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Abstract: A variety of accurate information inputs are of great importance for automotive control. In
this paper, a novel joint soft-sensing strategy is proposed to obtain multi-information under diverse
vehicle driving scenarios. This strategy is realized by an information interaction including three
modules: vehicle state estimation, road slope observer and vehicle mass determination. In the first
module, a variational Bayesian-based adaptive cubature Kalman filter is employed to estimate the
vehicle states with the time-variant noise interference. Under the assumption of road continuity, a
slope prediction model is proposed to reduce the time delay of the road slope observation. Meanwhile,
a fast response nonlinear cubic observer is introduced to design the road slope module. On the basis
of the vehicle states and road slope information, the vehicle mass is determined by a forgetting-
factor recursive least square algorithm. In the experiments, a contrasted strategy is introduced to
analyse and evaluate performance. Results declare that the proposed strategy is effective and has the
advantages of low time delay, high accuracy and good stability.

Keywords: joint soft-sensing strategy; multi-information; time delay; variational Bayesian-based
adaptive cubature Kalman filter; cubic observer

1. Introduction

In automotive field, the full play performance of active safety system depends on
the accurate multi-information including road conditions, vehicle parameters and vehicle
states [1–4]. Currently, an economical way to obtain these kinds of information is a soft-
sensing approach. However, most of the reported approaches can only be applied under
a simplex driving scenario, where the road is flat [5] or the vehicle mass is constant [6].
Actually, due to terrain constraints or design need, the assumption of horizontal road
cannot be met, and its mass may vary in several hundred kilograms as a vehicle is full
or empty. In addition, there are coupling relationships in the acquisition process of road
conditions, vehicle coefficients and vehicle states [2,7–9]. It is helpful to improve the
soft-sensing accuracy by integrating multiple information. Hence, it is necessary to study
effective joint soft-sensing approach for multi-information.

The traditional joint soft-sensing approaches in the automotive field can be categorized
into centralized, reinforced and distributed structures. For the centralized structure, a
unified model is utilized to get different information synchronously, which is simple and
there is less redundancy. In allusion to road conditions and vehicle parameters, such as
the time-varying road slope and vehicle mass, a modified RLS algorithm with multiple
forgetting-factors was proposed [10]. In addition, an observer-based scheme with sliding-
mode term was developed using onboard sensor signals [3]. Although these above two
methods have good accuracy, the road slope results reveal the defect of time delay. However,
the centralized structure, in exceptional cases, may present poor accuracy performance or
even divergence. Addressing this issue, the reinforced structure was adopted by means of
an additional part to enhance the stability of soft-sensing results. For instance, the EKF and
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RLS were integrated to obtain the road slope and vehicle mass [11], which provided higher
accuracy and faster convergence. In another study, the RLS with multiple factors and
EKF are, respectively, adopted in two steps of an estimator, which shows great accuracy
and robustness in vehicle road test [12]. Similarly, a two-stage estimation strategy was
proposed to determine the road slope and mass of heavy-duty vehicle [9]. However, the
design is too complicated and difficult to be applied in practice.

As compared with the centralized structure, the reinforced one has better perfor-
mance on accuracy and convergence. However, the real-time performance of the latter is
dissatisfactory due to its complex construction. As an alternative, the distributed struc-
ture employs independent modules to obtain different information, which is beneficial to
balance the accuracy and calculation burden. For the module design in the distributed
structure, recursive algorithms gain widespread attention, such as the KF [2], observer-
based method [4], and RLS [13]. In addition, Hong et al. [14] used three UKFs to obtain
the inertial parameters and vehicle states, respectively. However, the complication limits
its further generalization. For eliminating the influence of vehicle parameters on vehicle
states, Wenzel et al. [8] utilized a DEKF technique, which was primarily proposed by
Wan and Nelson [15]. However, this solution does not perform well under ramp road
conditions. Moreover, adaptive high-order sliding-mode observer and strong tracking
filter were adopted to estimate the information of force, speed and angle for electric ve-
hicle [16]. However, the influence of time-variant noise was not fully considered in its
results. Viehweger et al. [17] analyzed four estimation methods about vehicle state and tire
force, which shows that the performance of the suboptimal-second order sliding mode and
EKF-based method is better in the slow track condition, and the error of the purely linear
and EKF-based method is lower in the fast track condition. Considering the complexity
of the vehicle’s COG in three-dimensional space, a distributed structure-based approach
synthesized both vehicle longitudinal and lateral motion, which effectively improves its
behaviour [18].

There are also some deficiencies in the traditional joint soft-sensing approaches, such
as the time delay of some information and the compatibility for time-variant noise. To
lower the time delay, a short-time linear quadratic technique was proposed for the achieve-
ment of road slope [19]. However, it is not a good choice because of its complexity. As
the consideration of time-variant noise, Berntorp et al. [7,20] adopted a PF framework.
However, the calculation of vast particles results in poor real-time performance.

In addition, the response results of the soft-sensing are affected by many factors re-
lated to the driver, roadway geometry, environment, vehicle, and so on. It is difficult to
consider the interference of all factors in scientific research, or it may lead to a problem
called "observational heterogeneity" (the unobservable or unavailable factors in the effect of
results that are unknown) [21,22]. If this problem is ignored, the erroneous inferences and
predictions that may occur due to the model are misspecified and the estimated parameters
are biased [23,24]. Some methods are proposed to deal with it, such as the random parame-
ters method, finite mixtures (latent classes) method and their combination [25,26]. Recently,
artificial neural networks have also been used to solve the observational heterogeneity [27].

In case the road conditions change and the vehicle parameters are unknown, it is
an important requirement for the automobile development to ensure the effectiveness of
soft-sensing. On this basis, an urgent need is to continuously improve the performance of
measurement results in terms of accuracy, robustness, time delay, and so on. The motivation
of this study is to acquire the vehicle required information even under diverse vehicle
driving scenarios. In this paper, a joint soft-sensing strategy is developed to obtain accurate
multi-information based on the distributed structure. The information interaction in this
strategy is realized according to the coupling relationship among the vehicle state, road
slope and vehicle mass. The time-variant noise problem in the vehicle states estimation
is adaptively disposed by a VBACKF. To alleviate the time delay of road slope, a slope
prediction model is derived to replace the classical road slope model and the corresponding
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observer is designed with a cubic term. Finally, the contrast experiment is implemented to
evaluate the performance of the proposed strategy.

The rest of this paper is organized as follows. The overview of the strategy is presented
in Section 2. The vehicle dynamics model involving road slope is introduced in Section 3.
Sections 4–6 show the details on how to achieve the vehicle states, road slope and vehicle
mass in turn. The experiment is described in Section 7, and followed by the conclusions in
Section 8.

2. Joint Soft-Sensing Strategy

Aiming at the problem that the application scenario of most soft-sensing approaches
is simplex, a joint soft-sensing strategy is proposed. As shown in Figure 1, this strategy
mainly consists of three modules: vehicle state estimation, road slope observation and
vehicle mass determination. To realize the application of the non-horizontal road scenario,
firstly, a vehicle model considering road slope is established. Based on this model, a
VBACKF is utilized in the vehicle state estimation module to deal with the time-variant
noise via two steps: time update and variational measurement update. In the road slope
observation module, a novel slope prediction model and a cubic observer are used to
design an observer, which is expected to reduce the time delay. According to the variation
character of vehicle mass, a FFRLS algorithm is employed to determine vehicle mass. In
addition, the data preprocessing and the threshold judgment steps are added to eliminate
the unreliable input data.

Road slope observer

Vehicle mass
determination

Vehicle state
estimation

Time 
update

Variational 
measurement   

update

  s

Engine torque, transmission ratio, et al.

Steering wheel angle, yaw rate, et al.

  m,k =   m,k 1Threshold?

Update massFFRLS algorithm

Data 
preprocessing

No

Yes

  r

Vehicle

Sensors

+

time-variant 
noise 

Driver's  
operation

  r

  m

  s

Slope prediction model
Pk

Pk 1

Pk n

Figure 1. The architecture of the joint soft-sensing strategy.

Through this joint soft-sensing strategy, the vehicle state x̂s, road slope x̂r and vehicle
mass x̂m are finally obtained, as shown in Figure 1. (Throughout this paper, the superscript
“∧” means the obtained signals from the strategy.) These data can be used not only to
serve as the output, but also to apply to implement the information interaction within the
strategy. The vehicle state x̂s is adaptively estimated based on the observed road slope from
the second module, the determined vehicle mass from the third module and the signals
acquired from onboard sensors, such as the steering wheel angle, wheel rotational velocity,
vehicle acceleration, and yaw rate. With the estimated value x̂s, some onboard sensor
signals are also provided for the observation of the road slope, such as the acceleration
and yaw rate. Ultimately, by means of the real-time information including the estimated
vehicle state x̂s and observed road slope x̂r, the vehicle mass x̂m is determined according
to the information from the vehicle system, i.e., the engine torque, transmission ratio, and
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braking torque. For this strategy, only the driver’s operation is treated as system input, and
there is not any other special sensor equipped.

3. Vehicle Dynamics Modelling

Considering that a vehicle’s dynamics characteristic is closely related to road condi-
tions, a nonlinear vehicle model is presented with road slope θ (see Figure 2), where COG is
the center of gravity, the relationship between the steering wheel angle δ0 and the steering
angle of front wheels δ is assumed as δ0 = δiw, iw is the steering gear ratio of the steering
system. The vehicle’s longitudinal, lateral and yaw vehicle motions can be described as

v̇x = ax + rvy
v̇y = ay − rvx

ṙ = Mz/Iz

, (1)

where vx is the longitudinal velocity, vy is the lateral velocity, r is the yaw rate, Iz is the
moment of the inertia around the z-axis, ax is the longitudinal acceleration, ay is the lateral
acceleration, Mz is the yaw moment.

x

z
y

Fx4

Fz4

Fy4

Fx3

Fz3

Fy3
Fx2

Fz2

Fy2

Fx1

Fz1

Fy1

road slope

vxr
vy

COG

mgcosθ 
mgsinθ  

mg 

θ

δ

δ

Figure 2. Vehicle model with road slope.

Due to the influence of road slope, the vehicle’s gravity is decomposed into two
components: mg sin θ along the x-axis and mg cos θ along the z-axis. The first component
mainly affects the vehicle’s longitudinal force

ax =
1
m
[(Fx1 + Fx2) cos δ + Fx3 + Fx4 − (Fy1 + Fy2) sin δ− 1

2
Cd Aρairv2

x]− g sin θ, (2)

where m is the vehicle mass, g is the gravitational acceleration, Fx and Fy are the longitudinal
and lateral tire forces of each wheel, the subscripts 1, 2, 3, 4 represent the left front, right
front, left rear and right rear tire, Cd is the aerodynamic drag coefficient, A is the frontal
area of the vehicle, ρair is the air density.

In addition, ay, Mz can be expressed as

ay =
1
m
[(Fx1 + Fx2) sin δ + Fy3 + Fy4 + (Fy1 + Fy2) cos δ], (3)

Mz = lF(Fx1 + Fx2) sin δ− lR(Fy3 + Fy4) + lF(Fy1 + Fy2) cos δ− bF
2
(Fx1 − Fx2) cos δ

+
bF
2
(Fy1 − Fy2) sin δ− bR

2
(Fx3 − Fx4),

(4)

where lF and lR are the distances from the COG to front and rear axles, bF and bR are the
front and rear track width.
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As a result of the component along the z-axis, the vertical tire forces on each tire Fz are
Fz1,2 =

mlRg cos θ

2(lF + lR)
− mhax

2(lF + lR)
∓

mhlRay

(lF + lR)bF

Fz3,4 =
mlFg cos θ

2(lF + lR)
+

mhax

2(lF + lR)
∓

mhlFay

(lF + lR)bR

, (5)

where h is the height of COG.
The wheel side angle αt, wheel slip rate σ and forward wheel speed vt are presented as

αt1,2 = δ− arctan
(
(vy + lFr)

/
(vx ∓

bF
2

r)
)

αt3,4 = arctan
(
(−vy + lRr)

/
(vx ∓

bR
2

r)
) , (6)


vt1,2 =

(
vx ∓

bF
2

r
)

cos δ +
(
vy + lFr

)
sin δ

vt3,4 = vx ∓
bR
2

r
, (7)

σ = ωRt/vt − 1, (8)

where ω is the wheel rotational speed, Rt is the wheel radius.
In this study, we use the Dugoff tire model [28] to generate the longitudinal and lateral

tire forces, because of its good behavior in online computation and accuracy. As follows


Fx =

Cσσ

1 + σ
f (λ)

Fy =
Cα tan αt

1 + σ
f (λ)

, where


λ =

µFz(1 + σ)

2
√
(Cσσ)2 + (Cα tan αt)

2

f (λ) =
{

1, λ > 1
(2− λ)λ, λ < 1

, (9)

where Cσ and Cα are the longitudinal and lateral wheel stiffnesses. λ is the model parameter,
µ is the road adhesion coefficient.

4. Vehicle State Estimation

On the basis of the vehicle model in Figure 2, the continuous state space for vehicle
state estimation can be written as follows{

ẋs = f (xs, us) + v

zs = h(xs) + w
, (10)

where f (·), h(·) are the process and measurement functions, xs = [ vx vy r ax ay ]T

is the state vector, the input vector us = [ δ ωi θ̂ m̂ ]T , the measurement vector zs
consists of the longitudinal acceleration, lateral acceleration and yaw rate, v and w are the
process and measurement noises with the covariance matrices Q and R.

In the framework of the CKF, the measurement noise is assumed as Gaussian white
noise with constant mean and covariance [29]. This signifies that it is indispensable for
good soft-sensing results to get the feature of measurement noise covariance [30]. However,
time-variant noise covariance is a prevalent problem in practical application. It even has
been one of the main reasons that lead to the divergence of estimation result [20,31]. In this
study, the VBACKF is employed to handle the issue of time-variant noise.

Firstly, the conjugate prior distributions need to be selected for the measurement
noise covariance matrix Rk at time k since the conjugacy can guarantee that the posterior
distribution is of the same functional form as the prior distribution [30]. In Bayesian
statistics, the IW distribution is usually used as the conjugate prior for the covariance
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matrix [32], i.e., p(Rk|zs,1:k−1) ∼ IW(Rk; vk, V k) . where V k is the inverse scale matrix
representing a symmetric positive definite matrix with the dimension of d× d, vk is the
degrees of freedom parameter, and the noise covariance matrix Rk is represented by the
mean of the IW distribution

E(Rk) = V k
/
(vk − d− 1). (11)

Based on the mean field theory, the joint probability density function p(xs,k, Rk|zs,1:k)
of the vehicle state xs,k and measurement noise Rk is expressed as the product of their
approximate probability density function q(xs,k) and q(Rk)

p(xs,k, Rk|zs,1:k) ≈ q(xs,k)q(Rk). (12)

The approximate solutions of the q(xs,k) and q(Rk) can be obtained by minimizing
the KLD {

q(xs,k), q(Rk)
}
= arg min KLD(q(xs,k)q(Rk)p(xs,k, Rk|zs,1:k)). (13)

Based on the VBACKF algorithm, the vehicle state estimation module contains two
steps: time update and variational measurement update, as shown in Figure 3. The time
update realizes the prediction of the vehicle state vector xs and its covariance matrix P
through the cubature points. Subsequently, the time-variant measurement noise covariance
matrix R is also predicted out in this part. For another part, the vehicle state vector xs is
updated not only through the cubature points, but also by means of the variational iteration.
Meanwhile, the time-variant measurement noise covariance matrix R is adaptively charac-
terized by use of the variational iteration as well. It should be noticed that the number N is
an important parameter used to balance the accuracy and real-time performance [30].

Initialization

if i   N

i = i+1

Time update

No

Yes

 Variational measurement update

Variational iteration

Output

Figure 3. Flow chart of vehicle state estimation based on the VBACKF algorithm. Where S is the state covariance factor,
X is the cubature points, ξ is the standard cubature points, ρ is the tuning parameter, B is the adjustment matrix, Z is the
propagated measurement matrix, Pxz is the cross-covariance matrix, Czz is the partial measurement noise covariance, Pzz is
the measurement noise covariance matrix, W is the Kalman gain.
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Based on the estimation results of vehicle longitudinal velocity v̂x and lateral velocity
v̂y, vehicle sideslip angle β can be calculated as follows

β = arctan(v̂y
/

v̂x). (14)

5. Road Slope Observation

For the classical road slope model θ̇ = 0, its change rate is assumed to be invariable
since the road slope usually changes slowly and weak in short distance [9,11]. However,
this change should not be completely neglected; otherwise, a “time delay” problem occurs
in the observation curve, particularly for variable terrain [33,34]. To alleviate the time delay,
a slope prediction model is derived for the observation of real-time road slope.

5.1. Slope Prediction Model

Due to practical requirements, road needs to keep continuous and its slope can not
change suddenly. Under this consideration of road continuity, a slope prediction model is
presented for the observation of road slope. Figure 4 shows the cases that a vehicle goes
up or down a hill, where Pk, Pk−1, · · · , Pk−n+1 and Pk−n mean vehicle location at different
time points. Assuming that the road slope θk−n and vehicle longitudinal velocity vx,k−n
at points Pk−n(1 6 n < k) are all known. The road slope θk at current location Pk can be
acquired via an observer.

Pk 1 Pk

Pk 2

Pk n+1

Pk n

θk 1 Ak 1

Ak 2
θk 2

Ak n
θk n

Pk 1

Pk

Pk 2

Pk n+1

Pk n

θk 1 Ak 1

Ak 2θk 2

Ak nθk n

(a)

Pk 1 Pk

Pk 2

Pk n+1

Pk n

θk 1 Ak 1

Ak 2
θk 2

Ak n
θk n

Pk 1

Pk

Pk 2

Pk n+1

Pk n

θk 1 Ak 1

Ak 2θk 2

Ak nθk n

(b)

Figure 4. Slope prediction model. (a) Case: θ > 0. (b) Case: θ < 0.

The distance between two adjacent points |Pk−nPk−n+1| can be approximately
denoted as

|Pk−nPk−n+1| = τvx,k−n, (15)

where τ is the sampling time. The relationships among the edges of the dashed line
triangles in Figure 4 can be expressed as

|Ak−nPk−n| = |Pk−nPk−n+1| cos θk−n

|Ak−nPk−n + 1| = |Pk−nPk−n+1| sin θk−n
. (16)

If we establish a two-dimensional coordinate frame x-o-y at point Pk−1 (the x-axis
direction is along Pk−1 Ak−1, and the y-axis direction is along Ak−2Pk−1), the coordinates
for every point are as follows

Pk : (|Ak−1Pk−1|, |Ak−1Pk|)→ (τvx,k−1cosθk−1, τvx,k−1sinθk−1)

Pk−1 : (0, 0)

Pk−n :

(
−

n

∑
j=2

∣∣∣Ak−jPk−j

∣∣∣,− n

∑
j=2

∣∣∣Ak−jPk−j+1

∣∣∣) . (17)
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To describe the partial road trait at the coordinate point (x, y), the following second-
order form is utilized

y = a1x + a2x2, (18)

where a1 and a2 are the fitting parameters. Furthermore, as the consideration that practical
road slope θ is relatively small (θ 6 0.08 rad ≈ 15 deg), the relationship between the road
slope and the corresponding point can be determined by derivating Equation (18), i.e.,

θ ≈ tan θ = ẏ = a1 + 2a2x. (19)

Hence, the parameters a1 and a2 can be fitted by Equation (19) instead of the second-
order form with the information at points Pk−n(1 6 n < k). As shown in the following
equation, the slope prediction model reflecting the change rate of road slope is derived
from the second derivative of Equation (18).

θ̇ = ÿ = 2a2. (20)

Different form the classical road slope model θ̇ = 0, the slope prediction model is
expected to improve the accuracy by gaining the change rate of the current road slope.

5.2. Observer Design for Road Slope

In the design processing of the traditional Luenberger observer, its error dynamics
emerge as linear characteristics [35]. Limited by this reason, the response rate of this kind
of observer does not perform well. However, research shows that an observer with fast
response may alleviate the time delay to some extent [36]. In this section, a cubic observer
with nonlinear error dynamics is introduced to observe road slope. Compared to the
Luenberger observer, the cubic observer contains a cubic error dynamics term and has a
faster descending Lyapunov function when error norms are equal [37].

For a vehicle driving on a ramp, the output of the equipped longitudinal accelerometer
ax,acc can be remarked as ax,acc = v̇x − rvy + g sin θ [2,13]. Considering the relatively small
road slope, it can be expressed as

ax,acc ≈ v̇x − rvy + gθ. (21)

Combining this formula with Equation (20), we can obtain the following state space{
ẋr = Axr + Φur

yr = Cxr
, (22)

where the state vector xr =
[

vx θ
]T, the measurement vector yr = [vx]

T, the input

vector ur =
[

u1 2a2
]T (here u1 is set as u1 = ax,acc + rv̂y), and the matrixes A, Φ and C

are as follows

A =

[
0 −g
0 0

]
, Φ =

[
1 0
0 1

]
, C =

[
1 0

]
. (23)

To complete the observation of road slope, the cubic observer is employed based on
the state space

˙̂xr = (A− LcC) ˙̂xr + Lcyr + Φur − eT
c CTκcCecNcCec, (24)

where x̂r is the reconstructed state, Lc, κc and Nc are the observer parameter matrices and
estimation error ec = xr − x̂r.

The observer is globally stable when the following error dynamic ėc converges

ėc = (A− LcC)ec + eT
c CTκcCecNcCec. (25)



Electronics 2021, 10, 505 9 of 18

Equation (25) is equal to zero only when the condition ec = 0 is meet. Defining the
Lyapunov function candidate V c = eT

c Pcec, where Pc = PT
c > 0. The stability criterion can

be written as

eT
c

(
(A− LcC)TPc + Pc(A− LcC)

)
ec +

(
eT

c CTκcCec

)
× eT

c

(
PcNcC + CTNT

c Pc

)
ec < 0. (26)

It can be transformed into the following form{
(A− LcC)TPc + Pc(A− LcC) < 0

PcNcC + CTNT
c Pc < 0

. (27)

By derivation, Equation (27) works if the following conditions are satisfied, i.e., the
matrices κc = κT

c > 0, Nc = −γP−1
c CTκc (scalar γ > 0 is arbitrary) and Lc need to

be tuned.

6. Vehicle Mass Determination

Current methods for obtaining vehicle mass are usually based on longitudinal vehicle
dynamics [9,10], where only the driving torque is involved. To further reflect practical
condition for application, it is replaced by the following equation with the braking effect:

Ttqigi0ηt

Rt
= mg sin θ + mgζ cos θ + mv̇x +

1
2

Cd Aρairv2
x +

Tb
Rt

, (28)

where Ttq is the engine output torque, ig is the transmission ratio, i0 is the main reducer
transmission ratio, ηt is the mechanical efficiency of the drive train, Tb is the braking torque,
and ζ is the rolling resistance coefficient.

The equation can be linearized under the conditions that sin θ ≈ θ and cos θ ≈ 1, i.e.,

Ωm x̂m = y, (29)

where the unknown parameter x̂m = m, the observed data y =
(
Ttqigi0ηt − Tb

)/
Rt −

Cd Aρairv2
x
/

2 and Ωm = gθ̂ + gζ + ˙̂vx (here θ̂ and v̂x are the signals from other modules).
Based on Equation (29), the FFRLS algorithm [10,11] is employed to determine the

vehicle mass.
To determine the vehicle mass, the FFRLS algorithm [10,11] is employed based on

Equation (29), where the forgetting-factor λm should be tuned.
Km,k = Pm,k−1Ωm,k

/(
λm + ΩT

m,kPm,k−1Ωm,k

)
x̂m,k = x̂m,k−1 + Km,k

(
yk −ΩT

m,k x̂m,k−1

)
Pm,k =

(
Pm,k−1 − Km,kΩT

m,kPm,k−1

)/
λm

, (30)

where Km, is the least squares gain, Pm is the covariance.
As mentioned above, the vehicle mass determination module will accept the vehicle

state and road slope data. To improve the reliability of the data, the data preprocessing and
the threshold judgment steps are added. The corresponding expression is as follows:

ε =
∣∣gθ̂ + g f + ˙̂vx

∣∣
ε > threshold

, (31)

where ε is the result of the data preprocessing. Once the threshold condition is satisfied,
the vehicle mass is determined by the FFRLS algorithm. Otherwise, it remains the same as
the last moment.

7. Verification for Joint Strategy

Based on the computer and driving simulator, the experiments under diverse driving
scenarios are implemented to verify the effectiveness of the joint soft-sensing strategy. To
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facilitate performance comparison, a contrasted strategy is introduced, where the CKF and
classical road slope model are utilized to replace the VBACKF and slope prediction model
in the proposed strategy. As for the road slope observation, the classical road slope model
θ̇ = 0 is combined with Equation (21) to form the state space as{

ẋr,con = Aconxr,con + Φconur,con
yr,con = Cconxr,con

. (32)

where the state vector xr,con =
[

vx θ
]T, the measurement vector yr,con = [vx]

T, the input

vector ur,con =
[

u1 0
]T, and the matrixes Acon, Φcon and Ccon are as follows

Acon =

[
0 −g
0 0

]
, Φcon =

[
1 0
0 0

]
, Ccon =

[
1 0

]
. (33)

Based on this state space, the cubic observer in the contrasted strategy can be designed.

7.1. Simulation

The construction for simulation is based on the MATLAB/Simulink and CarSim (see
Figure 5), where a D-Class Sedan is selected as the experimental vehicle. The relevant vehi-
cle parameters are listed in Table 1, and the initial values of vehicle mass and longitudinal
velocity are set as 1300 kg and 80 km/h.

vx
θ
Tq
ig
Tb

m

Vehicle	mass	determination

vy
vx
r
ax,s

θ

Road	slope	observer

ax
ay
r
δ0
ωi
θ
m

β

vx

vy

Vehicle	state	estimation

CarSim

vy

vx

β

ax

ay

r

δ0

ωi

ax,s

Tq

ig

Tb

θ

Signals

n_
ax

n_
ay

n_
r Noise

CarSim	S-Function2
Vehicle	Code:	i_i

vx

vy

β

θ
m

1529.98

3.6

3.6

180/pi

Figure 5. Construction for simulation.

Table 1. Vehicle parameters.

Parameter Value Parameter Value

m (kg) 1529.98 iw 19
lF (m) 1.139 ζ 0.013
lR (m) 1.637 ηt 0.89
bF (m) 1.550 i0 4.1
bR (m) 1.550 A (m2) 2.4

Iz (kg ·m2) 4607.47 Cd 0.3
g (m/s2) 9.8 ρair (kg/m3) 1.206

h (m) 0.519 Rt (m) 0.325

In the vehicle state estimation module, the initial value xs0 and covariance matrix
P0 for state vector are xs0 =

[
80/3.6 0 0 0 0

]
and P0 = I5×5 × 10, the process
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noise covariance matrix Q = I5×5 × 0.1, and the measurement noise covariance matrix
R = diag

[
4× 10−2 4× 10−2 6× 10−5 ]. In addition, the sampling time τ is 0.01 s,

the matrix in the cubic observer is chosen as Lc =
[

1 −2
]T, and the forgetting-factor

for the FFRLS algorithm is 0.998.
The top view of the experimental trajectory is shown in Figure 6a, which is a 2328-m-

long enclosed road starting from point O and along the arrow direction, the relationship
between the road elevation and driving route is revealed in Figure 6b, and the correspond-
ing signals of the steering wheel angle δ0 and wheel rotational speed ω are plotted in
Figure 7. For the enclosed trajectory representing the diverse vehicle driving scenarios, the
cycle driving time is about 150 s. On this basis, we use the following matrix to simulate the
time-variant measurement noise environment:

Rset =


9R
R

4R
0.25R

t 6 40
40 < t 6 80

80 < t 6 120
120 < t 6 160

. (34)

O

(a)

0 8 0 0 1 6 0 0 2 3 2 8
- 3

0

3

6
Ele

va
tio

n (
m)

D r i v i n g  r o u t e  ( m )
(b)

Figure 6. Experimental trajectory. (a) Top view. (b) Elevation vs. driving route.
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Figure 7. System input signals. (a) Steering wheel angle. (b) Wheel rotational speed.

The experimental results of multi-information are shown in Figure 8, where the
shadow part represents the new cycle. It can be found that in the enlarged parts of Figure 8b,
the result of the longitudinal velocity is closer to the reference when the proposed strategy
is employed. Similar tendencies apparently exist in the interval [60 s, 10 s] of Figure 8a and
the interval [80 s, 110 s] of Figure 8c. Especially for the observation result of the road slope
in Figure 8d, there is a conspicuous time lag deriving from the contrasted strategy. That is
the so-called time delay. Meanwhile, for the proposed strategy, the phenomenon of time
delay is so inapparent that it can not be displayed as compared with the contrasted one.
The determined vehicle mass of the proposed strategy in Figure 8e is closer to the reference
as well.
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Figure 8. Experimental results of multi-information. (a) Lateral velocity. (b) Longitudinal velocity. (c) Sideslip angle.
(d) Road slope. (e) Vehicle mass.

In order to evaluate the accuracy performance, the error curves of these two strategies
are given in Figure 9, where the prefix e stands for error. The curves in Figure 9a declare that
the error of the lateral velocity provided by the proposed strategy is smaller as a whole. This
should be owed to the inherent trait of the VBACKF over time-variant measurement noise,
i.e., noise robustness. By comparison and analysis, we confirm that there are analogous
consequences of the error curves in the other parts of Figure 9.

Meanwhile, we present the corresponding statistical indicators of the experimental
results, such as the MAE and RMSE (see Figure 10). It can be seen from Figure 10a that the
MAEs of the lateral velocity, longitudinal velocity, sideslip angle, road slop and vehicle
mass are lowered by 80.006%, 71.425%, 79.651%, 89.863% and 69.235%, respectively, when
the proposed strategy is employed. The same dominance from the proposed strategy is
revealed by the statistical results in Figure 10b involving the RMSE.
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Figure 9. Error curves of experimental results. (a) Lateral velocity. (b) Longitudinal velocity. (c) Sideslip angle. (d) Road
slope. (e) Vehicle mass.
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Figure 10. Statistical results of simulation. (a) MAE. (b) RMSE.

To further illustrate the performance superiority of the proposed strategy, the fre-
quency distribution histograms of experimental errors are drawn in Figure 11. It is obvious
that the error distribution of the proposed strategy is concentrated around zero while that
of the contrasted one is relatively dispersed. This suggests that utilizing the proposed
strategy, we can obtain experimental results with better error distribution even under
diverse vehicle driving scenarios. To some extent, it can be attributed as a kind of good
stability for the soft-sensing result.
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Figure 11. Frequency distribution histograms of experimental errors. (a) Lateral velocity. (b) Longitudinal velocity.
(c) Sideslip angle. (d) Road slope. (e) Vehicle mass.

On the basis of the result analysis mentioned above, it can be confirmed that the
proposed strategy can effectively accomplish the joint soft-sensing of multi-information
including the vehicle state, road slope, and vehicle mass. In brief, the advantage of this
strategy focuses on the performance of low time delay, high accuracy and good stability.

For the improvement of time delay, it can be attributed to the utilization of the slope
prediction model and the nonlinear cubic observer in the module of road slope observation.
By means of which, under the assumption of road continuity, even rapidly changed road
slope can be iteratively predicted (see the interval (10 s, 20 s) and (60 s, 70 s) of Figure 9d).
Moreover, the good performance of accuracy and stability is mainly related to the VBACKF
employed in the module of vehicle state estimation. Based on the variational iteration in the
VBACKF, the time-variant measurement noise is adaptively characterized and treated as a
necessary part for variational measurement update. Of course, the information interaction
itself tends to the improvement of accuracy and stability performance because the proposed
strategy is good at iteratively making use of inner information. That is also the main reason
why vehicle mass accuracy is improved.

7.2. Driving Simulator Experiment

The driving simulator used in this experiment is provided by FORUM8, as Figure 12.
The driver is a 27-year-old male with three years of driving experience. The initial vehicle
speed is 76 km/h, the vehicle mass is 2850 kg and the input signal of steering wheel is
shown in Figure 13.

The results of vehicle states in Figure 14a–c show that the proposed strategy can follow
the reference better in the most process, while there is a large deviation in the contrasted
strategy. In the interval (9 s, 11 s) in Figure 14d, the time delay of the proposed strategy is
significantly smaller than the other. As for the vehicle mass in Figure 14e, the proposed
strategy reveals smaller errors as well.

The MAE and RMSE indicators of the driving simulator experiment are presented
in Figure 15. It is easy to see that the indicators of the proposed strategy are lower than
the contrasted one. This proves that the proposed strategy’s performance is improved in
statistical sense.
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Figure 12. Driving simulator operation demonstration.
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Figure 13. Driver input signals of steering wheel angle.
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Figure 14. Experimental results of multi-information (driving simulator). (a) Lateral velocity. (b) Longitudinal velocity.
(c) Sideslip angle. (d) Road slope. (e) Vehicle mass.
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Figure 15. Statistical results of driving simulator experiment. (a) MAE. (b) RMSE.

In general, the above-mentioned results demonstrate the effectiveness of the proposed
joint soft-sensing strategy under diverse vehicle driving scenarios. Three modules in
the strategy respectively implement the functions of estimating the vehicle state robustly,
reducing the time delay of road slope observation and tracking the mutated vehicle mass.
What is more, the information interaction within the strategy also provides virtual support
for high-performance acquisition of multi-information.

8. Conclusions

This paper presents a joint soft-sensing strategy that can provide multi-information for
automotive control under diverse vehicle driving scenarios. According to the distributed
structure, the joint strategy realizes an information interaction among three modules.
Based on the vehicle dynamic considering the road slope, the VBACKF is employed to
adaptively estimate the vehicle states. To reduce the time delay, the road slope observer
is implemented utilizing the slope prediction model and a fast response nonlinear cubic
observer. The accuracy of vehicle mass is guaranteed by the information interaction and
threshold judgment. Experimental results under diverse vehicle driving scenarios indicate
the effectiveness of the proposed strategy and its performance superiority of low time
delay, high accuracy and good stability.

For the development of the automated vehicle technology, this study may provide
a new line of thinking for information soft-sensing and provide a necessary information
guarantee for vehicle decision-planning and control.

Noticing that the omission of some potential factors may lead to unobserved hetero-
geneity, further research will be done on the accurate vehicle dynamics model, the position
change of the COG, road adhesion coefficient, and so on. The real vehicle experiments will
be carried out to make up for the unknown shortcoming in data.
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Abbreviations
The following abbreviations are used in this manuscript:

RLS recursive least square
EKF extended Kalman filter
KF Kalman filter
COG center of gravity
UKF unscented Kalman filter
DEKF dual extended Kalman filter
PF particle filter
VBACKF variational Bayesian-based adaptive cubature Kalman filter
FFRLS forgetting-factor RLS
CKF cubature Kalman filter
IW inverse Wishart
KLD Kullback-Leibler divergence
MAE mean absolute error
RMSE root mean square error
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