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Abstract: This paper presents a pipelined layered quasi-cyclic low-density parity-check (QC-LDPC)
decoder architecture targeting low-complexity, high-throughput, and efficient use of hardware re-
sources compliant with the specifications of 5G new radio (NR) wireless communication standard.
First, a combined min-sum (CMS) decoding algorithm, which is a combination of the offset min-sum
and the original min-sum algorithm, is proposed. Then, a low-complexity and high-throughput
pipelined layered QC-LDPC decoder architecture for enhanced mobile broadband specifications in
5G NR wireless standards based on CMS algorithm with pipeline layered scheduling is presented.
Enhanced versions of check node-based processor architectures are proposed to improve the com-
plexity of the LDPC decoders. An efficient minimum-finder for the check node unit architecture that
reduces the hardware required for the computation of the first two minima is introduced. Moreover,
a low complexity a posteriori information update unit architecture, which only requires one adder
array for their operations, is presented. The proposed architecture shows significant improvements
in terms of area and throughput compared to other QC-LDPC decoder architectures available in the
literature.

Keywords: 5G new radio standard; quasi-cyclic low-density parity-check (QC-LDPC) codes; channel
coding; decoder architectures

1. Introduction

Low-density parity-check (LDPC) codes [1] were first introduced by R. Gallager in the
early 1960s and later rediscovered by MacKay and Neal [2] in 1996. Due to their excellent
error correction performance and highly parallel implementation characteristics, LDPC
codes have been considered as one of the most popular forward error correction (FEC)
codes in the past several decades. Since then, LDPC codes served as a fundamental of
modern coding theory, which relies mainly on Shannon theory [3] in addition to extremely
sparse code characterization and probabilistic message-passing algorithms [4]. Moreover,
LDPC codes inherently possess some of the good characteristics of linear block codes,
for instance, the simple and sparseness structure of parity check matrix H, which can be
sketched in the shape of a bipartite model called Tanner graph [5]. A graphical approach
makes it easier to analyze and visualize all complex mathematical formulations [6].

With higher data rates and acceptable error correction performance, the realizations
of channel coding schemes have become crucial for all modern communication systems.
The decoding of an LDPC can be deployed with a high degree of parallelism, which is
essential to achieve high decoding throughput and low hardware complexity. Therefore,
LDPC codes are promising solutions for high data rate applications such as wide-band
wireless multimedia communications and magnetic storage systems [7,8]. Generally, well-
constructed irregular LDPC codes show much higher performance than the regular ones [9].
Although construction of very-large-scale integration (VLSI) architecture for irregular
LDPC codes consumes higher complexity, many practical applications and standards such
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as IEEE 802.16e [10] and IEEE 802.11n [11,12] have considered irregular LDPC codes since
they have greater performance. In addition, millimeter-wave (mmWave) Wireless Gigabit
(WiGig) introduced by the IEEE 802.11ad Working Group [13] considered LDPC codes as
their favored option for FEC. Recently, LDPC codes have been deployed in the enhanced
mobile broadband (eMBB) as the error correction coding scheme for fifth-generation (5G)
data channels [14]. The third generation partnership project (3GPP) has introduced two
base graph (BG) matrices, namely BG1 and BG2 [15–17], to support the scalable and
rate-compatible data transmission.

In recent years, many studies concentrated on structured LDPC codes, also known as
quasi-cyclic low-density parity-check (QC-LDPC) codes [18–22], which have been offered
significant advantages over other types of LDPC codes in terms of hardware implementa-
tion and excellent error performance over noisy channels. Furthermore, QC-LDPC codes
are relatively flexible and can be constructed with multiple code rates, numerous block
lengths, and several different sizes of submatrix [23,24], which are important features of
the modern mobile and wireless communication systems. Structured codes also consist of
block-LDPC codes and architecture-aware LDPC codes [25,26]. The parity-check matrix H
of QC-LDPC codes is composed of either cyclic permutation submatrices or zero matrices
of the same size, which define the interconnection between the check node units (CNUs)
and variable node units (VNUs).

The 5G mobile communications systems offer a far higher performance level beyond
former generations of mobile communications systems. Wireless data traffic is estimated to
increase by 1000-fold by the end of 2020 with more than 50 billion mobile devices connected
to these wireless networks with peak data rates up to 10 Gbps. Forward error correction
plays an extremely crucial role in high-speed communication systems. The search for an
efficient trade-off between high performance, high throughput capabilities, low hardware
complexity, low cost, and low power consumption makes the hardware implementation
of an LDPC decoder still challenging. In addition, the researcher has to deal with many
possible options of algorithms, quantization parameters, parallelisms, code rates, and frame
lengths. Furthermore, a reduced area and power are particularly compulsory for mobile
devices. Therefore, designs of the area and energy-efficient FEC chips are excessively
desirable. This brief presents low-complexity and high-throughput QC-LDPC decoder
architectures for emerging 5G wireless communications standards.

The remainder of this paper is structured as follows. In Section 2, a brief overview
of the 5G NR LDPC codes is presented. Section 3 proposes a combined min-sum (CMS)
decoding algorithm, which is a combination of the offset min-sum (OMS) and the original
min-sum (MS) algorithm. Section 4 details the proposed low-complexity high-throughput
pipelined layered QC-LDPC decoder for 5G NR wireless communication standards.
Section 5 provides implementation and comparison results. Finally, conclusions are drawn
in Section 6.

2. 5G New Radio LDPC Codes
2.1. Introduction

According to ITU-R, there are three primary 5G NR use cases defined by the 3GPP as
part of its Study on New Services and Markets Technology Enablers (SMARTER) project.
The three sets of use cases are [27]: eMBB, Ultra-Reliable Low Latency Communications
(URLLC), and Massive Machine Type Communications (mMTC).

The initial phase of 5G deployments focuses on the eMBB use case. The eMBB traffic
can be regarded as a direct extension from the 4G broadband service. The eMBB scenario
is required to support a wider range of code rates, various code lengths, and modulation
orders compared to the 4G Long Term Evolution (LTE). The eMBB offers peak data rates
of 20 Gbps and provided user data rates of 100 Mbps to numerous users. Recently, LDPC
codes have been selected as the coding scheme for the 5G eMBB data channel [14]. The
NR access technology marks a great transition in channel coding for the 3GPP cellular
technologies [28]. This section summarizes the basic features of standard 5G QC-LDPC
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codes. Furthermore, the construction procedures of the parity-check matrix of the target
LDPC codes are also presented.

2.2. Quasi-Cyclic LDPC Codes

QC-LDPC codes [29], which are a class of structured LDPC codes, are widely used in
many practical applications. A binary (N, K) QC-LDPC code is characterized by the null
space of an M× N parity-check matrix H, which consists of an array of circulant matrices
of the same size [30,31]. The parity-check matrix of a QC-LDPC code can be illustrated
by its base graph and shift coefficients. Elements 1s in the base graph are replaced by a
circulant permutation matrix of size Z× Z and 0 s are replaced by and a zero matrix of the
same size.

Denote Z as the size of a circulant permutation matrix and Pm,n as the shift coefficient
value. For any integer value Pm,n, 0 ≤ Pm,n ≤ Z, a Z× Z circulant permutation matrix is
defined as the cyclic-shift of the Z× Z identity matrix I to the right by Pm,n times for the
(m, n)th non-zero element in a base matrix. This binary circulant permutation matrix is
denoted as Q(Pm,n). For simple notation, Q(−1) denotes the null matrix (i.e., all elements
equal to zero) of the same size. Considering Q(1) as an example,

Q(1) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 (1)

For two positive integers mb and nb, with mb ≤ nb, consider the QC-LDPC code
expressed by the following mb × nb array of Z× Z circulants over GF(2):

H =


Q(P1,1) Q(P1,2) · · · Q(P1,nb)
Q(P2,1) Q(P2,2) · · · Q(P2,nb)

...
...

. . .
...

Q(Pmb ,1) Q(Pmb ,2) · · · Q(Pmb ,nb)

 (2)

The exponent matrix of H, which is E(H), has the following form:

E(H) =


P1,1 P1,2 · · · P1,nb
P2,1 P2,2 · · · P2,nb

...
...

. . .
...

Pmb ,1 Pmb ,2 · · · Pmb ,nb

 (3)

Each entry in the matrix E is denoted as a shift value. It should be noted that the parity-
check matrix H in Equation (2) can be constructed by expanding the mb × nb exponent
matrix E(H). This procedure is referred to as protograph construction [32]. It follows that
the parity-check matrix H is of size M× N where M = Z×mb and N = Z× nb.

2.3. 5G New Radio QC-LDPC Characteristics

As stated before, QC-LDPC codes play a significant role in 5G NR communications
and have been deployed as the error correction coding scheme for the 5G eMBB data
channel in 3GPP standard meeting. Figure 1 shows the general structure of the base
graph for the NR QC-LDPC codes. The columns are composed of three parts: information
columns, core parity columns, and extension parity columns. The rows are divided into two
parts: core check rows and extension check rows. As can be observed, the base matrix is
partitioned into five submatrices, namely, A, B, O, C, and I [17]. Submatrix A corresponds
to systematic bits. In addition, B corresponds to the first set of parity bits and is a square
matrix with a dual-diagonal structure: its first column is of weight 3, whereas the submatrix
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is composed of other columns after the first column has an upper dual-diagonal structure.
Submatrix O is an all-zero matrix. For the efficient support of Incremental Redundancy
Hybrid Automatic Repeat Request (IR-HARQ), a single parity-check (SPC)-based extension
is used to support lower rates, as shown in Figure 1. Submatrix C corresponds to SPC rows,
and I is an identity matrix that corresponds to the second set of parity bits, i.e., the SPC
extension. The combination of A and B is referred to as the kernel, and the other parts
(O, C, and I) are referred to as extensions. This code structure is similar to the Raptor-like
extension, as described in [15].

The 3GPP has finalized two types of rate-compatible base graphs for the channel
coding, naming BG1 and BG2. Base graphs BG1 and BG2 have relatively similar structures.
However, BG1 is designed for larger block lengths (500 ≤ K ≤ 8448) and higher rates
(1/3 ≤ R ≤ 8/9), whereas BG2 is deployed for smaller block lengths (40 ≤ K ≤ 2560) and
lower rates (1/5 ≤ R ≤ 2/3). The actual base graph usage and the definition of the two
base matrices are provided in the NR standard specification TS 38.212 [15]. The base graph
that supports Kmax should support the following set of shift sizes Z, where Z = a× 2j for
a ∈ {2, 3, 5, 7, 9, 11, 13, 15}, and 0 ≤ j ≤ 7.

Figure 1. Sketch of base parity-check structure for the 5G new radio (NR) quasi-cyclic low-density
parity-check (QC-LDPC) codes.

The number of shift coefficient designs for both base graphs BG1 and BG2 is 8. All lift
sizes are categorized into eight sets based on parameter a, where a is used for the definition
of the lifting-size a× 2j. Table 1 presents the set of shift coefficients.

Table 1. Relationship between exponent matrices and sets of lifting size.

Exponent Matrix Lifting Size Set

Set 1 Z = 2× 2j, j = 0, 1, 2, 3, 4, 5, 6, 7
Set 2 Z = 3× 2j, j = 0, 1, 2, 3, 4, 5, 6, 7
Set 3 Z = 5× 2j, j = 0, 1, 2, 3, 4, 5, 6
Set 4 Z = 7× 2j, j = 0, 1, 2, 3, 4, 5
Set 5 Z = 9× 2j, j = 0, 1, 2, 3, 4, 5
Set 6 Z = 11× 2j, j = 0, 1, 2, 3, 4, 5
Set 7 Z = 13× 2j, j = 0, 1, 2, 3, 4
Set 8 Z = 15× 2j, j = 0, 1, 2, 3, 4
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The shift value Pm,n can be calculated using the function Pm,n = f (Vm,n, Z), where
Vm,n is the shift coefficient of the (m, n)th element in the corresponding shift design. The
function f is defined as Equation (4), in which mod denotes the modulo arithmetic.

Pm,n = f (Vm,n, z) =

{
−1 if Vm,n = −1
mod(Vm,n, z) else

(4)

The five steps for constructing the parity-check matrix of the (N, K) QC-LDPC code
with a target information block size K and code rate R = K/N are listed below. For a base
graph, let kb denote the number of information circulant columns; thus, if the lifting size is
Z, K = Z× kb nominally.

• Step 1: Consider the base graph BG1 or BG2 and select the value of kb for the corre-
sponding K and R.

– For BG1: kb = 22.
– For BG2: kb = 10 if K > 640; kb = 9 if 560 < K ≤ 640; kb = 8 if 192 < K ≤ 560;

and kb = 6 elsewhere.

• Step 2: Determine Z by choosing the minimum Z value in Table 2, such that kb × Z ≥
K.

• Step 3: After the lifting size Z is determined, the corresponding shift coefficient matrix
is then picked up from Table 1 {Set 1, Set 2,. . . , Set 8} according to Z.

• Step 4: Calculate the shifting coefficient value Pi,j by the modular Z operation, as
defined in Equation (4).

• Step 5: Substitute each entry in the final exponent matrix by the corresponding
circulant permutation matrix or zero matrix of size Z × Z. The QC-LDPC code
construction is accomplished, and a parity-check matrix H of size mbZ × nbZ is
achieved.

Table 2. Lifting size Z supported by standard 5G QC-LDPC codes.

Z
a

2 3 5 7 9 11 13 15

j

0 2 3 5 7 9 11 13 15

1 4 6 10 14 18 22 26 30

2 8 12 20 28 36 44 52 60

3 16 24 40 56 72 88 104 120

4 32 48 80 112 144 176 208 240

5 64 96 160 224 288 352

6 128 192 320

7 256 384

In 5G QC-LDPC codes, a shortening and puncturing process is performed to achieve
the desired information lengths and rate adaption. An illustration of the encoding process
of 5G QC-LDPC codes is presented in Figure 2.
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Figure 2. Shortening by zero-padding and puncturing of standard 5G QC-LDPC codes.

3. Combined Min-Sum Algorithm

The standardized LDPC codes for 5G NR channel coding consider two base matrices:
BG1 and BG2 [15–17], to support the rate compatible and scalable data transmission. An
example of BG1 matrix structure with Z = 56 is presented in Figure 3. Efficient LDPC
decoder implementation is a significant task while designing the physical layer for any
wireless standard. It possesses many research challenges at the very early stage of wireless
standards deployment. Therefore, it is time to conceive efficient LDPC decoder architecture
that is compliant with the next generation of 5G NR standards. As shown in Figure 3, the
significant challenge is to design an LDPC decoder architecture to support a huge BG1
matrix that generates the decoded bits of 3808 encoded information bits. Our work aims
to present an efficient LDPC decoder architecture for the 5G NR wireless communication
systems.

A considerable characteristic of the 5G NR LDPC codes is that these codes are dramat-
ically irregular for both check nodes and variable nodes. Table 3 shows the distribution of
check node degree dc in the two base graphs BG1 and BGs specified in 5G NR LDPC codes.
For BG1, the check node degree dc varies largely from 3 to 19. More especially, there are
only four rows in the core part of BG1 that possess the highest check node degree of dcmax
= 19, while most of the rows are with low check node degrees of dc = 5 and 6. Similarly,
the check node degree dc in BG2 also varies largely from 3 to 10 and only 2 rows are with
dcmax = 10. It can be concluded that the check node degrees in the two base matrices of 5G
NR LDPC codes vary drastically.

LDPC codes for the channel coding of 5G NR are actually concatenated codes that
are derived by combining a pure LDPC part and a low-density generator matrix (LDGM)
part. There is a significant difference in the check node degrees of the 5G LDPC codes,
where the check node degree of the pure LDPC part is more than ten, and the check node
degree is only one in the LDGM part. This creates one of the biggest challenges to design
a high-performance decoder for 5G LDPC codes since their inherent numerous degree-1
variable nodes are more prone to be erroneous. For most hardware implementations of
the traditional LDPC decoders, the MS algorithm or the modified versions of it, such
as normalized min-sum (NMS) and OMS, are adopted. The NMS algorithm is the most
straightforward scheme for hardware implementation. However, it is relatively challenging
to optimize the normalized factor for the LDPC codes in 5G NR due to the particularly large
difference in the check node degrees. Generally, the decoding performance of the OMS
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algorithm is better than the MS algorithm since it is an enhanced version of the original
MS algorithm. Nevertheless, it is not always true for the case of fixed-point decoder for
5G LDPC codes. As stated before, the degree-1 variable nodes in the LDGM part are more
sensitive to errors due to the lack of check to variable node messages. Furthermore, the
offset factor of the OMS algorithm is relatively difficult to optimize in fixed point LDPC
decoders because of limited quantization bits. Therefore, the performance of the OMS
algorithm is much lower than the MS algorithm for fixed-point 5G LDPC decoders. Based
on the considerable variation characteristic of the check node degree in 5G NR LDPC codes,
a combined min-sum algorithm is introduced in this section. The combined algorithm
adopts improved error correction performance by using different decoding algorithms for
the core and extension parts of the LDPC code. The principal of the CMS algorithm is to
apply the OMS algorithm for layers with a high check node degree in the core part and
the original MS algorithm for the remaining layers with lower check node degrees. Hence,
this combined algorithm holds all the characters of the MS algorithm and improves its
decoding performance.

Figure 3. Schematic representation of base matrix base graph (BG)1 defined by 5G NR standard for
generating a QC-LDPC code of code length N = 3808 bits, code rate R = 1/3, and Z = 56.

Table 3. Check node degree dc distribution for 5G NR LDPC codes.

No. of Rows
Check Node Degree dc

3 4 5 6 7 8 9 10 19

in BG1 1 5 18 8 5 2 2 1 4

in BG2 6 20 9 3 0 2 0 2 0

For QC-LDPC codes, the parity-check matrix H of size M× N (where M = mb × Z;
N = nb × Z) is partitioned into L horizontal decoding block layers. Each decoding block
layer contains mb/L consecutive block rows of H, such that any variable node is connected
at most once to any block layer. We denoteMl as the set of consecutive block rows of H
corresponding to block layer l ∈ {1, ..., L}. For the sake of simplicity, each decoding block
layer L in this work is assumed to contain only one block row, i.e., L = mb. In addition,
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Rm,n denotes the check-to-variable message conveyed from check m of lth layer to variable
node n. Lm,n represents the variable-to-check message from variable node n to check node
m. In the ith iteration, the LLRs message from layer (l − 2) to next layer l for variable node
v is represented by Pi

n[l − 2]. The CMS decoding based on pipelined layered scheduling
algorithm can be summarized in Algorithm 1.

Algorithm 1 Combined Min-Sum Algorithm

Input: y = (y1, y2, ..., yN) ∈ YN . Received word

Output: x̂ = (x̂1, x̂2, ..., x̂N) ∈ {0, 1}N . Estimated word

Initialization

for all n = 1 to N do Pn = log
P(xn = 0 | yn)

P(xn = 1 | yn)
=

2
σ2 yn

for all m = 1 to M and n ∈ R(m) do Rm,n = 0

Iteration Loop

for all l = 1 to L do . Loop over horizontal layers

for all m ∈ Ml and n ∈ R(m) do . Variable node update

Li
m,n[l] = Pi

n[l − 2]− Ri−1
m,n[l]

for all m ∈ Ml and n ∈ R(m) do . Check node update

Ri
m,n[l] = max ( min

n′∈R(m)\n
|Li

m,n′ [l]| − β[l], 0 ) ×∏
n′∈R(m)\n

sign
(

Li
m,n′ [l]

)
where β[l] =

{
0, if l ≥ 5
≥ 1, otherwise

for all m ∈ Ml and n ∈ R(m) do . A posteriori information update

Pi
n[l − 1] = Pi

n[l − 2]− Ri−1
m,n[l − 1] + Ri

m,n[l − 1]

end (horizontal layers loop)

for all n = 1 to N do x̂n =
1− sign(Pi

n[l])
2

. Hard decision

if s = H × x̂T = 0 then exit the iteration loop . Syndrome check

End Iteration Loop

4. Proposed LDPC Decoder Architecture

The proposed low-complexity high-throughput QC-LDPC decoder architecture for
5G NR wireless standards is developed on the basis of pipelined layered CMS algorithm
described in Section 3 for base matrix BG1, which supports the code rate of R = 1/3.

4.1. Overall Decoder Architecture

As reported in the literature review, the 3GPP has introduced two base graphs, BG1
and BG2, for 5G NR LDPC codes. In this section, we focus our description on BG1 with
a size of mb × nb (mb = 46, and nb = 68), which is the main 5G NR high rate base graph.
Denote Z = 56 as the submatrix size of the intended QC-LDPC code. As mentioned in the
previous section, the check node degree dc in the BG1 base matrix varies largely from 3 to
19. For simplicity, we denote the maximum check node degree of 19 by dc from this section.
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The overall decoder architecture is shown in Figure 4. First, the input MUX network
aims at selecting between channel intrinsic messages (input LLRs) and LLR messages
from the previous layer. It should be noted that intrinsic messages are used only at the
initialization stage. Then, the input LLRs of w = 4 bits quantization is buffered in the input
register memory banks, named by PMEM. The specific configuration of PMEM is presented
in a later subsection. There are nb = 68 output ports of PMEM and each one represents
Z = 56 LLR values of w = 4 bits (i.e., Z× w = 224 bits). Consecutively, these 68 outputs
are fed to the switch network, which performs a circular shift to the LLR data read from
PMEM to align variable nodes with appropriate check nodes based on H-matrix value. A
decomposition unit (DCPU) is used for converting the dc = 19 LLR outputs of 224 bits
from the switch network into Z = 56 LLR combinations of dc × w = 76 bits. Then, these 56
LLR combinations of 76 bits and the output data fetched from check to variable messages
(RMEM) are passed to Z = 56 check node-based processors. After performing check
node and variable node processing, each of these Z = 56 check node-based processors
(CNBPs) produces 76 bits updated LLR messages Pn and 2(w− 1) + dlog2dce+ dc = 30
bits extrinsic check-to-variable messages Rm,n represented in compressed mode. The CNBP
sends Pn messages to the combination unit (CMBU) for the next decoding layer and the
compressed Rm,n messages to check-to-variable node memory RMEM for the next iteration.
The CMBU performs the reverse operation of DCPU that converses Z = 56 updated
LLR combinations of 76 bits into dc = 19 LLR outputs of 224 bits. It should be noted
that the compressed Rm,n messages from RMEM are fed back to CNBP units through the
decompress units (DECOM). Various blocks in the decoder architecture are explained in
detail in the following subsections.

Figure 4. Proposed overall low-complexity high-throughput pipelined layered QC-LDPC decoder
architecture.

4.2. Memory Blocks

In our proposed architecture, two memory blocks are utilized, one for the input LLR
values (PMEM) and one for the check to variable messages (RMEM). Assume that all input
LLRs and exchanged messages are quantized on w = 4 bits.

PMEM memory is implemented by an input register that stores the input LLR values
(prior values) or posterior values Pn from the previous layer. The memory is organized in
nb = 68 register memory blocks, denotes by Pi (i = 1, 2, ..., nb) corresponding to the number
of columns of the base matrix. Each register memory block consists of Z = 56 memory
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locations with w = 4 bits of word-length, i.e., Z× w = 224 bits, and these stored 56 LLRs
are read from register memory block in a single clock cycle. Thus, a total of Z× w×mb =
15,232 bits of input memory is implemented in the proposed decoder.

RMEM memory is implemented as a dual port RAM, which stores Z = 56 compressed
check to variable messages Rm,n for all L = mb layers. With the proposed CNBP architecture,
two minimum values of (w− 1) bit-width, a minimum index of bit-width dlog2dce, and
dc-sign values are stored in RMEM for each decoding layer. Hence, a total of mb × Z× (2×
(w− 1) + dlog2dce+ dc) = 77,280 bits of RMEM memory is required for all Z = 56 CNBPs.

Therefore, the overall memory size used in our LDPC decoder is 92.512 kb.

4.3. Switch Network

A switch network (SN) is an Z-input, Z-output hardware structure that can put the
input signals in the arbitrary order at the output. For the implementation of the QC-LDPC
decoder, the switch network is an essential module. The proposed decoder consists of
dc = 19 check node and dc = 19 variable node circular shift networks. Each of them
consists of Z w−bit inputs and Z w−bit outputs. The barrel shifters are used to implement
the cyclic shift permutations according to the shift values provided by the cyclic shifter
controllers. In this decoder, the switch networks are implemented with dlog2Ze-stage
Z× Z barrel shifters. There is no re-shuffling network in this architecture as we applied an
H-matrix reformulation technique proposed in [33].

4.4. Variable Node Units

The proposed decoder consists of Z = 56 VNUs, which implement the variable node
update step shown in Algorithm 1. The detailed architecture of a VNU in the proposed
decoder is shown in Figure 5. Each VNU takes dc inputs at bit-width w LLR message
Pi

n[l − 2] and the check-to-variable node message from RMEM memory, i.e., Ri−1
m,n[l]. Each

variable node message is computed by subtracting the corresponding check-to-variable
node message from the LLR message, that is Li

m,n[l] = Pi
n[l − 2]− Ri−1

m,n[l]. This operation
is implemented by a w-bit subtractor, hence the value Li

m,n[l] outputted by the VNU is
quantized on w bits.

It should be noted that the check-to-variable node message is stored in RMEM as a
compressed message of 2(w− 1) + dlog2dce+ dc = 30 bits. For a check node m, the corre-
sponding Rm,n message in decompressed format is given by the dc values [Rm,n1 , Rm,n2 , ...,
Rm,ndc ], where n1, n2, ..., ndc denote the variable nodes connected to m. For a check node m,
the corresponding Rm,n message in compressed format is given by the signs of the above
dc Rm,ni messages, denoted by sign, their first and second minimum, denoted by min1
and min2, and the index of the first minimum, denoted by indx. Figure 6 shows an Rm,ni

message in decompressed and compressed format. Hence, the decompression unit DECOM
aims at converting this compressed version of LLRs into dc = 19 decompressed extrinsic
LLRs by using dc equalizers, MUXs and sign-magnitude to two’s complement conversion
units (SMTCs) as shown in Figure 5.
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Figure 5. Proposed variable node update unit architecture.

Figure 6. Check-to-variable node message presents in decompressed and compressed format.

4.5. Check Node Units

The proposed decoder consists of Z = 56 CNUs, which implement the check node
update step shown in Algorithm 1. A minimum-finder (19-FMVG) and sign processor unit
(SPU) are exploited in this step. In this section, we focus on the computation of the first
two minima min1, min2, and index of the first minimum indx since the signs of output
messages can be simply calculated by XORing the adequate signs of input messages. The
structure of the minimum-finder is based on the tree structure (TS) architecture proposed
by Wey [34]. However, it is further modified in our proposed architecture so as to compute
only the value and the index of the first minimum in the first clock cycle. The second
minimum value is decided in the second clock cycle by re-utilizing the same hardware
architecture.

The detailed architecture of a low complexity CNU is shown in Figure 7. As can be
observed, the proposed CNU architecture consists of dc = 19 sign-magnitude conversion
(SMC) units, a 19 inputs-first minimum value generator unit (19-FMVG), sign processor
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unit, and the compare and select (CS) unit for generating control signals. Initially, each
CNU takes dc inputs with bit-width w = 4 of Li

m,n[l] value from the VNU. The 4-bit LLRs
in the two’s complement format are converted into sign and magnitude format with the
aid of sign-magnitude conversion (SMC) units. The sel control signal is set to either 0 or 1
to indicate the operation mode of the CNU. When sel is set to 0, i.e., the first clock cycle,
the CNU is carried out to generate the first minimum min1 and index of the first minimum
indx. When sel is set to 1, i.e., the second clock cycle, the CNU is re-executed in order
to calculate the second minimum value min2. When CNU in the second clock cycle, the
maximum value of bit-width w is substituted for the input value at index indx instead of
straightforwardly passed all input values to the 19-FMVG units. Moreover, depending
upon the clock cycle being processed, the en control signal is set to pass the corresponding
minimum value to the output.

The architecture of the FMVG for dc = 19 inputs is also presented in Figure 7. Since
dc = 19 can be decomposed into the sum of 16 and 3, the result of dc-FMVG block is realized
by combining corresponding blocks as described in [34]. The index generator block in
Figure 7 is deployed to create the index of the first minimum value. The architecture of
3-FMVG is shown in Figure 8a. Moreover, the 2k-FMVG block, which computes the value
and the index of the first minimum among the 2k input messages of bit-width w, can be
constructed by cascading multiple 2-FMVGs as shown in Figure 8c. The 2-FMVG unit, as
detailed in Figure 8b, is exploited for the comparisons discussed earlier. The comparison
signal and output value of the 2-FMVG are defined as follows:

Figure 7. Proposed check node unit (CNU) architecture.
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(a)

(b)

(c)

Figure 8. Architecture of 2k-first minimum value generator (FMVG) unit using the TS approach [34].

min = in1 and cp = 0, if in1 ≤ in2

min = in2 and cp = 1, if in1 > in2
(5)

For the 19-FMVG block, an input word contains w− 1 bits, then the comparator and MUX
also require w− 1 bits. In this section, we denote MUX as 1-bit 2-to-1 multiplexer, and
MUXw−1 as a (w− 1)-bit 2-to-1 multiplexer. Table 4 summarizes the number of components
required for the proposed minimum-finder based on FMVG and the conventional method,
which determines both min1 and min2 values, denoted as two minimum values generator
(TMVG). Results show that the proposed FMVG approach requires a much smaller number
of comparisons and MUXs than the conventional method TMVG.

Table 4. Components required for the minimum finders of dc = 19 inputs of bit-width (w− 1).

19-FMVG 19-TMVG

No. of Comparators 18 35

No. of MUXw−1 27 53

No. of MUX 0 11

4.6. A Posteriori Information Update Units

The proposed decoder consists of Z = 56 APUs, which implement the operations in
a posteriori information update step shown in Algorithm 1. The detailed architecture of
a low-complexity APU with only one adder array is shown in Figure 9. Each APU takes
dc inputs at bit-width w Pi

n[l − 2] and two values from check-to-variable node memory
RMEM, i.e., Ri−1

m,n[l − 1] and Ri
m,n[l − 1]. Similarly, the sel control signal in the VNU is set

to either 0 or 1 to indicate the operation mode. When sel is set to 0, i.e., the first clock
cycle, the APU is carried out to calculate the sum of Pi

v[l − 2] and −Ri−1
m,n[l − 1]. When

sel is set to 1, i.e., the second clock cycle, the APU is re-executed in order to calculate
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Pi
n[l − 1] by adding Ri

m,n[l − 1] into the output from previous clock cycle. At the input,
two MUXs are utilized to appropriately select the input data according to the clock cycle
being processed. In addition, a deMUX is allocated at the output to indicate the truth
output value of APU. Moreover, depending upon the clock cycle being processed, the en
control signal is sufficiently set to pass the computation result from the adder array to the
output or feedback to the input multiplexer. All outputs from APUs are given to input
multiplexers to start the processing of the next layer, as shown in Figure 4. As in the case of
VNU architecture, the proposed APU uses two decompression units DECOM to convert
the compressed LLRs taken from RMEM into dc = 19 decompressed extrinsic LLRs.

4.7. Controller Block

This block generates control signals, such as data_sel to indicate the step being pro-
cessed; cnt_layer_cnu and cnt_layer_vnu to indicate the layer being processed by CNUs,
VNUs, and APUs; and mem_en, to enable write access to the check-to-variable node mem-
ory RMEM.

Figure 9. Proposed a posteriori information update unit architecture.

5. Implementation Results and Comparisons

The simulation of proposed low-complexity high-throughput pipelined layered QC-
LDPC decoder architecture for 5G NR wireless standard was carried out using BPSK
modulation in an AWGN channel environment. Figure 10 illustrates the FER performance
of the proposed QC-LDPC decoders on the N = 3808, R = 1/3 for BG1 base matrix
of 5G NR wireless standard. The results indicate that the proposed QC-LDPC decoder
architecture scheme with bit-width w = 4 and ten decoding iterations deliver a FER of
10−5 at 2.75 dB. It can be observed that the CMS decoding provides a better error correction
performance compared with the original MS and OMS algorithms.
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Figure 10. Decoding performance of the QC-LDPC decoders on the N = 3808, R = 1/3 for base
matrix BG1 of 5G NR.

The major advantage to be realized from our proposed design comes at the decoder
complexity reduction. It should be noted that more clock cycles are required to finish a
decoding iteration compared to the conventional design. By applying the hardware reuse
approach, the critical path is reduced, and, therefore, the operating frequency is enhanced.
Hence, the throughput would remain the same in the case of an ideal clock frequency. The
reported throughput is given by Equation (6), where fmax denotes the maximum operating
frequency, and Imax is the maximum number of iterations to decode one codeword. Based
on the pipeline chart in Figure 11, the number of clock cycles per decoding iteration is
2× L in which two clock cycles are required to decode each layer. The proposed decoder
consumes a total of (2× L× Imax + 2) clock cycles.

Throughput =
N × fmax

Imax × 2× L + 2
(6)

Figure 11. Pipeline schedule of the proposed QC-LDPC decoder.

In order to confirm the efficiency of our solution, we have conducted our proposed
decoder on the expansion size Z = 56, code rate R = 1/3 using 5G base matrix BG1 LDPC
code. The proposed LDPC decoder architecture was modeled by the Verilog hardware
description language (HDL) and simulated to verify its functionality using a test pattern
generated from a C simulator. After successful verification of the design functions, it was
then synthesized using sufficient time and area constraints. Both simulation and synthesis
steps were executed by using Synopsys design tools and TSMC 65-nm CMOS standard
cell technology. The post-synthesis results are reported in Table 5. The proposed low
complexity layered LDPC decoder architecture occupies an area of 1.49 mm2 and achieves
a throughput of 3.04 Gbps at 750 MHz. The power and energy dissipations are 259 mW
and 85.20 pJ/bit, respectively.

In addition, Table 5 shows the implementation and performance comparisons of the
proposed low-complexity high-throughput decoder with various other LDPC decoders.
It is confirmed that the proposed design helps reduce the decoder complexity. Since
these designs have different implementation parameters, including code length, CMOS
technology, and the quantization bits, it is necessary to apply performance normalization
for a fair comparison. The normalization method in [35] is adopted. In order to keep the
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hardware performance comparison on an equal basis with respect to technology, area, and
the number of iterations, it is usually evaluated by the throughput-to-area ratio (TAR)
metric, which was defined by TAR = Throughput/Area (Gbps/mm2). It can be observed
that the proposed architecture is found to be the most efficient in terms of area efficiency
among the reported decoders, yielding a normalized throughput-to-area ratio (NTAR)
value of 2.04 Gbps/mm2. Specifically, the NTAR of our work is 10.3% better than that of
the next most efficient decoder [36] and 38.7% better than the rest of the reported decoders.
The decoder in [37], which offers the highest normalized throughput at 7.31 Gbps, occupies
a very large-scale design area. Hence, its NTAR is significantly low compared to our
proposed design. Specifically, the NTAR ratio of our work is about 46.08% better than that
of [37].

Table 5. Implementation and comparison for 5G QC-LDPC decoders.

Design Proposed [37] [38] [36]

Standard 5G-NR 802.15.3c 802.11n 802.16e
CMOS technology 65-nm 90-nm 90-nm 90-nm
LDPC code irregular regular irregular irregular
Scheduling layered layered layered layered
Decoding algorithm CMS NMS MS NMS
Submatrix size 56 21 81 96
Code length 3808 672 1944 2304
Code rate 1/3 1/2 1/2 1/2
Bit-width (bits) 4 4 4 6
Max. iterations 10 5 10 10
Frequency (MHz) 750 157 555 950
Memory (Kb) 92.512 6.93 - 87.752
Area (mm2) 1.49 2.25 4.88 2.90
Norm. Area (mm2) 1.49 6.65 4.99 1.67
Throughput (Gbps) 3.04 5.28 4.5 2.20
Norm. Throughput (Gbps) 3.04 7.31 6.23 3.05
Power (mW) 259 182 523 870
Energy effic. (pJ/bit) 85.20 34.47 116.22 395.45
Norm. Energy effic. (pJ/bit) 85.20 24.90 83.95 285.25
TAR (Gbps/mm2) 2.04 2.35 0.92 0.76
NTAR † (Gbps/mm2) 2.04 1.10 1.25 1.83

† NTAR = Norm. Throughput/Norm. Area.

High operating frequency usually comes at the cost of increased power consumption.
Despite this, though, as shown in Table 5, the proposed enhanced decoder achieves very
good results in terms of energy efficiency, very close to that of the work presented in [38].
Moreover, it can be seen that the energy efficiency of our proposed LDPC decoder yields
70.13% better than that of the next most area-efficient decoder in [36].

Based on the implementation results presented above, it is clear that the design
method offers a significantly low complexity, high area efficiency, and high throughput,
which is sufficient for the 5G NR wireless communication standard. However, it is very
challenging to design a low error correction decoder for 5G LDPC codes since the offset
factor is relatively difficult to optimize in quantized LDPC decoders. In order to improve
the error correction performance as well as achieve cost efficiency and high throughput
issues, further enhancements should be proposed in future research for adjusting the offset
factor of the OMS decoder in the pure LDPC part.

6. Conclusions

Enhanced versions of CNBP architectures are proposed to improve the complexity of
the LDPC decoders in this paper. First, an efficient minimum-finder for CNU architecture
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that reduces the hardware required for the computation of the first two minima and a
low complexity a posteriori information update unit architecture, which only requires one
adder array for their operations are introduced. Finally, an area-efficient pipelined layered
QC-LDPC decoder architecture for 5G NR communication systems is described in detail.
Simulation results show that the proposed architecture achieves low complexity and high
throughput compared to other QC-LDPC architectures available in the literature. Therefore,
the proposed QC-LDPC decoder can be applied in 5G NR wireless communication standard
applications.
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