b)

Figure 10. (a) Zero-padded, pre-scaled FM setup in SPM; (b) Pre-scaled KM collection in SPM and calling sequence of
convolution2D() (Layers: 1, 2, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17).

Electronics 2021, 10, x FOR PEER REVIEW 13 of 22

Figure 11. Convolution2D inner loops operations (Layers: 1, 2, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17).

Referring to Figure 11, after setting the vector length, the loop with index “i” scans
the rows of the output matrix (OM); the FM_row_pointer loop and the column_offset loop
iterates three times each to cover the necessary vector-scalar product required for the 3 ×
3 kernel matrix. The FM_offset variable points to the proper FM row in spmA, from which
the source vector is fetched. The ksvmulsc() function performs the scalar-vector multipli-
cation between an FM row vector and a KM scalar, and the result is post-scaled by the
ksrav() function for fixed-point alignment. The kaddv() function performs the vector addi-
tion, updating the OM row in spmC.

After the convolutions are done, the OM is updated with the addition of the bias
value (Figure 12a). A kmemld() is required to have the single scalar value in the scratchpad
memory, then the whole matrix is updated by ksvaddsc_v2(), which performs the vector
plus scalar operation and includes a fourth parameter to adjust the vector length prior to
doing the calculation.

Figure 12. (a) Adding the bias to the Output Matrix; (b) Applying the ReLu function to the Output Matrix (Layers: 1, 2, 4,
5, 7, 8, 9, 11, 12, 13, 15, 16, 17).

As the last part of the convolutional layers, the ReLU non-linear function is applied
to all the OM pixels, which is stored back in main memory. The SPM region is cleared for

CSR_MVSIZE(Row_size);
for(i=Zeropad_off; i Row_size-Zeropad_off; i++){

k_element=0;
for(FM_row_pointer=-Zeropad_off; FM_row_pointer <= Zeropad_off; FM_row_pointer++){

for (column_offset=0; column_offset < kernel_size; column_offset++){
FM_offset= (i+FM_row_pointer)*Row_size+column_offset;
ksvmulsc(SPM_D, (SPM_A+FM_offset), (SPM_B + k_element++));
ksrav(SPM_D, SPM_D, scaling_factor);
OM_offset = (Row_size*i)+Zeropad_off;
kaddv((SPM_C+OM_offset),(SPM_C+OM_offset),SPM_D);

}
}

}

a) b)

//Preload the spm_B with the bias value
kmemld(

(void*)((int*)spmB + mem_off_B),
(void*)(pt_to_bs+offset),
(SIZE_OF_INT)

);
//update the whole matrix with the bias
ksvaddsc_v2(

(void*) ((int*) spmC + mem_off_C),
(void*) ((int*) spmC + mem_off_C),
(void*) ((int*) spmB + mem_off_B),
((Row_lenght+2)*(Row_lenght+2)

*SIZE_OF_INT)
);

krelu(
(void*)((int*)spmC + mem_off_C),
(void*)((int*)spmC + mem_off_C)

); //perform the ReLU on the output matrix
for (int row_pt=0; row_pt<run_SIZE; row_pt++){
kmemstr(

(void*)(&output_fm[i][0][0] + (row_pt*run_SIZE)),
(void*)((int*)spmC + mem_off_C +

((row_pt+1)*(run_SIZE+2)+1)),
SIZE_OF_INT*(run_SIZE)

);
} //end kmemstr loop for retrieving of the OM in main memory
kbcast((void*)((int*)spmC + mem_off_C), (void*)zero_value);

Figure 11. Convolution2D inner loops operations (Layers: 1, 2, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17).

Referring to Figure 11, after setting the vector length, the loop with index “i” scans the
rows of the output matrix (OM); the FM_row_pointer loop and the column_offset loop iterates
three times each to cover the necessary vector-scalar product required for the 3 × 3 kernel
matrix. The FM_offset variable points to the proper FM row in spmA, from which the source
vector is fetched. The ksvmulsc() function performs the scalar-vector multiplication between
an FM row vector and a KM scalar, and the result is post-scaled by the ksrav() function for
fixed-point alignment. The kaddv() function performs the vector addition, updating the
OM row in spmC.

After the convolutions are done, the OM is updated with the addition of the bias
value (Figure 12a). A kmemld() is required to have the single scalar value in the scratchpad
memory, then the whole matrix is updated by ksvaddsc_v2(), which performs the vector

Electronics 2021, 10, 518 13 of 21

plus scalar operation and includes a fourth parameter to adjust the vector length prior to
doing the calculation.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 22

Figure 11. Convolution2D inner loops operations (Layers: 1, 2, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17).

Referring to Figure 11, after setting the vector length, the loop with index “i” scans
the rows of the output matrix (OM); the FM_row_pointer loop and the column_offset loop
iterates three times each to cover the necessary vector-scalar product required for the 3 ×
3 kernel matrix. The FM_offset variable points to the proper FM row in spmA, from which
the source vector is fetched. The ksvmulsc() function performs the scalar-vector multipli-
cation between an FM row vector and a KM scalar, and the result is post-scaled by the
ksrav() function for fixed-point alignment. The kaddv() function performs the vector addi-
tion, updating the OM row in spmC.

After the convolutions are done, the OM is updated with the addition of the bias
value (Figure 12a). A kmemld() is required to have the single scalar value in the scratchpad
memory, then the whole matrix is updated by ksvaddsc_v2(), which performs the vector
plus scalar operation and includes a fourth parameter to adjust the vector length prior to
doing the calculation.

Figure 12. (a) Adding the bias to the Output Matrix; (b) Applying the ReLu function to the Output Matrix (Layers: 1, 2, 4,
5, 7, 8, 9, 11, 12, 13, 15, 16, 17).

As the last part of the convolutional layers, the ReLU non-linear function is applied
to all the OM pixels, which is stored back in main memory. The SPM region is cleared for

CSR_MVSIZE(Row_size);
for(i=Zeropad_off; i Row_size-Zeropad_off; i++){

k_element=0;
for(FM_row_pointer=-Zeropad_off; FM_row_pointer <= Zeropad_off; FM_row_pointer++){

for (column_offset=0; column_offset < kernel_size; column_offset++){
FM_offset= (i+FM_row_pointer)*Row_size+column_offset;
ksvmulsc(SPM_D, (SPM_A+FM_offset), (SPM_B + k_element++));
ksrav(SPM_D, SPM_D, scaling_factor);
OM_offset = (Row_size*i)+Zeropad_off;
kaddv((SPM_C+OM_offset),(SPM_C+OM_offset),SPM_D);

}
}

}

a) b)

//Preload the spm_B with the bias value
kmemld(

(void*)((int*)spmB + mem_off_B),
(void*)(pt_to_bs+offset),
(SIZE_OF_INT)

);
//update the whole matrix with the bias
ksvaddsc_v2(

(void*) ((int*) spmC + mem_off_C),
(void*) ((int*) spmC + mem_off_C),
(void*) ((int*) spmB + mem_off_B),
((Row_lenght+2)*(Row_lenght+2)

*SIZE_OF_INT)
);

krelu(
(void*)((int*)spmC + mem_off_C),
(void*)((int*)spmC + mem_off_C)

); //perform the ReLU on the output matrix
for (int row_pt=0; row_pt<run_SIZE; row_pt++){
kmemstr(

(void*)(&output_fm[i][0][0] + (row_pt*run_SIZE)),
(void*)((int*)spmC + mem_off_C +

((row_pt+1)*(run_SIZE+2)+1)),
SIZE_OF_INT*(run_SIZE)

);
} //end kmemstr loop for retrieving of the OM in main memory
kbcast((void*)((int*)spmC + mem_off_C), (void*)zero_value);

Figure 12. (a) Adding the bias to the Output Matrix; (b) Applying the ReLu function to the Output Matrix (Layers: 1, 2, 4, 5,
7, 8, 9, 11, 12, 13, 15, 16, 17).

As the last part of the convolutional layers, the ReLU non-linear function is applied to
all the OM pixels, which is stored back in main memory. The SPM region is cleared for the
next iteration of the loop by broadcasting a zero value into the target memory region with
kbcast() (Figure 12b).

The maxpooling layer is executed on the OM in main memory, through conventional
scalar instructions, following the same implementation of the generic C code.

The fully-connected layer is comprised of a computation kernel based on dot products
(Figure 13a). The source vector is moved into spmA as a single burst of data using the
kmemld() function, and pre-scaled by ksrav(). A loop handles the properly transposed
loading of the neurons parameters into spmB. The two vectors in the SPMs are processed
by the dot-product function kdotpps(), which includes a post-scaling of the product before
accumulation for fixed point alignment.

After the end of the loop, the vector of bias values is moved into spmD then added to
the output vector of the layer. The result vector is processed by the krelu() function, and
then it is stored back to the main memory. The kbcast() function clears the spmC memory
space (Figure 13b).

The softmax layer is executed in main memory through conventional scalar instruc-
tions, with the same implementation of the generic C code.

The exact execution of the vectorized VGG-16 inference program running on Klessydra
T1 cores was verified by comparing the full output produced by RTL simulation against
the general purpose VGG-16 fixed-point C code running on an X86 server.

Electronics 2021, 10, 518 14 of 21

Electronics 2021, 10, x FOR PEER REVIEW 14 of 22

the next iteration of the loop by broadcasting a zero value into the target memory region
with kbcast() (Figure 12b).

The maxpooling layer is executed on the OM in main memory, through conventional
scalar instructions, following the same implementation of the generic C code.

The fully-connected layer is comprised of a computation kernel based on dot prod-
ucts (Figure 13a). The source vector is moved into spmA as a single burst of data using
the kmemld() function, and pre-scaled by ksrav(). A loop handles the properly transposed
loading of the neurons parameters into spmB. The two vectors in the SPMs are processed
by the dot-product function kdotpps(), which includes a post-scaling of the product before
accumulation for fixed point alignment.

After the end of the loop, the vector of bias values is moved into spmD then added
to the output vector of the layer. The result vector is processed by the krelu() function, and
then it is stored back to the main memory. The kbcast() function clears the spmC memory
space (Figure 13b).

Figure 13. Fully-connected layer operations. (a) Dot-product kernel; (b) Bias addition and ReLu (Fully-connected Layer:
19, 20, 21).

The softmax layer is executed in main memory through conventional scalar instruc-
tions, with the same implementation of the generic C code.

The exact execution of the vectorized VGG-16 inference program running on Klessy-
dra T1 cores was verified by comparing the full output produced by RTL simulation
against the general purpose VGG-16 fixed-point C code running on an X86 server.

5. Performance and Power Analysis
5.1. Setup

All Klessydra cores are compatible with the PULPino processor platform [25]. Yet,
the original PULPino memory subsystem cannot support the execution of the full VGG-
16 inference algorithm, which requires 255 MB storage for the constant data consisting of
the neural network weights, and at least 1 MB memory space for global and local varia-

a)

b)

kmemld((void*)spmA, (void*)((int*)pt_to_vector), vector_lenght*SIZE_OF_INT);
CSR_MVSIZE(vector_lenght*SIZE_OF_INT);
ksrav((void*)spmA, (void*)spmA, scaling factor);
for (int loop_index = 0; loop_index < divisor_0; loop_index++){

kmemld(
(void*)((int*)spmB + mem_off_B),
(void*)((int*)pt_to_wh + (loop_index*vector_lenght)),
(vector_lenght*SIZE_OF_INT));

CSR_MVSIZE(vector_lenght*SIZE_OF_INT);
ksrav((void*)((int*)spmB + mem_off_B), (void*)((int*)spmB + mem_off_B), scaling factor);
kdotpps((void*)spmC + loop_index, (void *)((int*)spmA), (void*)((int*)spmB + mem_off_B

));
}

kmemld((void*)spmD, (void*)(pt_to_bs), (vector_lenght*SIZE_OF_INT));
kaddv((void*)spmC, (void*)spmC, (void*)spmD);
punt_out = &layer_output[0];
krelu((void*)spmC, (void*)spmC);
kmemstr((void*)punt_out, (void*)spmC, (vector_lenght*SIZE_OF_INT));
kbcast((void*)spmC, (void*)zero);

Figure 13. Fully-connected layer operations. (a) Dot-product kernel; (b) Bias addition and ReLu (Fully-connected Layer:
19, 20, 21).

5. Performance and Power Analysis
5.1. Setup

All Klessydra cores are compatible with the PULPino processor platform [25]. Yet,
the original PULPino memory subsystem cannot support the execution of the full VGG-16
inference algorithm, which requires 255 MB storage for the constant data consisting of the
neural network weights, and at least 1 MB memory space for global and local variables.
Thus, we extended the PULPino memory sub-system to include 256 MB of addressable
physical data memory, partitioned into a 1 cycle latency 1 MB RAM to be mapped on the
FPGA BRAM, and a 6 cycle latency 255 MB space mapped on an external flash memory
device, connected via SPI interface. The 1 MB RAM is the physical mapping of the portion
of the data memory address space that is dedicated to dynamically allocated data.

The program memory is 32 KB mapped in the FPGA BRAM.
The modified PULPino platform featuring Klessydra T1 processor cores was synthe-

sized on a Kintex7 FPGA from Xilinx integrated on the Genesys2 board from Digilent [28],
using the Vivado tool flow. The design entry was the RTL VHDL/SystemVerilog descrip-
tion of the platforms under analysis. The C code of the VGG16 application was compiled
by the RISC-V gcc tool chain to produce the binary code executable by the target proces-
sors. The execution of the application on the target processors was simulated both as RTL
and post-synthesis gate level, to verify the correct functionality and to extract the signal
activity for power estimation in Vivado. Table 4 reports the hardware resource utilization
and the maximum clock frequency producing zero or positive slack, for all the processor
configurations under analysis.

Electronics 2021, 10, 518 15 of 21

Table 4. Area and frequency summary of the Klessydra-T cores equipped with to 1 MB Data Mem.

Configuration
Hardware Utilization Top Freq.

[MHz]FF LUT DSP B-RAM LUT-RAM

SISD (M = 1, F = 1, D = 1) 2482 7083 11 88 264 132.1
Pure SIMD (M = 1, F = 1, D = 2) 2664 9010 15 88 264 127.0
Pure SIMD (M = 1, F = 1, D = 4) 3510 11,678 23 88 264 125.5
Pure SIMD (M = 1, F = 1, D = 8) 4904 18,531 39 88 264 112.6

Symmetric MIMD (M = 3, F = 3, D = 1) 3509 10,701 19 120 264 114.2
Symmetric MIMD+SIMD (M = 3, F = 3, D = 2) 4659 16,556 31 120 264 113.9
Symmetric MIMD+SIMD (M = 3, F = 3, D = 4) 6746 27,485 55 120 264 108.9
Symmetric MIMD+SIMD (M = 3, F = 3, D = 8) 11,253 52,930 103 120 264 96.3

Heterogenous MIMD (M = 3, F = 1, D = 1) 3025 10,655 11 120 264 119.9
Heterogenous MIMD+SIMD (M = 3, F = 1, D = 2) 3741 17,161 15 120 264 115.7
Heterogenous MIMD+SIMD (M = 3, F = 1, D = 4) 4767 25,535 23 120 264 110.4
Heterogenous MIMD+SIMD (M = 3, F = 1, D = 8) 7303 48,066 39 120 264 91.5

T0 (No accl) 1409 4079 7 72 176 194.6
RI5CY 1307 6351 6 72 0 65.1

Zeroriscy 1605 2834 1 72 0 77.2

The VGG-16 inference fixed-point code was also implemented on the following alter-
native computing systems, to accomplish a comprehensive comparative analysis:

• An FPGA board featuring a soft-processor comprised of the extended PULPino plat-
form equipped with the DSP-accelerated RI5CY core, reaching 65 MHz clock fre-
quency;

• An FPGA board featuring a soft-processor comprised of the extended PULPino plat-
form equipped with a Zeroriscy core [29], reaching 77 MHz clock frequency;

• An STM32 single board computer featuring an 84 MHz ARM Cortex M4 core with
DSP extension, 96 KB data memory;

• A Raspberry-PI 3b+ single board computer featuring a 1.4 GHz ARM Cortex A53
quad-core CPU, 16 KB L1 cache and 512 KB L2 cache, 1 GB LPDDR2 main memory;

• An x86 single board computer featuring a 3 GHz exa-core, 12-thread i7 CPU, 384 KB
L1 cache, 1.5 MB L2 cache, 9 MB LLC, 8 GB DDR4 main memory.

The system architecture organization corresponding to the devices under comparison
are sketched in Figure 14. The read-only storage space dedicated to the VGG-16 weights is
hosted by an SPI-connected Flash memory expansion board in all the considered architec-
tures, and the weights are preemptively loaded into the main RAM space for the inference
algorithm execution.

Electronics 2021, 10, x FOR PEER REVIEW 16 of 22

weights is hosted by an SPI-connected Flash memory expansion board in all the consid-
ered architectures, and the weights are preemptively loaded into the main RAM space for
the inference algorithm execution.

Figure 14. System architecture organization of the compared boards.

5.2. Results
The first phase of performance analysis targeted the detailed account of the perfor-

mance of each coprocessor hardware microarchitecture.
Figure 15 shows the execution time obtained by the best performing of all the ex-

plored T1 coprocessor configurations and by the non-accelerated T0 core, for each VGG-
16 layer. The results give evidence to the fact that the performance of the coprocessor
hardware configurations varies with the algorithm layer it executes. The Symmetrical
MIMD configurations with D ranging between 2 and 8 result to be the best performing for
the convolutional layers, while the pure SIMD configurations with D = 4 results to be the
optimal choice for the largest Fully Connected layers. Notably, the Maxpool and Softmax
layers exhibit worse execution time in the accelerated cores than with in the non-acceler-
ated T0 core, because in the present software implementation they are executed as scalar
computation, and so the data transfer to/from the SPMs constitutes an overhead with no
corresponding vector computation acceleration. Nonetheless, the relative impact of those
layers on the overall execution time is negligible, as shown by the logarithmic scale.

FLASH

D Mem

L2
L1

co
re

co
re

co
re

co
re

co
re

co
re

FLASH

D Mem
L2
L1

FLASH

D Mem

co
re

co
re

co
re

co
re

co
re

DS
P

FLASH

D Mem

co
re

VE
C

SPM

FLASH

D Mem

co
re

FLASH

D Mem

co
re

DS
P

i7 A53
M4
(STM32)

RI5CY
(PULPino)

Zeroriscy
(PULPino)

Klessydra T1
(PULPino)

L3

Figure 14. System architecture organization of the compared boards.

5.2. Results

The first phase of performance analysis targeted the detailed account of the perfor-
mance of each coprocessor hardware microarchitecture.

Figure 15 shows the execution time obtained by the best performing of all the ex-
plored T1 coprocessor configurations and by the non-accelerated T0 core, for each VGG-16

Electronics 2021, 10, 518 16 of 21

layer. The results give evidence to the fact that the performance of the coprocessor hard-
ware configurations varies with the algorithm layer it executes. The Symmetrical MIMD
configurations with D ranging between 2 and 8 result to be the best performing for the con-
volutional layers, while the pure SIMD configurations with D = 4 results to be the optimal
choice for the largest Fully Connected layers. Notably, the Maxpool and Softmax layers ex-
hibit worse execution time in the accelerated cores than with in the non-accelerated T0 core,
because in the present software implementation they are executed as scalar computation,
and so the data transfer to/from the SPMs constitutes an overhead with no corresponding
vector computation acceleration. Nonetheless, the relative impact of those layers on the
overall execution time is negligible, as shown by the logarithmic scale.

Electronics 2021, 10, x FOR PEER REVIEW 16 of 22

weights is hosted by an SPI-connected Flash memory expansion board in all the consid-
ered architectures, and the weights are preemptively loaded into the main RAM space for
the inference algorithm execution.

Figure 14. System architecture organization of the compared boards.

5.2. Results
The first phase of performance analysis targeted the detailed account of the perfor-

mance of each coprocessor hardware microarchitecture.
Figure 15 shows the execution time obtained by the best performing of all the ex-

plored T1 coprocessor configurations and by the non-accelerated T0 core, for each VGG-
16 layer. The results give evidence to the fact that the performance of the coprocessor
hardware configurations varies with the algorithm layer it executes. The Symmetrical
MIMD configurations with D ranging between 2 and 8 result to be the best performing for
the convolutional layers, while the pure SIMD configurations with D = 4 results to be the
optimal choice for the largest Fully Connected layers. Notably, the Maxpool and Softmax
layers exhibit worse execution time in the accelerated cores than with in the non-acceler-
ated T0 core, because in the present software implementation they are executed as scalar
computation, and so the data transfer to/from the SPMs constitutes an overhead with no
corresponding vector computation acceleration. Nonetheless, the relative impact of those
layers on the overall execution time is negligible, as shown by the logarithmic scale.

FLASH

D Mem

L2
L1

co
re

co
re

co
re

co
re

co
re

co
re

FLASH

D Mem
L2
L1

FLASH

D Mem

co
re

co
re

co
re

co
re

co
re

DS
P

FLASH

D Mem

co
re

VE
C

SPM

FLASH

D Mem

co
re

FLASH

D Mem

co
re

DS
P

i7 A53
M4
(STM32)

RI5CY
(PULPino)

Zeroriscy
(PULPino)

Klessydra T1
(PULPino)

L3

Figure 15. Absolute execution time [s] of the best performing accelerated configuration and of the non-accelerated T0 core,
per layer.

Figure 16 presents the total VGG16 inference execution time speed-up obtained by each
coprocessor configuration over the non-accelerated T0 core. The diagram also includes
the ideal speed-up obtained assuming to use the optimal configuration for each layer.
Figure 17 represents the hardware cost of the configurations that exhibit the highest speed-
up, normalized to the non-accelerated T0 core hardware cost, for a direct comparison.
The resulting hardware utilization efficiency is notable, as the maximum speed-up is over
50X, while the maximum hardware cost overhead is well below 15X.

Figure 18 shows the total energy consumed by the most efficient of all the explored
T1 coprocessor configurations and by the non-accelerated T0 core, for each VGG-16 layer.
Again, the optimal coprocessor configuration for energy efficiency depends on the layer be-
ing executed. Optimal energy efficiency, unlike absolute performance, swings between Pure
SIMD and Symmetrical MIMD configurations. Similarly to the execution time analysis, for
pure scalar computation layers the energy consumption worsens in the vector-accelerated
microarchitecture, due to the SPM data transfer overhead. Yet, the overall impact of those
layers on the total energy is negligible as shown by the logarithmic scale.

Electronics 2021, 10, 518 17 of 21

Electronics 2021, 10, x FOR PEER REVIEW 17 of 22

Figure 15. Absolute execution time [s] of the best performing accelerated configuration and of the non-accelerated T0 core,
per layer.

Figure 16 presents the total VGG16 inference execution time speed-up obtained by
each coprocessor configuration over the non-accelerated T0 core. The diagram also in-
cludes the ideal speed-up obtained assuming to use the optimal configuration for each
layer. Figure 17 represents the hardware cost of the configurations that exhibit the highest
speed-up, normalized to the non-accelerated T0 core hardware cost, for a direct compari-
son. The resulting hardware utilization efficiency is notable, as the maximum speed-up is
over 50X, while the maximum hardware cost overhead is well below 15X.

Figure 16. Total execution time speed-up over non-accelerated core obtained by each coprocessor configuration, along
with the speed-up obtained by using the optimal configuration for each layer.

1.0

25.7

31.6
35.4

33.1

45.3

51.9
53.5

50.0

44.1

49.2
50.9

43.6

56.2

0

10

20

30

40

50

60

Execution time speed-up

Figure 16. Total execution time speed-up over non-accelerated core obtained by each coprocessor configuration, along with
the speed-up obtained by using the optimal configuration for each layer.

Electronics 2021, 10, x FOR PEER REVIEW 18 of 22

Figure 17. Hardware overhead normalized to the non-accelerated T0 core.

Figure 18 shows the total energy consumed by the most efficient of all the explored
T1 coprocessor configurations and by the non-accelerated T0 core, for each VGG-16 layer.
Again, the optimal coprocessor configuration for energy efficiency depends on the layer
being executed. Optimal energy efficiency, unlike absolute performance, swings between
Pure SIMD and Symmetrical MIMD configurations. Similarly to the execution time anal-
ysis, for pure scalar computation layers the energy consumption worsens in the vector-
accelerated microarchitecture, due to the SPM data transfer overhead. Yet, the overall im-
pact of those layers on the total energy is negligible as shown by the logarithmic scale.

Figure 18. Total energy consumption [J] of the most energy efficient coprocessor configuration and of the non-accelerated
T0 core, per layer.

Figure 19 gives significance of the total energy saving obtained by each coprocessor
configuration over the non-accelerated T0 core. The energy saving is expressed as the frac-
tion of the energy consumed in the accelerated core over the energy consumed in the non-

1.
00

1.
00

1.
00

1.
00

1.
001.

76

1.
74

1.
57

1.
22 1.
50

3.
48 4.

54 5.
57

1.
22 1.
50

5.
18

11
.7

8

5.
57

1.
67

1.
50

7.
99

12
.9

8 14
.7

1

1.
67

1.
50

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

FF LUT DSP B-RAM LUT-RAM

NO
RM

AL
IZ

ED
 H

W
 C

OS
T

FPGA ELEMENTS

T0 (non-accelerated core) SISD SIMD=8 Het. MIMD=8 Symm. MIMD=8

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Total

To
ta

l E
ne

rg
y

[J]

layer

Most energy efficient coprocessor config. T0 (non-accelerated core)

(M
=3

,F=
3,

D=
2)

(M
=3

,F=
3,

D=
2)

(M
=3

,F=
3,

D=
2)

(M
=3

,F=
3,

D=
2)

(M
=3

,F=
3,

D=
2)

(M
=1

,F=
1,

D=
8) (M

=1
,F=

1,
D=

8)

(M
=1

,F=
1,

D=
1)

(M
=3

,F=
3,

D=
4)

(M
=3

,F=
3,

D=
4)

(M
=1

,F=
1,

D=
1)

(M
=3

,F=
3,

D=
2)

(M
=1

,F=
1,

D=
1)

(M
=3

,F=
3,

D=
4)

(M
=3

,F=
3,

D=
4)

(M
=3

,F=
3,

D=
4)

(M
=1

,F=
1,

D=
1)

(M
=1

,F=
1,

D=
1)

(M
=3

,F=
3,

D=
1)

(M
=1

,F=
1,

D=
4)

(M
=3

,F=
1,

D=
1)

(M
=1

,F=
1,

D=
4)

(M
=3

,F
=3

,D
=4

)

Figure 17. Hardware overhead normalized to the non-accelerated T0 core.

Electronics 2021, 10, 518 18 of 21

Electronics 2021, 10, x FOR PEER REVIEW 18 of 22

Figure 17. Hardware overhead normalized to the non-accelerated T0 core.

Figure 18 shows the total energy consumed by the most efficient of all the explored
T1 coprocessor configurations and by the non-accelerated T0 core, for each VGG-16 layer.
Again, the optimal coprocessor configuration for energy efficiency depends on the layer
being executed. Optimal energy efficiency, unlike absolute performance, swings between
Pure SIMD and Symmetrical MIMD configurations. Similarly to the execution time anal-
ysis, for pure scalar computation layers the energy consumption worsens in the vector-
accelerated microarchitecture, due to the SPM data transfer overhead. Yet, the overall im-
pact of those layers on the total energy is negligible as shown by the logarithmic scale.

Figure 18. Total energy consumption [J] of the most energy efficient coprocessor configuration and of the non-accelerated
T0 core, per layer.

Figure 19 gives significance of the total energy saving obtained by each coprocessor
configuration over the non-accelerated T0 core. The energy saving is expressed as the frac-
tion of the energy consumed in the accelerated core over the energy consumed in the non-

1.
00

1.
00

1.
00

1.
00

1.
001.

76

1.
74

1.
57

1.
22 1.
50

3.
48 4.

54 5.
57

1.
22 1.
50

5.
18

11
.7

8

5.
57

1.
67

1.
50

7.
99

12
.9

8 14
.7

1

1.
67

1.
50

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

FF LUT DSP B-RAM LUT-RAM

NO
RM

AL
IZ

ED
 H

W
 C

OS
T

FPGA ELEMENTS

T0 (non-accelerated core) SISD SIMD=8 Het. MIMD=8 Symm. MIMD=8

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Total

To
ta

l E
ne

rg
y

[J]

layer

Most energy efficient coprocessor config. T0 (non-accelerated core)

(M
=3

,F=
3,

D=
2)

(M
=3

,F=
3,

D=
2)

(M
=3

,F=
3,

D=
2)

(M
=3

,F=
3,

D=
2)

(M
=3

,F=
3,

D=
2)

(M
=1

,F=
1,

D=
8) (M

=1
,F=

1,
D=

8)

(M
=1

,F=
1,

D=
1)

(M
=3

,F=
3,

D=
4)

(M
=3

,F=
3,

D=
4)

(M
=1

,F=
1,

D=
1)

(M
=3

,F=
3,

D=
2)

(M
=1

,F=
1,

D=
1)

(M
=3

,F=
3,

D=
4)

(M
=3

,F=
3,

D=
4)

(M
=3

,F=
3,

D=
4)

(M
=1

,F=
1,

D=
1)

(M
=1

,F=
1,

D=
1)

(M
=3

,F=
3,

D=
1)

(M
=1

,F=
1,

D=
4)

(M
=3

,F=
1,

D=
1)

(M
=1

,F=
1,

D=
4)

(M
=3

,F
=3

,D
=4

)

Figure 18. Total energy consumption [J] of the most energy efficient coprocessor configuration and of the non-accelerated
T0 core, per layer.

Figure 19 gives significance of the total energy saving obtained by each coprocessor
configuration over the non-accelerated T0 core. The energy saving is expressed as the
fraction of the energy consumed in the accelerated core over the energy consumed in the
non-accelerated core, obtaining energy consumption between 6.4% and 4% of the non-
accelerated core (energy saving between 93.6% and 96%). The diagram also includes the
ideal energy reduction obtained assuming to use the optimal configuration for each layer.

Electronics 2021, 10, x FOR PEER REVIEW 19 of 22

accelerated core, obtaining energy consumption between 6.4% and 4% of the non-acceler-
ated core (energy saving between 93.6% and 96%). The diagram also includes the ideal
energy reduction obtained assuming to use the optimal configuration for each layer.

Figure 19. Energy reduction factor with respect to non-accelerated core (lower is better) obtained by each coprocessor
configuration, along with the energy obtained by using the optimal configuration for each layer.

Figures 16 and 19 evidence the ideal performance limit achievable by dynamically
changing the coprocessor microarchitecture at no overhead, via software controlled Dy-
namic Partial Reconfiguration (DPR) of the FPGA, so that the system always uses the op-
timal hardware scheme for speed or energy efficiency according to the computation ker-
nel being executed. The storage, power and time overhead associated to DPR is not in-
cluded in the analysis, and should be the subject of specific experiments.

The second phase of performance analysis aimed at comparing the efficiency of the
proposed soft-processor architecture with the alternative hardware architecture solutions
for the execution of the same application. In this analysis, the proposed solution consisted
of the extended PULPino platform equipped with the Klessydra T1 core + optimal vector
coprocessor for each layer being executed.

Table 5 summarizes the performance comparison results, expressed as total execu-
tion time, total energy consumption, and average energy consumed per algorithmic oper-
ation. Algorithmic operations are the data multiplications and additions that are inherent
to the algorithm being computed, and do not depend on the actual software implementa-
tion. The absolute execution time obviously favors high-end computing devices, yet the
results give evidence of the effectiveness of the Klessydra T1 customizable vector copro-
cessor sub-system with respect to other single-core PULPino soft-processor FPGA imple-
mentations. Additionally, the energy efficiency results show the potential advantage of a
Klessydra T1 vector-accelerated soft-processor FPGA implementation, with respect to
general purpose single-board computers.

100.0%

6.3%
5.1% 4.7%

5.5% 5.1%
4.4% 4.4%

5.7% 5.5%
4.8% 5.0%

6.6%

4.0%

1.0%

10.0%

100.0%

Energy reduction factor

Figure 19. Energy reduction factor with respect to non-accelerated core (lower is better) obtained by each coprocessor
configuration, along with the energy obtained by using the optimal configuration for each layer.

Electronics 2021, 10, 518 19 of 21

Figures 16 and 19 evidence the ideal performance limit achievable by dynamically
changing the coprocessor microarchitecture at no overhead, via software controlled Dy-
namic Partial Reconfiguration (DPR) of the FPGA, so that the system always uses the
optimal hardware scheme for speed or energy efficiency according to the computation
kernel being executed. The storage, power and time overhead associated to DPR is not
included in the analysis, and should be the subject of specific experiments.

The second phase of performance analysis aimed at comparing the efficiency of the
proposed soft-processor architecture with the alternative hardware architecture solutions
for the execution of the same application. In this analysis, the proposed solution consisted
of the extended PULPino platform equipped with the Klessydra T1 core + optimal vector
coprocessor for each layer being executed.

Table 5 summarizes the performance comparison results, expressed as total execution
time, total energy consumption, and average energy consumed per algorithmic operation.
Algorithmic operations are the data multiplications and additions that are inherent to the
algorithm being computed, and do not depend on the actual software implementation.
The absolute execution time obviously favors high-end computing devices, yet the results
give evidence of the effectiveness of the Klessydra T1 customizable vector coprocessor sub-
system with respect to other single-core PULPino soft-processor FPGA implementations.
Additionally, the energy efficiency results show the potential advantage of a Klessydra T1
vector-accelerated soft-processor FPGA implementation, with respect to general purpose
single-board computers.

Table 5. Performance comparison with alternative solutions.

Processor Time [s] Energy [J] Energy per op [pJ/op]

Core i7 PC board 0.08 2.90 21
Cortex A53 Raspberry Pi 3 0.89 2.32 17

Cortex M4 STM32 117.78 7.77 55
RI5CY PULPino on FPGA 444.30 40.06 285

Zeroriscy PULPino on FPGA 548.04 38.90 277
Klessydra-T1 PULPino on FPGA 7.91 1.74 12

6. Conclusions

The validation of the VGG-16 inference output data produced by Klessydra processors
against conventional processors demonstrated how the Klessydra open-source infrastruc-
ture can be used for implementing configurable RISC-V soft-cores equipped with hardware
acceleration for vector computing on FPGA. The detailed porting of the target application
routines has been documented in this work. Performance results show the effectiveness
of the Klessydra microarchitecture scheme, built upon interleaved multi-threading and
vector coprocessor hardware acceleration, with respect to other FPGA-based single-core
solutions. Looking at energy efficiency, the Klessydra FPGA soft-core solution shows
superior performance with respect to commercial single-board computers that may be used
as IoT extreme-edge devices.

The results of the performance analysis conducted on the Klessydra T1 vector copro-
cessor schemes demonstrate the dependency of the optimal hardware configuration on
the algorithm’s layer being executed. This evidence opens the way to the development
of software configurable accelerators and further to the implementation of self-adapting
coprocessor microarchitectures in IoT extreme-edge nodes.

Supplementary Materials: The Klessydra processor core family and accelerators are openly available
online at https://www.github.com/klessydra.

Author Contributions: Conceptualization, M.O.; methodology, M.O. and A.C.; hardware design
and Synthesis, A.C.; software, S.S.; validation, A.C. and S.S.; formal analysis, S.S.; investigation,
A.C.; data curation, A.C. and S.S.; tool maintenance, A.M.; writing—original draft preparation, M.O.;

https://www.github.com/klessydra

Electronics 2021, 10, 518 20 of 21

writing—review and editing, A.C., A.M., and F.M.; visualization, A.C.; supervision, M.O.; project
administration, M.O.; funding acquisition, M.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by a Sapienza University internal research grant.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Samie, F.; Bauer, L.; Henkel, J. From Cloud Down to Things: An Overview of Machine Learning in Internet of Things. IEEE Internet

Things J. 2019, 4662, 1. [CrossRef]
2. European Processor Intiative (EPI). EU H2020 Research and Innovation Programme GA No 826647. Available online: https:

//www.european-processor-initiative.eu/project/epi/ (accessed on 26 January 2021).
3. RISC-V. Instruction Set Specifications. Available online: https://riscv.org/specifications/ (accessed on 26 January 2021).
4. Cheikh, A.; Sordillo, S.; Mastrandrea, A.; Menichelli, F.; Scotti, G.; Olivieri, M. Klessydra-T: Designing Vector Coprocessors for

Multi-Threaded Edge-Computing Cores. IEEE Micro 2021, 1. [CrossRef]
5. Gautschi, M.; Schiavone, P.; Traber, A.; Loi, I.; Pullini, A.; Rossi, D.; Flamand, E.; Gürkaynak, F.; Benini, L. Near-threshold RISC-V

core with DSP extensions for scalable IoT endpoint devices. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 2700–2713.
[CrossRef]

6. Seo, S.; Dreslinski, R.G.; Woh, M.; Chakrabarti, C.; Mahlke, S.; Mudge, T. Diet SODA: A power-efficient processor for digital
cameras. In Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design, Austin, TX,
USA, 18–20 August 2010; pp. 79–84.

7. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE J. Solid-State Circuits 2016, 52, 127–138. [CrossRef]

8. Moini, S.; Alizadeh, B.; Emad, M.; Ebrahimpour, R. A resource-limited hardware accelerator for convolutional neural networks in
embedded vision applications. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 1217–1221. [CrossRef]

9. Conti, F.; Benini, L. A ultra-low-energy convolution engine for fast brain-inspired vision in multicore clusters. In Proceedings
of the IEEE Design, Automation and Test in Europe Conference and Exhibition (DATE), Grenoble, France, 9–13 March 2015;
pp. 683–688.

10. Meloni, P.; Deriu, G.; Conti, F.; Loi, I.; Raffo, L.; Benini, L. Curbing the roofline: A scalable and flexible architecture for CNNs on
FPGA. In Proceedings of the ACM International Conference on Computing Frontiers, Como, Italy, 16–18 May 2016; pp. 376–383.

11. Wu, N.; Jiang, T.; Zhang, L.; Zhou, F.; Ge, F. A Reconfigurable Convolutional Neural Network-Accelerated Coprocessor Based on
RISC-V Instruction Set. Electronics 2020, 9, 1005. [CrossRef]

12. Watanabe, D.; Yano, Y.; Izumi, S.; Kawaguchi, H.; Takeuchi, K.; Hiramoto, T.; Iwai, S.; Murakata, M.; Yoshimoto, M. An Architec-
tural Study for Inference Coprocessor Core at the Edge in IoT Sensing. In Proceedings of the 2nd IEEE International Conference
on Artificial Intelligence Circuits and Systems (AICAS), Genoa, Italy, 23–25 March 2020; pp. 305–309.

13. Wu, Y.; Wang, J.J.; Qian, K.; Liu, Y.; Guo, R.; Hu, S.G.; Yu, Q.; Chen, T.P.; Liu, Y.; Rong, L. An energy-efficient deep convolutional
neural networks coprocessor for multi-object detection. Microelectron. J. 2020, 98, 104737. [CrossRef]

14. Chang, M.C.; Pan, Z.G.; Chen, J.L. Hardware accelerator for boosting convolution computation in image classification applications.
In Proceedings of the 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), Nagoya, Japan, 24–27 October 2017;
pp. 1–2.

15. Lima, P.; Vieira, C.; Reis, J.; Almeida, A.; Silveira, J.; Goerl, R.; Marcon, C. Optimizing RISC-V ISA Usage by Sharing Coproces-
sors on MPSoC. In Proceedings of the 2020 IEEE Latin-American Test Symposium (LATS), Maceio, Brazil, 30 March–2 April
2020; pp. 1–5.

16. Du, L.; Du, Y.; Li, Y.; Su, J.; Kuan, Y.C.; Liu, C.C.; Chang, M.C.F. A reconfigurable streaming deep convolutional neural network
accelerator for Internet of Things. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 198–208. [CrossRef]

17. Olivieri, M.; Cheikh, A.; Cerutti, G.; Mastrandrea, A.; Menichelli, F. Investigation on the optimal pipeline organization in RISC-V
multi-threaded soft processor cores. In 2017 New Generation of CAS (NGCAS); IEEE: New York, NY, USA, 2017; pp. 45–48.

18. Cheikh, A.; Sordillo, S.; Mastrandrea, A.; Menichelli, F.; Olivieri, M. Efficient Mathematical Accelerator Design Coupled with
an Interleaved Multi-threading RISC-V Microprocessor. In Proceedings of the International Conference on Applications in
Electronics Pervading Industry, Environment and Society, Pisa, Italy, 11–13 September 2019; Springer: Cham, Switzerland, 2019;
pp. 529–539.

19. Lattner, C. RISC-V Vector Extension Intrinsic Support. Available online: https://www.sifive.com/blog/risc-v-vector-extension-
intrinsic-support (accessed on 26 January 2021).

20. Cavalcante, M.; Schuiki, F.; Zaruba, F.; Schaffner, M.; Benini, L. Ara: A 1-GHz+ Scalable and Energy-Efficient RISC-V Vector
Processor with Multiprecision Floating-Point Support in 22-nm FD-SOI. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28,
530–543. [CrossRef]

http://doi.org/10.1109/JIOT.2019.2893866
https://www.european-processor-initiative.eu/project/epi/
https://www.european-processor-initiative.eu/project/epi/
https://riscv.org/specifications/
http://doi.org/10.1109/MM.2021.3050962
http://doi.org/10.1109/TVLSI.2017.2654506
http://doi.org/10.1109/JSSC.2016.2616357
http://doi.org/10.1109/TCSII.2017.2690919
http://doi.org/10.3390/electronics9061005
http://doi.org/10.1016/j.mejo.2020.104737
http://doi.org/10.1109/TCSI.2017.2735490
https://www.sifive.com/blog/risc-v-vector-extension-intrinsic-support
https://www.sifive.com/blog/risc-v-vector-extension-intrinsic-support
http://doi.org/10.1109/TVLSI.2019.2950087

Electronics 2021, 10, 518 21 of 21

21. Chen, C.; Xiang, X.; Liu, C.; Shang, Y.; Guo, R.; Liu, D.; Lu, Y.; Hao, Z.; Luo, J.; Chen, Z.; et al. Xuantie-910: A Commercial
Multi-Core 12-Stage Pipeline Out-of-Order 64-bit High Performance RISC-V Processor with Vector Extension: Industrial Product.
In Proceedings of the 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), Valencia, Spain,
30 May–3 June 2020; pp. 52–64.

22. Wright, J.C.; Schmidt, C.; Keller, B.; Dabbelt, D.P.; Kwak, J.; Iyer, V.; Mehta, N.; Chiu, P.-F.; Bailey, S.; Asanovic, K.; et al.
A Dual-Core RISC-V Vector Processor with On-Chip Fine-Grain Power Management in 28-nm FD-SOI. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 2020, 28, 2721–2725. [CrossRef]

23. Kimura, Y.; Kikuchi, T.; Ootsu, K.; Yokota, T. Proposal of Scalable Vector Extension for Embedded RISC-V Soft-Core Processor.
In Proceedings of the 7th International Symposium on Computing and Networking Workshops (CANDARW), Nagasaki, Japan,
26–29 November 2019; pp. 435–439.

24. Johns, M.; Kazmierski, T.J. A Minimal RISC-V Vector Processor for Embedded Systems. In Proceedings of the 2020 Forum for
Specification and Design Languages (FDL), Kiel, Germany, 15–17 September 2020.

25. Traber, A.; Gautschi, M. PULPino: Datasheet; ETH: Zurich, Switzerland; University of Bologna: Bologna, Italy, 2017; Available
online: https://pulp-platform.org/docs/pulpino_datasheet.pdf (accessed on 26 January 2021).

26. Blasi, L.; Vigli, F.; Cheikh, A.; Mastrandrea, A.; Menichelli, F.; Olivieri, M. A RISC-V Fault-Tolerant Microcontroller Core
Architecture Based on a Hardware Thread Full/Partial Protection and a Thread-Controlled Watch-Dog Timer. In Proceedings
of the International Conference on Applications in Electronics Pervading Industry, Environment and Society, Pisa, Italy, 11–13
September 2019; Springer: Cham, Switzerland, 2019; pp. 505–511.

27. Cheikh, A.; Cerutti, G.; Mastrandrea, A.; Menichelli, F.; Olivieri, M. The microarchitecture of a multi-threaded RISC-V compliant
processing core family for IoT end-nodes. In Proceedings of the International Conference on Applications in Electronics Pervading
Industry, Environment and Society, Rome, Italy, 21–22 September 2017; Springer: Cham, Switzerland, 2017; pp. 89–97.

28. Genesys 2 Kintex-7 FPGA Development Board. Available online: https://reference.digilentinc.com/reference/programmable-
logic/genesys-2/start?redirect=1 (accessed on 26 January 2021).

29. Schiavone, P.D.; Conti, F.; Rossi, D.; Gautschi, M.; Pullini, A.; Flamand, E.; Benini, L. Slow and steady wins the race? A comparison
of ultra-low-power risc-v cores for internet-of-things applications. In Proceedings of the 27th International Symposium on Power
and Timing Modeling, Optimization and Simulation (PATMOS), Thessaloniki, Greece, 25–27 September 2017; pp. 1–8.

http://doi.org/10.1109/TVLSI.2020.3030243
https://pulp-platform.org/docs/pulpino_datasheet.pdf
https://reference.digilentinc.com/reference/programmable-logic/genesys-2/start?redirect=1
https://reference.digilentinc.com/reference/programmable-logic/genesys-2/start?redirect=1

	Introduction
	Related Works
	The Klessydra T1 Customizable Architecture
	Hardware Microarchitecture
	Programming Paradigm

	VGG-16 Implementation on Klessydra T1
	Implementation Workflow
	Generic Fixed-Point C Code Porting
	Vectorized C Code Implementation

	Performance and Power Analysis
	Setup
	Results

	Conclusions
	References

