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Abstract: Many service providers often categorize their users into multi-classes, depending on
their service requirements. Each class has strict quality of service (QoS) demands (e.g., minimum
required service rate or transfer time) that must be ensured throughout its service. In some cases,
priorities are also assigned in a multi-class user’s environment to ensure that the important class
user shall be serviced first. In this paper, we have developed a novel Markov chain based analytical
model to investigate and evaluate a multi-class queuing system with a strict QoS requirement and
priority constraints. Experimental analysis is conducted for two users classes, i.e., class-1 (may be
free/student users) and class-2 (may be paid/research users). Each class requests have strict QoS
requirements in terms of the minimum required rate (MRR) that must be ensured throughout its
lifetime once the request is admitted into the system. Secondly, class-2 requests have preemption
priority over class-1, i.e., if there is no room for newly arriving class-2 requests, then one or more
active flows of class-1 can be ejected in order to accommodate high-class requests. Model results
are validated through simulation results and performance measures of our interest include blocking
probability (BP) of individual classes and the overall system, effect of higher-class jobs on lower-class
jobs, and link capacity utilization. The proposed model can be instrumental in developing advanced
connection admission control (CAC), efficient resource dimensioning, and capacity planning of the
queuing system.

Keywords: markov chains; performance evaluation; multi-service queuing system; QoS; deadline
and priority constraints

1. Introduction

Communication and information technologies have made tremendous growth in the
recent past. At the same time, many scientific and non-scientific applications are putting
complex demands on these networks. Grid and Cloud computation technologies offer
many useful applications that are based on high-speed computation and communication [1].
Some of these applications require data transmission to be completed within certain time
bounds while others demand certain QoS to be maintained throughout its service [2–4].
The network resources are often shared among various users and they may be assigned
priorities over one another (preemptive and non-preemptive) [5,6]. Moreover, network
resource dimensioning and capacity planning needs to be done efficiently, depending on the
arriving traffic rate and pattern. In short, complex user demands and growing technologies
offer too many challenges for the researchers to find a match between the two and they
have attracted a lot of research attention. Mathematical and analytical modeling techniques
have proven to be an effective and ideal tool for capturing these system behaviors and
undertaking performance evaluations under varying conditions.
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Grid/Cloud computing environment provides an abstract view of the underlying
resources and seamless representation as a single entity to end-user [7]. The users just
need to focus on their tasks without worrying about the underlying architecture. The
resources may include supercomputing devices, large storage capacities, and high-speed
communication links, etc. In cases where the resource’s placement is geographically
distributed, we can only estimate the capacity of bottleneck link along the path of data
transfer, but no control over the traffic and its allocation. For capacity planning and network
dimensioning, we consider such a Grid/Cloud computing environment, where all of the
resources are under the control of a single, centralized entity, e.g., Grid’5000 [8].

Any new system or proposed technique can be evaluated for correctness and effec-
tiveness in three different ways.

• Real Implementation: this is done by performing a real experiment on designated
tools and devices. Although this approach will give us the exact results but it involves
too much labor and cost (in terms of time and money). Moreover, the design may
often require slight modification and tuning, but this approach is not flexible enough
to accommodate these minor adjustments, and it will result in an increase in cost and
delay. Therefore, this is not the best way to start with.

• Simulation: this is done by performing simulations using simulators that closely
reflect real-world intended scenarios. Although, the simulator may not capture exactly
all real-world parameters and, hence, its results may be slightly different than the true
results, but still gives nice insight into the system behavior. The simulation models are
easy to be developed and used to have a quick initial glance of system behavior with
proposed modifications. The parameters can be easily fine-tuned to achieve optimal
results at zero cost. Simulators can be used as an effective start-up tool, but their
results cannot be fully trusted, as they may not capture the exact real world.

• Analytical Modeling: this is done by developing a mathematical model of the in-
tended system and then the model can be used to evaluate the performance of a
system under varying conditions to analyze its behavior. These models are often
based on certain assumptions regarding some of the system parameters that are often
criticized and considered as a flaw. In reality, anything other than real implementation
is based on some assumptions in one way or the other. The assumptions are not just
made blindly, rather they are supported by strong and valid arguments. Assumptions
are based on a closed approximation of the real-world conditions.

Simulation modeling and analytical modeling are both considered to be the most
efficient way of doing initial performance analysis and are often used in conjunction to
validate each other. They are useful where the real system is not existing and yet to be
developed. Once a technique is proven working through modeling and simulation, then
its success is also more likely in real implementations.

Modeling and performance evaluation of multi-class queuing networks has gained
a lot of research attention [9–12]. Typically, network system models are mostly based on
Markov Chains. The bottleneck link can be viewed as a Single Server Queue and solved
using Continuous Time Markov Chain (CTMC). Laplace and Fourier’s transformations
are also frequently used in the solution of these queues. Some researchers have used
the concept of Linear Programming by mapping this bottleneck link utilization problem
to an optimization problem. Petri-nets are used in modeling scientific workflows that
enable scientists to describe their work as a series of tasks without worrying about resource
allocation and coordination. Several solution techniques can be found in [13–16].

This research is mainly aimed at developing a novel analytical model that is flexible
enough to capture network behavior under multi-class flows with strict QoS requirements,
such as deadline and priority constraints in Grid/Cloud networks. This work is an ex-
tension of our previous study [17] in which, we have presented an analytical model for
multi-class deadline constrained data transfer without considering preemption priorities.
To the best of our knowledge, no such model has been developed until the write-up of
this document, which can capture multi-class queuing system behavior with strict QoS
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demands and priority constraints. The proposed model is a representation of a system with
multi-class users; each having certain priority and QoS constraints. An example of such a
system can easily be found in several daily life queuing systems. For the sake of demon-
stration, we restrict our study to Grid/Cloud computing environment and the same can be
extended/applicable to any queuing system with stated characteristics. Furthermore, we
consider the Grid/Cloud computing environment with dedicated communication lines,
because the model is only applicable where the notion of QoS is valid, while the traditional
Internet is known for its best-effort services. Our goal is to design an integrated and
unified model that can be used for performance evaluation of the system with multi-class
users having a deadline and priority constraints. The proposed model will be useful in
high-speed network dimensioning, QoS provisioning, and capacity planning.

The rest of the text is organized, as follows: Section 2 presents a brief review of related
work. Section 3 presents a brief description of the network systems and their corresponding
characteristics. Section 5 depicts our proposed model. Section 6 presents the performance
analysis. The paper is concluded in Section 7, with an outlook to our future work.

2. Related Work

With the advancement in communication and information technology, users and
organization QoS demands are also growing and becoming more challenging. This section
presents a brief review of various related models proposed in the literature. Each model
captures network behavior under different conditions and user requirements. Bonald et al.
conducted performance modeling and analysis of elastic flows in [18]; however, deadline
constraints are not included in their proposed model. They have modeled the bottleneck
link as an M/G/1-PS queue for fairness analysis and onward mean throughput approxi-
mation of TCP protocol. Bandwidth dimensioning model was developed by Berger et al.
in [19] to estimate bandwidth share of individual connection in high-speed networks. They
have considered a single bottleneck link in the network. Operations in semiconductor
manufacturing are modeled as M/M(a,b)/c/PR priority queue by the authors of [20]. They
have considered two priority classes without modeling deadline constraints. AlQahtani et
al. developed an analytical model for 3G wireless networks for performance analysis of
various control schemes in [21]. They have analyzed four different traffic classes, i.e., two
non-real-time and two real-time.

Fodor G. et al. developed a model to estimate throughput guarantees and compute
blocking probabilities for three kinds of flows in [22] i.e., (a) Rigid/Non-adaptive streaming
flows with strict throughput requirement, e.g., voice calls, (b) adaptive streaming flows has
a peak bandwidth requirement b2, but they can be squeezed down to bmin

2 to accommodate
other flows. Their holding time is independent of allocated BW e.g., an adaptive video
flow with codec enabled, and (c) elastic flows have lower and upper throughput bounds.
The model is based on the extension of the classical loss model that was originally designed
for ATM and circuit-switched networks. The concept of Partial Overlap (POL) is used in
this model to divide the available capacity into two (1) BWcom reserved for rigid flows (2)
BWELS reserved for Elastic and Adaptive flows. According to [22], the acceptable blocking
probability threshold for each class is assumed as BPmax

1 , BPmax
2 and BPmax

3 and N1, N2 and
N3 are the max no. of jobs of each class that can be accommodated, respectively. Because
BWcom is dependent upon BPmax

1 and it can be calculated easily using the Erlang-B formula.
After fixing BWcom, we can calculate the max. no. of jobs of rigid flows N1 as

N1 =
BWcom

b1
(1)

where b1 is the peak bandwidth requirement of individual rigid flow.
The values of N2 and N3 are iteratively calculated using an algorithm, called the

Iterative Link Allocation procedure. The algorithm starts with some large values of N2 and
N3, and it calculates their respective blocking probabilities BPmax

2 and BPmax
3 using CTMC.

The values of N2 and N3 are decremented after every iteration until it results in such values
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for which BP2 ≤ BPmax
2 and BP3 ≤ BPmax

3 . It aims at establishing a trade-off between
BP and throughput as larger values of N2 and N3 will certainly reduce their respective
BP, but it will result in their throughput degradation. In [23], the authors proposed an
Autonomic Distributed Streaming Service (ADSS) model for the application that involves
data streaming between remote systems with/without in-transit data processing. The
proposed ADSS model enables the intermediate node to change their behavior in response
to the environmental conditions, i.e., network congestion or destination receiving rate. In
such cases, ADSS can opportunistically exploit intermediate processing nodes in order to
perform partial/complete in-transit processing on data, or it can temporarily store the data
into the hard disk to avoid buffer overflow and data loss. Provided that data arrival rate at
an intermediate node is λ, now, depending upon the reception rate of next-hop node and
network congestion level, ADSS will automatically exploit perform in-transit processing
on data at rate µ or temporarily store the data onto a hard disk with the rate ω. The model
takes current values λ, µ, and ω as input and calculates future values for µ, ω, and the
number of processing units to use for the next interval of time. ADSS is implemented
using Reference Net (a kind of Petri-Nets) that helps in achieving required synchronization
between associating processing nodes. The model applies to applications with end-to-end
QoS requirements and can combine in-transit processing with data transmission.

Network slicing and software-defined networking (SDN) are the two most commonly
used solutions for provisioning QoS in 5G networks. However, the efficient utilization of
the network resources requires precise modeling of the traffic. Santhosha et al. developed
a multi-class network model using SDN and network slicing to quantify network perfor-
mance [24]. Heterogeneous flows are assumed from customers with different varying
intensities without considering the deadline or priority constraints. A simulation-based
model is presented in [25] in order to study the stability region in multi-class queuing
networks. The requests are processed based on the first-come-first-serve policy without
having priorities. Baris et al. studied the abandonment behavior of multi-class customers
due to network congestion in [26]. Each class customer request receives different reward
and cost rates, and their proposed model attempts to maximize their expected utilities.
Likewise, many other studies can be found in the literature with emphasis on multi-class
traffic modeling [27–29]. However, none of these studies consider deadline constrained
bulk data transfers with preemptive priorities. Rami et al. studied the multi-class queuing
system with dynamic priorities that are dependent upon the workload without considering
the deadline constraints [30]. An improved scheduling policy is presented in [31] for a
real-time queuing system with rewards and deadlines while ignoring the priorities.

In [32], the authors considered a multi-server queuing system with three priority
classes and two servers. Each class of customers has its arrivals and service rates. They have
used numerical analysis methods to solve the system of linear equations and calculate each
class blocking probability and average queue length using system steady-state probabilities.
Kannan et al. worked on scheduling bulk file transfers with deadline constraints by
dividing the time scale into uniform time slices [33]. Bandwidth adjustments are made at
the start of every time slice. They have also explored file transfer over multi-paths and
found significant improvement in throughput as compared to a single path. In [34], Bin
et al. studied the problem of scheduling bulk data transfer with a deadline constrained
to find the optimal bandwidth allocation scheme, resulting in minimizing the overall
network congestion. They have solved this problem for optimality using the maximum
concurrent flow problem. In [35], the authors presented a novel model for multi-class
deadline constrained network flows with equal sharing of residual link capacity. They have
modeled the underlying shared bottleneck link as an M/M/1/K-PS Queue and solved it
while using multi-dimensional Continuous Time Markov Chain (CTMC). The model can
be easily extended to any number of classes with varying arrival and service rates. The
model is being validated using NS-2 and offline simulation, and used for the calculation of
Blocking Probability (BP) of individual classes as well as the overall system. The authors
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also presented an algorithm for network dimensioning and capacity planning based on
their model.

In the Grid/Cloud computing environment, resources are often reserved in advance to
perform certain tasks. Therefore, designated data must be made available at those resources
within certain time bounds, and this is usually known as the deadline constraint of the
data transfers. Moreover, data transfer requests may be categorized into various classes,
depending upon their minimum bandwidth requirement. A system of multi-class deadline
constrained bulk data transfers is modeled in [35], where the classes are differentiated
based on their minimum bandwidth requirement. Here, we are interested in extending
this work by assigning each class a relative priority with preemption. This may reflect a
system with multi-users, each having its priority, e.g., In Grids/Clouds, we may have two
simple classes of users, as follows: (a) paid users/scientists whose request will be given
the highest priority. (b) free users/students, whose request will be given the least priority.
The same may be extended to any number of classes assigned with relative priorities with
preemption.

Multi-class flow models with preemptive priorities have previously been explored
in the literature, but none of them consider the deadline constraint. Our work is mainly
focused on developing an analytical model for multi-class deadline-constrained data
transfer requests with preemptive priorities. To the best of our knowledge, no such model
exists in the literature by the write up of this document.

3. Regarding Analytical Modeling

The following subsections present a brief description of the network systems and their
corresponding characteristics.

3.1. Network Representation

Any network can be represented by a connected graph G(V, E), where V is the set
of all nodes in the network and E is a set of edges between nodes. Often, flows in a
high-speed network require multi-hop data transmission between the source and destina-
tion located at remote stations (the terms requests and flows are used interchangeably).
Network performance and throughput of the flows sharing the same path depends on the
efficient utilization of bottleneck link on the path with capacity C. As stated earlier, we are
considering a network environment where communication links are under the control of a
single entity, so that QoS demands of various flows can be fulfilled. Most of the models
that were proposed in the literature aimed at the optimal utilization of the bottleneck link.
Various bottleneck link bandwidth sharing schemes have been proposed and analyzed. It
also helps in model simplification.

Grid/Cloud-based applications often require data transmission to be completed
within certain time bounds, such that certain QoS to be maintained throughout its service.
The network resources are shared among various users and they may be assigned priorities
over one another (preemptive and non-preemptive). Here, we limit our model to capture
system behavior under two-classes data transfer mechanisms with deadline and priority
constraints.

3.2. System Parameters

The model takes various system parameters as input and all evaluation is based on
these parameters. Typical input parameters include:

• Bottleneck link capacity C.
• Arrival rate λi of individual ith class flows into the system.
• Service rate µi of individual ith class flows.
• Probability distribution of arrivals and services (Poisson and exponential distribution

are considered for arrivals and services, respectively).

Note: in some cases, the arrivals/services rates may be considered as system state
dependent, which is out of the scope of this study.
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3.3. Performance Measures

Performance measures of our interest include blocking probability of overall system
and individual classes, the effect of higher-class jobs on lower-class jobs, and link capac-
ity utilization. This study will help in the efficient resource dimensioning and capacity
planning of the queuing system. Important measures include:

• Blocking Probability (BP) of the system and individual classes.
• Comparative analysis of preemptive and non-preemptive models.
• Percentage of lower-class flows being ejected by higher class flows.
• Percentage Link utilization, etc.

4. Problem Formulation

We are interested in the investigation and performance evaluation of a multi-class
queuing system with strict QoS (deadline) and priority constraints. For the sake of demon-
stration, we apply our model to Grid/Cloud computing environment with two simple
classes of users, as follows: (a) paid users/scientists, whose request will be given the
highest priority, (b) free users/students, whose request will be given the least priority. This
model can be extended/applicable to any queuing system with stated characteristics and
any number of classes.

The Grid/Cloud computing network can be represented by a connected graph G(V, E),
where V is the set of all nodes (storage/computing resources) in the network and E is a
set of edges (communication links) between nodes. Often, data transfer requests require
multi-hop data transmission between source and destination located at remote stations.
Let us say that pi,j is the path between source vi and destination vj. Network performance
and throughput of the flows sharing the same path depend upon the efficient utilization of
bottleneck link on the path with capacity C.

Definitions:

1. Data Transfer Request: a data transfer request r = (νr, ωr, φr) is a tuple, where νr is
the volume of r, ωr = [ηr, ψr] is the active window (from arrival time ηr to deadline
ψr) and φr is the path connecting source Sr and destination Dr of the request r.

2. MRRr: Minimum Required Rate MRRr of the request r is calculated on the basis of
its volume and active window, as follows:

MRRr =
νr

ψr − ηr

3. BP: blocking Probability (BP) is the ratio of total rejected requests and the total
number of submitted requests.

4. Residual capacity Cr is the remaining capacity of the link and it can be calculated, as
follows:

Cr = C−
R

∑
i=1

MRRi × Ni (2)

where R is the total number of classes and Ni is the number of requests of ith class.
5. Active request is the term used for all the accepted requests that are currently in the

flow.

Consider a shared bottleneck link having capacity C. Data transfer requests are
categorized into R classes that are based on their minimum required rates. Each class is
assigned a priority τ i.e., τi is the priority of ith class request. A request is accepted if

• It is MRRr can be fulfilled. At any time instant t, a request of an ith class is accepted if

Cr ≥ MRRr



Electronics 2021, 10, 500 7 of 25

• In cases where Cr < MRRr and there are enough active request of lower classes, such
that (

Cr +
Q

∑
i=1

MRRi × Ni

)
≥ MRRr

where Q is the list of accepted lower class requests. In this case, sufficient requests
of lower classes will be ejected in order to accommodate the incoming request of the
higher class.

The state of the system S at any time instant t can be represented as:

St = (N1, N2, N3, . . . , NR)

There are three possibilities to share the available residual capacity when Cr > 0.

• No-Sharing (NS) Scheme: residual capacity Cr is unused and it results in poor utiliza-
tion of link capacity.

• Equal-Sharing (ES) Scheme: Cr is shared equally among the active flows [35] and this
scheme results are better than the no-sharing scheme.

• Weighted-Sharing (WS) Scheme: Cr is distributed among active flow proportional to
their class MRR [17], and this scheme results in improved capacity utilization.

The sharing of residual capacity Cr as per the above schemes is explained with an
example in Figure 1 with C = 7 Gbps, where the current state of the system is (2, 1) i.e.,
two active flows of class 1 and one active flow of class 2. We can easily compute that Cr = 3
Gbps and the Figure 1 explains how it is shared among the active flows, as per the three
schemes. In this study, experiments are conducted with an equal sharing scheme only.

Unused 3Gbps

C1-flow 1Gbps
C1-flow 1Gbps

C2-flow 2Gbps

Cr

(a) No Sharing 

Scheme

C1-flow 1Gbps
C1-flow 1Gbps

C2-flow 2Gbps

Cr

(b) Equal Sharing 

Scheme

C1-flow 1Gbps
C1-flow 1Gbps

C2-flow 2Gbps

Cr

(c) Weighted Sharing 

Scheme

C2-flow share 1Gbps

C1-flow share 1Gbps

C1-flow share 1Gbps

C2-flow share 1.5Gbps

C1-flow share 0.75Gbps
C1-flow share 0.75Gbps

Figure 1. Various schemes for sharing residual capacity Cr.

5. Proposed Model

Markov chains are successfully used for performance evaluation of many different
types of queuing systems. For given system parameters, we can easily find performance
measures, like BP, link utilization, mean flow time, etc. These performance measures are
helpful in system dimensioning and capacity planning for provisioning better QoS.

In a queuing system, the users are often classified into multiple classes, depending
upon their service requirement and paying capacity. In such a multi-class environment,
priority is often also assigned to each class signifying their level of importance. Various
models are proposed for the analysis of multi-class priority queuing systems. These models
are based on varying system parameters, as per the nature of the application, different
arrival and services distribution, queuing mechanism, and priority handling (preemptive
or non-preemptive, resume or restart). In the queuing system, lower class requests are
blocked for two reasons: (a) blocked due to non-availability of capacity in the system
and (b) ejected by the higher class. Aggregating these two types of probabilities, we will
obtain the overall BP of the corresponding lower class. Most of the models proposed in the
literature can help in finding the overall BP of the lower class. To the best of our knowledge,
there is no such model that can provide us with insight into the two components of the BP
of lower classes stated above.

The proposed model presents a novel and more intuitive approach for treating Markov
chains to find the BP of individual classes. By using this novel approach, we can obtain
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the detailed BP of a particular class from which we can easily obtain blocking due to
higher classes ejection and blocking due to system capacity. Typically, by solving Markov
chains, we get the steady-state probability (SSP) vector π from initial one-step transition
probabilities, but, here, we are interested in finding steady transition probabilities (STP),
i.e., long-term probabilities of the system taking each transition. Next, we explain this
concept with a simple example.

Consider a simple CTMC (M/M/1/2) having three states, as shown in Figure 2, and
the similarity rate matrix Q for this simple chain is given below

Figure 2. M/M/1/2 Markov Chain.

Q =


0 1 2

0 −λ0 λ0 0
1 µ1 −(λ1 + µ1) λ1
2 0 µ2 −µ2


We can find one-step transition probability matrix P from the above matrix Q using the
following formula

P =
Q

Max(qii)
+ I

The Markov chain that is given in Figure 2 will look like that shown in Figure 3 in terms of
one-step transition probabilities.

Figure 3. M/M/1/2 with one-step transition probabilities.

We are interested in finding steady transition probabilities (STP) Pi,j∀i, j, i.e., the long
term probability of the system taking each transition. In the next section, first, we will
explain STP and how it can help provision the deep insight of blocking of the lower class
in multi-service priority queuing system. Afterward, the concept of normalized arrival
probabilities (NAP) is presented, i.e., another way of computing the blocking probability
with proof of its correction while using a simple M/M/1/N queue as shown in Figure 4.
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Figure 4. Typical M/M/1/N queue.

5.1. Steady Transition Probabilities (STP)

The concept of steady transition probabilities (STP) is just a detailed view of the
Markov chain, and we can obtain steady-state probabilities from steady transition proba-
bilities and vice versa. As stated earlier, STP is the long-term probabilities of the system
taking each transition, and these can be calculated in two ways.

• Inverted Markov Chains
• Using SSP and one-step transition probability matrix P

5.1.1. Inverted Markov Chains

By solving the Markov chain, we obtain steady-state probabilities, i.e., the long-term
probability of the system being in every state. Using Inverted Markov Chains, we simply
consider transitions as the states of the Markov chain and we need one step transition-to-
transition probabilities in order to calculate STP. Consider the simple Markov chain with
three states and inter-state transition probabilities, as given in Figure 5.

Figure 5. Sample M/M/1/2 queue.

It is easy to get its one step probability matrix P, as below.

P =


0 1 2

0 0.4 0.4 0.2
1 0.2 0 0.8
2 0.5 0.5 0


Once, we obtain the one step transition probability matrix P, the Iterative (Power)

method [36] can be used to calculate the steady state probability vector π, as follows:

π0P = π1

π1P = π2

· · ·

limn→∞πnP = πn

where π0 is initial (random) probability distribution vector with condition ∑n
i=1 pi = 1.

After solving for above chain (Figure 5), we get

π = (0.37036, 0.30863, 0.32103)
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i.e.,
P(S0) = 0.37036

P(S1) = 0.30863

P(S2) = 0.32103

We now redraw Figure 5 by relabeling each transition as Ti,j∀i, j ∈ S, as shown in
Figure 6a, which shows the original Markov chain for sample M/M/1/2 queue along with
the corresponding inverted Markov chain given in Figure 6b.

(a) Original Markov chain (b) Transformed/Inverted Markov chain

Figure 6. Transformation of sample M/M/1/2 queue.

The one step transition to transition probability matrix is given below

P =



T0,1 T0,2 T0,0 T1,2 T1,0 T2,0 T2,1

T0,1 0 0 0 0.8 0.2 0 0
T0,2 0 0 0 0 0 0.5 0.5
T0,0 0.4 0.2 0.4 0 0 0 0
T1,2 0 0 0 0 0 0.5 0.5
T1,0 0.4 0.2 0.4 0 0 0 0
T2,0 0.4 0.2 0.4 0 0 0 0
T2,1 0 0 0 0.8 0.2 0 0


As it follows the Markov property, we can now find the steady transition probability

vector π in the same way and, after solving, we get

π = {0.148148148, 0.074074074, 0.148148148, 0.24691358, 0.061728395, 0.160493827, 0.160493827}

i.e.,
P(T0,1) = 0.148148148

P(T0,2) = 0.074074074

P(T0,0) = 0.148148148

P(T1,2) = 0.24691358

P(T1,0) = 0.061728395

P(T2,0) = 0.160493827

P(T2,1) = 0.160493827

We can easily see that for any state s

∑
∀i

P(Ti,s) = ∑
∀j

P(Ts,j) = P(s)
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i.e., the sum of all transition probabilities into state s is equal to the sum of transition
probabilities out of state s and that is equal to the probability of being in state s e.g., for S1,
we can easily see that,

P(T0,1) + P(T2,1) = P(T1,2) + P(T1,0) = P(S1)

0.148148148 + 0.160493827 = 0.24691358 + 0.061728395 = 0.30863

0.308641975 = 0.308641975 = 0.30863

The same can be observed for all other states. This shows that STP gives us a more
detailed view of the system long term probabilities.

5.1.2. Alternative Approach Based on SSP and P

From the previous results, we can easily deduce that

P(Ti,j) = P(Si).pi,j (3)

For example,
P(T0,1) = P(S0).p0,1

P(T0,2) = P(S0).p0,2

P(T0,0) = P(S0).p0,0

⇒
P(T0,1) + P(T0,2) + P(T0,0) = P(S0).(p0,0 + p0,1 + p0,2)

As p1,1 + p1,2 + p1,3 = 1 therefore we get

P(T0,1) + P(T0,2) + P(T0,0) = P(S0)

This method gives us a simple way to calculate STP, and this is more convenient in
terms of computation as for large size CTMC, the size of one-step transition-to-transition
probability matrix will grow enormously and it will require greater computations. In other
words, we can simply calculate the steady transition probability of any transition Ti,j using
Equation (3).

5.2. Normalized Arrival Probabilities (NAP)

STP gives us the long term probabilities of the system taking any transition. Mainly,
we have two types of transitions in CTMC, i.e., arrivals and departures. For capacity
planning, we are often interested in system BP, which is only related to arrivals only. Let T
be the set of all transition probabilities, then we can express it as

T = TA + TD

where TA and TD are the set of arrival and departure probabilities, respectively.
Here, we are only interested in arrival probabilities and let the summation of all arrival

probabilities be D, i.e.,
∑ P(Ti,j) = D ∀Ti,j ∈ TA

It can be observed that, for constant arrival and service rates,

∑ P(Ti,j) =
λ

λ + µ
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We divide each arrival transition by D to obtain the Normalized Arrival Probability (NAP),
i.e.,

P̄(Ti,j) =
P(Ti,j)

D
⇒∑ P̄(Ti,j) = 1

This NAP gives us the distribution of arrivals, e.g., if the total no. of arrival into the
system is A, then the arrival count along with each arrival transition AC(Ti,j) is given by

AC(Ti,j) = P̄(Ti,j)× A

Thus, we obtain the approximate no. of arrivals on each arrival transition.

5.3. Using NAP to Compute BP of M/M/1/N Queuing System

In this section, we will show how to use NAP to find the BP of the system. We will
also prove that its result is the same as the BP calculated using traditional SSP. For instance,
see Figure 4, in which the blocking probability of the system is the probability of the system
being in state N i.e., P(N), and the same result can be obtained using NAP.

This is very intuitive to choose P̄(TN,N) only because all other arrivals are accommo-
dated by the system and they cause a transition from one state to another. TN,N is the only
looping transition in M/M/1/N, i.e., arrivals along with this transition cause no change in
the system’s state (loopback). In other words, all of the arrivals along TN,N are blocked by
the system. That is why we say that the BP of the system in NAP is the looping transitions
in the case of M/M/1/N i.e., P̄(TN,N) and this is more intuitive. Next, we will try to prove
the following

P(N) = P̄(TN,N)

For sake of illustration, we limit our queue size to N = 2 i.e., M/M/1/2 with arrival λ
and service rate µ, as shown in Figure 2.

Similarity, the Rate Matrix Q of above M/M/1/2 queue is given below.

Q =


0 1 2

0 −λ λ 0
1 µ −(λ + µ) λ
2 0 µ −µ


We can find steady-state probabilities of this simple M/M/1/2 by solving the follow-

ing birth–death equation.

λP0 = µP1 ⇒ P1 =
λ

µ
P0

P2 =
λ2

µ2 P0

we know that
P0 + P1 + P2 = 1

P0 +
λ

µ
P0 +

λ2

µ2 P0 = 1

P0 =
1

1 + λ
µ + λ2

µ2

P0 =
µ2

λ2 + λµ + µ2

P1 =
λ

µ
P0

P1 =
λ

µ

µ2

λ2 + λµ + µ2 =
λµ

λ2 + λµ + µ2
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and the BP of the system is P2

P2 =
λ2

µ2 P0

P2 =
λ2

µ2
µ2

λ2 + λµ + µ2 =
λ2

λ2 + λµ + µ2

We now try to find the same result using NAP, which is calculated by using SSP and
one-step transition probabilities. To obtain one-step transition probabilities, we use the
following formula

P =
Q

Max(qii)
+ I

Hence,

P =


0 1 2

0 µ
λ+µ

λ
λ+µ 0

1 µ
λ+µ 0 λ

λ+µ

2 0 µ
λ+µ

λ
λ+µ


Redraw Figure 2 using one-step transition probabilities, we get the picture that is

shown in Figure 7 (transition probability with zero value are ignored)

Figure 7. M/M/1/2 queue with one-step transition probabilities.

We can see that, among these six transitions, three are arrivals, i.e., T0,1, T1,2, T2,2. We
can find NAP, as below

P(T0,1) = P(0).p0,1 =
µ2

λ2 + λµ + µ2
λ

λ + µ
=

λµ2

z

where
z = (λ + µ)(λ2 + λµ + µ2)

Similarly,

P(T1,2) = P(1).p1,2 =
λµ

λ2 + λµ + µ2
λ

λ + µ

=
λ2µ

z

P(T2,2) = P(2).p2,2 =
λ2

λ2 + λµ + µ2
λ

λ + µ

=
λ3

z
We can now compute that normalized arrival probability P̄(T2,2), as below

P̄(T2,2) =
λ3

z
λµ2

z + λ2µ
z + λ3

z
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=
λ2

λ2 + λµ + µ2

Thus, we have proved that

P(2) = P̄(T2,2)

This can be easily be extended to M/M/N/N. Moreover, for constant arrival rate λ
and service rate µ, we can easily find out that sum of all services transitions

∑ P(Ti,j) =
µ

λ + µ
∀ Ti,j ∈ TD

and the probability of the system being in an idle state is as below

P̄(T0,0) = P(0) =
µ2

λ2 + λµ + µ2

5.4. Model Implementation

We have modeled the bottleneck link of the network as a constant capacity C server.
Arrivals of multi-class requests are assumed to follow Poisson and the services are exponen-
tially distributed with mean volume V. Thus, the system is modeled as a multi-dimensional
Continuous Time Markov Chain (CTMC), as shown in Figure 8. Given the system is in
state Si, then the arrival of cth request will result in a transition to state Sj and completion
of a cth class job will result in a transition to state Sk.

Si = (N1, N2, . . . , Nc, . . . , NR)

Sj = (N1, N2, . . . , Nc + 1, . . . , NR)

Sk = (N1, N2, . . . , Nc − 1, . . . , NR)

As arrival of all classes is equally likely and they are generated using Poisson distribu-
tion, therefore the transition rate from state Si to Sj uponthe arrival of a cth class request
will become:

λi,j = λc (4)

Upon the completion of a request of class c, the system will make a transition from
state i to state k. As in this study, the experiments are only conducted with an equal sharing
scheme, and the service rate for this scheme is calculated, as follows:

µi,k =

Nc
V

(
MRRc +

Cr
∑R

i=1 Ni

)
f orNc > 0

0 otherwise

 (5)

where V is the mean size of the requests and Nc are the total number of active flows of
class c in-state i.

Figure 8 presents a sample CTMC for two classes with C = 5 Gbps. Class 2 jobs have
preemption priority over class 1. It can be noted that, un states 4 and 5, there is no room for
newly arriving requests of class 2, therefore transition is made to state 9, which results in
the ejection of 1 and 2 requests of class 1, respectively. Likewise, the transition from states 8
and 9 to state 11 also results in the ejection of class 1 jobs.
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State 0

(0,0)

Cr=5

State 4

(4,0)

Cr=1

State 3

(3,0)

Cr=2

State 2

(2,0)

Cr=3

State 1

(1,0)

Cr=4

λ1λ1λ1

State 6

(0,1)

Cr=3

State 8

(2,1)

Cr=1

State 7

(1,1)

Cr=2

λ1

λ1λ1

μ2,1

μ8,7
μ7,6

μ5,4μ4,3μ3,2

μ6,0 λ2 μ8,2μ7,1 λ2λ2

State 10

(0,2)

Cr=1

λ2 μ10,6

At State 8, Effective Service Rate of 

Flows in various schemes

NS: C1= 1 Gbps, C2= 2 Gbps

ES: C1= 1.33 Gbps, C2= 2.33 Gbps

WS: C1= 1.25 Gbps, C2= 2.50 Gbps

State 5

(5,0)

Cr=0

λ1

μ1,0

State 9

(3,1)

Cr=0

λ1

μ9,8

μ9,3λ2

State 11

(1,2)

Cr=0
μ11,10

λ2 λ2

λ2

λ2

μ11,7λ2

λ1

Figure 8. Sample two-dimensional Continuous Time Markov Chain (CTMC) for two classes with
MRRc = c Gbps ∀ c ∈ {1, . . . , R} and link capacity C = 5 Gbps.

The total number of states in the CTMC grows exponentially with the increase in the
link capacity C and total number of classes, as shown in Figure 9. A state S in CTMC is
valid if:

R

∑
i=1

(Ni ×MRRi) ≤ C

where Ni is the total number of active flows of ith class having a minimum flow rate MRRi.

Figure 9. Impact of link capacity on number of states in CTMC with varying number of classes in the
system.

After generating all of the possible states and corresponding transition probabilities,
CTMC is solved using the iterative method, and we get steady-state probability vector π of
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the system, which is then used to compute blocking probabilities of the overall system and
individual classes and subsequent performance analysis.

5.4.1. Computation of BP

The blocking probabilities of the overall system and individual classes are computed
while using the steady-state probability vector π. To compute BP of class x, set SBc of all
those states in CTMC is required where a new request of class x cannot be accommodated.
Thus, the blocking probability of high priority class x can be computed, as below:

BPx = ∑
∀s∈SBx

ps

where ps is the long term probability of the system being in state s.
The blocking probability of lower priority class y can be computed, as below:

BPy = ∑
∀s∈SBy1

ps + ∑
∀t∈STA

P̄(Ti,j)×MRRx

where STA is a subset of normalized arrival probabilities, which results in the ejection of
lower-class requests.

Blocking probability of the overall system can be computed as below:

BP =

[
R

∑
c=1

(BPc)

]
× 1

λ
(6)

5.4.2. Computation of Link Utilization

Percentage link utilization Cutil of the system having link capacity C is computed from
state probability vector π, as follows:

Cutil =
∑∀s∈Θ ps × (C− Cr(s))

C
× 100

where Cr(s) is the link residual capacity in state s.

6. Performance Evaluation

The objectives of performance evaluation are:

• To validate the proposed model results.
• To highlight effect on overall system blocking probability, due to preemptive priority

as compared to the non-preemptive model.
• To conduct a class-wise comparative analysis of blocking probabilities for preemptive

and non-preemptive models.
• To present a detailed analysis of lower-class blocking probabilities.
• To perform analysis of link capacity utilization with varying traffic intensities.

The proposed model validation is conducted through simulation using an ad-hoc
simulator that was developed in Microsoft Visual Studio 2017 using Visual Basic .NET
(VB.NET). The simulation model considers an ideal network environment and it does
not capture the network/packet-level details such as losses and overheads. In every
simulation experiment, 100,000 requests/flows are generated using Poisson distribution.
The flow volumes are exponentially distributed with mean a value of V. Table 1 presents
the summary of configuration for different parameters that are related to models and
simulations. The reported results are the average values for 10 different simulation runs
for each experimental setup.
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For the sake of simplicity and without losing any generality, the arrival rate of all
classes is considered to be the same, i.e.,

λc =
λ

R

where R is the total number of classes and λ is the arrival rate of all requests.
We know that traffic intensity ρ can be computed, as below:

ρ =
λ×V

C

For a given/desired traffic intensity, the mean flow size V can be obtained as

V =
ρ× C

λ

Table 1. Configuration setup for simulation and model.

S. No. Parameter/Variable
Value/Range

Simulation Model

1 Number of classes 2

2 Arrival rate 0.25

3 Link capacity 20, 30, 40 Gbps

4 Traffic intensity 0.5–2.0 (step 0.1)

5 Total number of
requests 100,000 NA

6 Size of individual
flow

Exp. distributed in
range 40–160 (step 8)

for C = 20 60–240
(step 12) for C = 30
80–320 (step 16) for

C = 40

NA

Figure 10 shows the blocking probabilities that were calculated for various traffic
intensities using analytical model and simulation while considering the link capacity of
C = 30 Gbps. Model and simulation results are both nicely aligned for all traffic intensities
varying from 0.5 to 2.0. These results clearly show that the simulations validate the model.
For traffic intensities that are below 1.0, the overall system blocking probability is very low
(acceptable). However, a significant increase in the blocking probabilities can be observed
as traffic intensity approaches 2.0, where more than 50% of requests are blocked by the
system. Furthermore, these results also confirmed that the system blocking probability is
not linearly increasing with the increase in traffic intensity.

Next, we study the effect on the overall system blocking probability due to preemptive
priority as compared to the non-preemptive model [17]. Figure 11 presents the comparative
analysis of blocking probabilities for preemptive and non-preemptive models results with
C = 30 Gbps. For traffic intensities that are below 1.0, there is no significant difference in
blocking probabilities of the two models, and this is due to the underutilization of link
capacity. However, a gradual increase in difference among the blocking probabilities of
the two models can be observed as traffic intensity approaches 2.0 where approx. 50% and
55% of requests are blocked by the system in case of the non-preemptive and preemptive
model, respectively. These results show that the preemptive model results in less than a
5% (absolute) increase in the system overall blocking probability when compared to its
counterpart non-preemptive model.
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Figure 10. Validation of Model results through simulation with C = 30 Gbps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

B
lo

ck
in

g 
P

ro
b

ab
ili

ty
 

Traffic Intensity 

Without Premption With Premption

Figure 11. Comparative analysis of blocking probabilities for preemptive and non-preemptive model
results with C = 30 Gbps

An increase in the system overall blocking probability by the preemptive model is
not particularly significant, i.e., less than 5% (absolute) when compared to its counterpart
non-preemptive model. However, a detailed investigation of individual class probabili-
ties revealed a significant increase in the lower-class (class 1) probabilities, as shown in
Figure 12. Once again, for traffic intensities that are below 1.0, the difference in individual
class blocking probabilities of the two models is very low, which is due to the underutiliza-
tion of link capacity. However, a significant increase in difference among the individual
class blocking probabilities of the two models can be observed with an increase in traffic
intensity. In the case of the non-preemptive model, for a traffic intensity of 2.0, the blocking



Electronics 2021, 10, 500 19 of 25

probabilities of class 1 and class 2 are 38% and 61%, respectively. When both of the classes
are treated equally by the system, then class requests are experiencing high blocking proba-
bility due to their high QoS requirement i.e., 2MRR. Whereas, in the case of the preemptive
model, the same blocking probabilities changed to 94% and 15%, for class 1 and class 2,
respectively. The significantly high blocking probabilities of class 1 (94%) is due to two
reasons: (a) being blocked by the system due to unavailability of required QoS (1MRR) as
a result of high utilization of system capacity and (b) ejected by the system to make room
for high priority jobs. The whole link capacity is available for class 2 requests, as if class 1
requests do not exist (virtually) and, therefore, the blocking probability of class 2 is reduced
from 61% to 15%, for traffic intensity of 2.0.
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Figure 12. Class-wise comparative analysis of blocking probabilities for preemptive and non-
preemptive Model results with C = 30 Gbps.

Class-wise comparative analysis of blocking probabilities, as given in Figure 12, indi-
cate a significant increase (147.43%) in the blocking probabilities of class 1 for the preemp-
tive model when compared to the non-preemptive model. This is due to two reasons: (a)
being blocked by the system due to unavailability of required QoS (b) ejected by the system
to make room for high-priority jobs. Figure 13 shows the detailed analysis of blocking
probabilities components for class 1 while using preemptive model results with C = 30
Gbps, No. of classes R = 2 and MRRc = c Gbps ∀ c ∈ {1, . . . , R}. Figure 13a provided
detailed insight regarding class 1 blocking probabilities, along with the contribution of each
component, in total, the blocking probabilities. We can observe that a major portion of the
class 1 requests are blocked due to ejection by the arrival of higher class jobs as compared
to blocking by the system due to the unavailability of the required QoS. This is due to the
relatively higher QoS requirement of class 2 jobs i.e., having MRR = 2 Gbps. In other
words, when the residual capacity is zero, the arrival of the class 2 job will cause an ejection
of two requests (in progress) of class 1 if available. This is also evident from Figure 13b,
which provides proportionate (%) blocking of class 1 blocking probability. For lower traffic
intensities, a relatively low percentage of class 1 requests are blocked by the system as
compared to the ones ejected by higher classes. For instance, with a traffic intensity of
1.0, around 10% requests of class 1 are blocked and, out of these 10% blocked requests,
around 25% are blocked by the system, and 75% are ejected due to the arrival of higher
class requests. Whereas, with a traffic intensity of 2.0, a total of around 94% requests of
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class 1 are blocked and, out of these 94% blocked requests, around 40% are blocked by the
system whereas 60% are ejected due to the arrival of higher class requests. In other words,
more requests of class 1 are blocked by the system with an increase in traffic intensity due
to high link utilization.
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(a) Detailed view of class 1 blocking probabilities
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Figure 13. Analysis of blocking probabilities components for class 1 using preemptive model results
with C = 30 Gbps.

Figure 14 shows the percentage link capacity utilization by proposed model with
varying traffic intensities for C = 20, 30, 40 Gbps. For traffic intensities that are below 1.0,
the link capacity utilization is below 35%, i.e., significant link capacity is available most
of the time, which is the main reason for having significantly low blocking probabilities
for traffic intensities that are below 1.0. A gradual increase in the link capacity utilization
can be observed as the traffic intensity increases beyond 1.0 up to 1.5, but, afterward,
there is no significant improvement in link capacity utilization. This shows that, as we
approach towards the maximum achievable link utilization, an increase in traffic intensity
contributes less in maximizing link utilization and, in contrast, it results in a drastic increase
in the system blocking probability, which is evident from earlier results. Figure 14 also
shows that, with an increase in traffic intensity, link utilization exhibits a converse behavior
with an increase in the link capacities. For instance, with lower link capacity (C = 20
Gbps), link utilization grows faster in the early stages and gets slower towards the end to
reach the maximum. Conversely, with higher link capacity (C = 40 Gbps), the growth in
link utilization is slower in the beginning and it gets faster towards the end to reach the
maximum.

In order to further illustrate the bottleneck link capacity utilization, we have conducted
another set of experiments with varying requests arrival rate λ = {0.20, 0.25, 0.30, 0.35, 0.40}
having a mean volume size of 120 Gbps and the results are shown in Figure 15. It is evident
from the results that, for low bottleneck link capacities, the link utilization is very high,
i.e., around 90% for all arrival rates. As we increase the bottleneck link capacity, a gradual
decrease in link utilization can be observed. For lower arrival rate λ = 0.20, the decrease in
link utilization is faster when compared to the results of a higher arrival rate λ = 0.40. For
instance, for λ = 0.20, when the bottleneck link capacity C is increased from 20 Gbps to
40 Gbps, the link utilization is reduced from 64% to 5.57%. Whereas, for λ = 0.40, when
the bottleneck link capacity C is increased from 20 Gbps to 40 Gbps, the link utilization is
reduced from 90.55% to 75.46%.
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Figure 14. Percentage link capacity utilization by proposed model with varying traffic intensities for
C = 20, 30, 40 Gbps.
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Figure 15. Percentage link capacity utilization by proposed model with varying arrival rates λ =

{0.20, 0.25, 0.30, 0.35, 0.40} and mean volume size V = 120 Gbps.

Algorithm 1 can be used for network capacity planning in order to compute optimal
bottleneck link capacity for a given traffic intensity and requests an arrival rate, such that
the overall network blocking probability remains within a certain acceptable range, i.e.,
[BPlim − α, BPlim + α].

The experiments are conducted for a certain case study with varying requests for
arrival rate λ = {0.20, 0.25, 0.30, 0.35, 0.40} having mean volume size of 120 Gbps. Here,
we are interested in finding the optimal bottleneck link capacity, such that the overall
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network blocking probability remains with a certain acceptable range i.e., BPlim = 0.05 with
α = 0.002. There are two classes of user requests and MRR for class-1 and class-1 requests
are 1 Gbps and 2 Gbps, respectively. Furthermore, class-2 requests have preemptive priority
over class-1. Figure 16 provides the proposed model results for the aforementioned case
study. The results show that the overall blocking probability of the system gets decreased
with the gradual increase in bottleneck link capacity and, finally, we obtain different
optimal bottleneck link capacity for each arrival rate, as indicated in Figure 16. With the
increase in the arrival rate of incoming requests, we need to increase the bottleneck link
capacity in order to have the overall blocking probability of the system below the desired
range. For instance, the optimal bottleneck link capacity is 31 Gbps for the request arrival
rate λ = 0.25 in order to have the overall blocking probability around 0.05. Whereas, for
request arrival rate λ = 0.40, the optimal bottleneck link capacity results in 47 Gbps. This
is just an example to illustrate the utility of the proposed model in the capacity planning of
a network with given traffic conditions.

Algorithm 1 Network Capacity Planning

Require: V, λ, Cmax, BPlim, α

Ensure: Copt

Cmin ← 0

BP← 1

f lag← f alse

while f lag 6= true do

Ccur ← (Cmin + Cmax)/2

Generate system states S for Ccur

Compute states transition probabilities for S using λ and Equation (5)

Compute states-state probability vector π

Update BP using Equation (6)

if BP ∈ [BPlim − α, BPlim + α] then

Copt ← Ccur

f lag← true

end if

if BP < BPlim then

Cmax ← Ccur

else

Cmin ← Ccur

end if

end while

return Copt
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Figure 16. Network capacity planning for varying arrival rates λ = {0.20, 0.25, 0.30, 0.35, 0.40} and
mean volume size V = 120 Gbps.

7. Conclusions and Future Work

In this paper, we have presented a novel analytical model for a multi-service queue
with deadline and priority constraints. The model is validated through simulations of bulk
data transfers using the equal sharing scheme of residual capacity. The proposed model
results in less than a 5% increase of the system overall blocking probability when compared
to its counterpart non-preemptive model. Detailed class-wise comparative analysis of
blocking probabilities revealed that a significant increase (147.43%) in the lower class (class
1) blocking probabilities was observed when compared to its blocking probability results
by the non-preemptive model. After further investigations regarding class 1 blocking
probabilities, it was observed that a major portion of the class 1 requests are blocked due to
ejection by the arrival of higher class jobs as compared to blocking by the system due to
the unavailability of required QoS. The main reason for having significantly low blocking
probabilities for traffic intensities that were below 1.0 was found to be the poor link capacity
utilization, i.e., below 35%. These results also showed that, as we approach towards the
maximum achievable link utilization, an increase in the traffic intensity contributes less in
maximizing link utilization and, in contrast, it results in a drastic increase in the system
blocking probability.

In the future, we are looking forward to extending this study by conducting experi-
mental analysis with some real-world data of similar networks and parameters of various
distribution schemes, like Poisson, Bounded Pareto, etc. Model applications, like network
resources dimensioning, thee development of enhanced strategies for admission control,
capacity planning, cost estimation, and pricing incentives, will also be explored.

Author Contributions: F.M.A. has implemented the model for the multi-service queue, conducted
the experimental analysis, and did the paper writeup. I.U. designed the model and performed its
validation and also assisted in results collection and paper writeup. S.A. conceived the overall idea
and supervised this work. All authors contributed to this paper. All authors have read and agreed to
the published version of the manuscript.

Funding: This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz
University, Jeddah, under Grant No. G:60-611-1441.



Electronics 2021, 10, 500 24 of 25

Acknowledgments: This project was funded by the Deanship of Scientific Research (DSR) at King
Abdulaziz University, Jeddah, under Grant No. G:60–611–1441. The authors, therefore, acknowledge
with thanks DSR for technical and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tyagi, H.; Kumar, R. Cloud Computing for IoT. In Internet of Things (IoT); Springer: Berlin, Germany, 2020; pp. 25–41.
2. Koulouzis, S.; Martin, P.; Zhou, H.; Hu, Y.; Wang, J.; Carval, T.; Grenier, B.; Heikkinen, J.; De Laat, C.; Zhao, Z. Time-critical data

management in clouds: Challenges and a Dynamic Real-Time Infrastructure Planner (DRIP) solution. Concurr. Comput. Pract.
Exp. 2020, 32, e5269. [CrossRef]

3. Tariq, A.; Pahl, A.; Nimmagadda, S.; Rozner, E.; Lanka, S. Sequoia: Enabling quality-of-service in serverless computing. In
Proceedings of the 11th ACM Symposium on Cloud Computing, New York, NY, USA, 19–21 October 2020; pp. 311–327.

4. Ding, Z.; Wang, S.; Pan, M. QoS-Constrained Service Selection for Networked Microservices. IEEE Access 2020, 8, 39285–39299.
[CrossRef]

5. Luo, S.; Yu, H.; Li, K.; Xing, H. Efficient file dissemination in data center networks with priority-based adaptive multicast. IEEE J.
Sel. Areas Commun. 2020, 38, 1161–1175. [CrossRef]

6. Chen, J.; Du, C.; Xie, F.; Lin, B. Scheduling non-preemptive tasks with strict periods in multi-core real-time systems. J. Syst. Archit.
2018, 90, 72 – 84. [CrossRef]

7. Chaisiri, S.; Lee, B.; Niyato, D. Optimization of Resource Provisioning Cost in Cloud Computing. IEEE Trans. Serv. Comput. 2012,
5, 164–177. [CrossRef]

8. Bolze, R.; Cappello, F.; Caron, E.; Daydé, M.; Desprez, F.; Jeannot, E.; Jégou, Y.; Lanteri, S.; Leduc, J.; Melab, N.; et al. Grid’5000: a
large scale and highly reconfigurable experimental grid testbed. Int. J. High Perform. Comput. Appl. 2006, 20, 481–494. [CrossRef]

9. Zheng, L.; Zhang, L. Modeling and performance analysis for IP traffic with multi-class QoS in VPN. In Proceedings of the
MILCOM 2000 Proceedings. 21st Century Military Communications. Architectures and Technologies for Information Superiority
(Cat. No. 00CH37155), Los Angeles, CA, USA, 22–25 October 2000; Volume 1, pp. 330–334.

10. Tian, W. Analytical Models and Efficient Dimensioning Algorithms for Communication Systems In Randomly Changing Traffic
Environments. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2007.

11. Bekker, R. Queues with State-Dependent Rates. Ph.D. Thesis, Technische Universiteit Eindhoven, AZ Eindhoven, The
Netherlands, 2005.

12. Ridley, A. Performance Analysis of a Multi-Class Preemptive Priority Call Center with Time-Varying Arrivals. Ph.D. Thesis,
University of Maryland, College Park, MD, USA, 2004.

13. Snyder, P.M.; Stewart, W.J. An approximate numerical solution for multiclass preemptive priority queues with general service
time distributions. In Proceedings of the 1985 ACM SIGMETRICS conference on Measurement and modeling of computer
systems, New York, NY, USA, 26–29 August 1985; pp. 155–165.

14. Kumar, P.R. A tutorial on some new methods for performance evaluation of queueing networks. IEEE J. Sel. Areas Commun.,
1995, 13, 970–980. [CrossRef]

15. van der Heijdena, M.; van Hartena, A.; Sleptchenkob, A. Approximations for Markovian multi-class queues with preemptive
priorities. Elsevier Oper. Res. Lett. 2003, 32, 273–282. [CrossRef]

16. Sleptchenko, A.; Harten, A.V.; Heijden, M.V.D. An Exact Solution for the State Probabilities of the Multi-Class, Multi-Server
Queue with Preemptive Priorities. Queueing Syst. 2005, 50, 81–107. [CrossRef]

17. Ullah, I.; Munir, K. Performance prediction of a weighted capacity sharing scheme for grid bulk data transfers using a multi-
service queue. In Proceedings of 7th the International Conference on Emerging Technologies, Islamabad, Pakistan, 5–6 September
2011; pp. 1–6.

18. Bonald, T.; Roberts, J. Performance modeling of elastic traffic in overload. In Proceedings of the International Conference on
Measurement and Modeling of Computer Systems, Cambridge, MA, USA, 16–20 June 2001, pp. 342–343.

19. Berger, A.W.; Kogan, Y. Dimensioning Bandwidth for Elastic Traffic in High-Speed Data Networks. IEEE/ACM Trans. Netw. 2000,
8, 643–654. [CrossRef]

20. Phojanamongkolkij, N.; Cochran, J.K.; Fowler, J.W. Multi-Products Multi-Servers Bulk Service Queue with Threshold Service Size.
In Proceedings of the International Conference on Semiconductor Manufacturing Operational Modeling and Simulation, San
Francisco, CA, USA, 18–20 January 1999; pp. 153–156.

21. AlQahtani, S.A.; Mahmoud, A.S. Performance analysis of two throughput-based call admission control schemes for 3G WCDMA
wireless networks supporting multiservices. Comput. Commun. 2008, 31, 49–57. [CrossRef]

22. Fodor, G.; Racz S., T.M. On Providing Blocking Probability- and Throughput Guarantees in a Multi-service Environment.
Commun. Syst. 2002, 15, 257–285. [CrossRef]

23. Tolosana-Calasanz, R.; Banares, J.A.; Rana, O.F. Autonomic Streaming Pipeline for Scientific Workflows. Concurr. Comput. Pract.
Exp. 2011, 23, 1868–1892. [CrossRef]

24. Kamath, S.; Singh, S.; Kumar, M.S. Multiclass queueing network modeling and traffic flow analysis for SDN-enabled mobile core
networks with network slicing. IEEE Access 2019, 8, 417–430. [CrossRef]

http://doi.org/10.1002/cpe.5269
http://dx.doi.org/10.1109/ACCESS.2020.2974188
http://dx.doi.org/10.1109/JSAC.2020.2986616
http://dx.doi.org/10.1016/j.sysarc.2018.09.002
http://dx.doi.org/10.1109/TSC.2011.7
http://dx.doi.org/10.1177/1094342006070078
http://dx.doi.org/10.1109/49.400653
http://dx.doi.org/10.1016/j.orl.2003.09.001
http://dx.doi.org/10.1007/s11134-005-0359-y
http://dx.doi.org/10.1109/90.879350
http://dx.doi.org/10.1016/j.comcom.2007.10.029
http://dx.doi.org/10.1002/dac.532
http://dx.doi.org/10.1002/cpe.1744
http://dx.doi.org/10.1109/ACCESS.2019.2959351


Electronics 2021, 10, 500 25 of 25

25. Leahu, H.; Mandjes, M.; Oprescu, A.M. A numerical approach to stability of multiclass queueing networks. IEEE Trans. Autom.
Control 2017, 62, 5478–5484. [CrossRef]

26. Ata, B.; Peng, X. An equilibrium analysis of a multiclass queue with endogenous abandonments in heavy traffic. Oper. Res. 2018,
66, 163–183. [CrossRef]

27. Puha, A.L.; Ward, A.R. Scheduling an overloaded multiclass many-server queue with impatient customers. In Operations Research
& Management Science in the Age of Analytics; INFORMS: Catonsville, MD, USA, 2019; pp. 189–217.

28. Long, Z.; Shimkin, N.; Zhang, H.; Zhang, J. Dynamic Scheduling of Multiclass Many-Server Queues with Abandonment: The
Generalized cµ/h Rule. Oper. Res. 2020, 68, 1218–1230. [CrossRef]

29. Wu, K.; Shen, Y. Pathwise stability of multiclass queueing networks. Discrete Event Dyn. Syst. 2020, 1–19. [CrossRef]
30. Atar, R.; Lev-Ari, A. Workload-dependent dynamic priority for the multiclass queue with reneging. Math. Oper. Res. 2018,

43, 494–515. [CrossRef]
31. Raviv, L.O.; Leshem, A. Maximizing service reward for queues with deadlines. IEEE/ACM Trans. Netw. 2018, 26, 2296–2308.

[CrossRef]
32. Snipas, M.; Valakevicius, E. Markov Model of Multi-Class, Multi-Server Queuing System with Priorities. J. Commun. Comput.

2010, 7, 1–3.
33. Rajah, K.; Ranka, S.; Xia, Y. Scheduling bulk file transfers with start and end times. Comput. Netw. 2008, 52, 1105–1122. [CrossRef]
34. Chen, B.B.; Primet, P.V.B. Scheduling deadline-constrained bulk data transfers to minimize network congestion. In Proceedings

of the Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2007), Rio de Janeiro, Brazil, 14–17
May 2007; pp. 52–58.

35. Munir, K.; Primet, P.V.B.; Welzl, M. Grid Network Dimensioning by Modeling the Deadline Constrained Bulk Data Transfers. In
Proceedings of the 11th IEEE International Conference on High Performance Computing and Communications, Seoul, Korea,
25–27 June 2009; pp. 52–58.

36. Stewart, W.J. Probability, Markov chains, Queues, and Simulation; Princeton University Press: Princeton, NJ, USA, 2009.

http://dx.doi.org/10.1109/TAC.2017.2699126
http://dx.doi.org/10.1287/opre.2017.1638
http://dx.doi.org/10.1287/opre.2019.1908
http://dx.doi.org/10.1007/s10626-020-00321-1
http://dx.doi.org/10.1287/moor.2017.0869
http://dx.doi.org/10.1109/TNET.2018.2867815
http://dx.doi.org/10.1016/j.comnet.2007.12.005

	Introduction
	Related Work
	Regarding Analytical Modeling
	Network Representation
	System Parameters
	Performance Measures

	Problem Formulation
	Proposed Model
	Steady Transition Probabilities (STP)
	Inverted Markov Chains
	Alternative Approach Based on SSP and P

	Normalized Arrival Probabilities (NAP)
	Using NAP to Compute BP of M/M/1/N Queuing System
	Model Implementation
	Computation of BP
	Computation of Link Utilization


	Performance Evaluation
	Conclusions and Future Work
	References

