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Abstract: 3-D quasi-optical systems have a more comprehensive range of application scenarios, and
their analysis and design are more complicated than those of 2-D systems. In this work, we improve
Gaussian beam mode analysis (GBMA) to analyze 3-D multi-reflector systems. The expressions of
co- and cross-polarization and their derivations are given and discussed in detail. Furthermore,
several 3-D dual-reflector systems with different rotation angles are chosen as simulation examples to
assess the validity and precision of 3-D GBMA compared with physical optics (PO) in the commercial
software GRASP10. Furthermore, a 3-D double ellipsoidal reflector system with a π/2 rotation
angle operating at 183 GHz is designed, manufactured, and tested. Measured results of the system
demonstrate that it is in good agreement with the simulated results of 3-D GBMA and PO for both
the co- and cross-polarization. By comparing the computing time performance of 3-D GBMA and
PO in GRASP10, the high efficiency of 3-D GBMA is clarified. With 3-D GBMA, the field in 3-D
quasi-optical systems can be calculated preciously and rapidly.

Keywords: millimeter- and submillimeter-wave; gaussian beams; reflector antennas; quasi optics

1. Introduction

With the advantage of eliminating the blockage of feed antennas, offset reflector
antennas, such as ellipsoidal and paraboloidal mirrors, are widely used to control the char-
acteristics of beam propagation in free space. Furthermore, the effects of off-axis mirrors on
the beam shape and the cross-polarization level were expounded exhaustively [1]. In the
millimeter and submillimeter wavebands, the traditional analysis method, physical optics
(PO), becomes more and more inefficient with increasing frequency. In contrast, the theory
of Gaussian beam propagation with the inherence of paraxial approximation [2] is suitable
for analyzing electrically large objects. As the application scenarios become complicated,
2-D quasi-optical systems [3] can no longer meet the requirements, and 3-D systems [4–6]
receive more and more attention. Compared with 2-D systems, 3-D systems are more flexi-
ble and compact, which is more beneficial to being mounted on a spacecraft [5,6]. The feeds,
reflectors and other components in the 3-D system are not limited to one plane, which is
more convenient to set channels with multi-frequency and multi-polarization. This is very
beneficial to reduce the space occupied by the system. However, the analysis and design
process of 3-D systems is far more complicated than that of 2-D systems. In diffracted
Gaussian beam analysis (DGBA), the electric field is expanded into a set of fundamental
Gaussian beams with the Gabor expansion. Furthermore, the beam tracing method is used
to evaluate the reflected and diffracted fields of each beam from the mirror [7]. There is a
novel Gaussian beam analysis method, in which the field is decomposed into fundamental
mode beams by the point matching approach [8,9]. In [10], the Gaussian beam analysis
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method based on the fundamental mode was generalized to handle 3-D systems based
on a three-dimensional diffraction technique. In addition, Gaussian beam mode analysis
(GBMA) is another powerful analysis approach based on the multimode Gaussian beam [2].
Different from Gaussian beam analysis methods mentioned above, the electric field is
expanded into the fundamental mode and the higher order mode along the propagation
direction due to the orthogonality relationship between Gaussian beam modes. GBMA
is applied to assess not only reflector antennas [11–14] but also other components, for
example, the horn antennas [15–17], the phase gratings [18], and so on. A GBMA method
for 2-D multi-reflector systems was expatiated in [19]. In these works, the beam distortion
and the polarization level can be predicted precisely by GBMA compared with PO in the
commercial software GRASP10 [20]. On this basis, some brief explanations were presented
in [21] about the fact that the cross-polarization generated by the preceding mirror can
be decreased by adjusting the parameters of the subsequent reflector. Furthermore, a
novel design method of 2-D quasi-optical system with low cross-polarization based on the
Particle Swarm Optimization (PSO) algorithm was proposed. In the novel design method,
the system parameters, such as the distance between two adjacent objects, the incident
angle, and so on, can be optimized to control the power of different Gaussian beam modes
to reduce the cross-polarization level [22]. The PSO algorithm is also applied to other
antenna designs, for example, the dielectric phase-correcting structure [23] and the time-
delay equalizer metasurface [24] for the electromagnetic band-gap (EBG) resonator antenna.
However, temporarily, GBMA can only be used to analyze and design two-dimensional
systems, which cannot meet the more general demands of 3-D system applications.

In this study, we will make further efforts to improve GBMA to deal with off-axis
mirrors in 3-D quasi-optical systems. The whole process of algebraic operations and some
significant expressions will be presented. The correctness and accuracy of 3-D GBMA
will be verified by comparing with PO in GRASP10, taking 3-D dual-reflector systems as
examples. Moreover, we will fabricate a 3-D quasi-optical system and give the measured
results. Furthermore, the calculation time of 3-D GBMA will be compared with that of PO
to illustrate the high efficiency of 3-D GBMA.

2. Proposed System Design

The analysis of a single off-axis reflector antenna and the transformation of co- and
cross-polarization in a 2-D quasi-optical system were discussed in detail [19]. In brief,
we choose an individual Hermite–Gaussian mode, for example, a (p, q) Gaussian beam
mode as the incident field to an offset mirror, the cross-polarization will emerge, and
the co-polarization will be distorted as a result of the generated other order modes. The
significant expressions of the input and output fields are given below, and the geometry of
an off-axis ellipsoidal mirror with the incident and reflected beams in the local coordinate
systems is plotted in Figure 1.

Ei−co = Epq exp

[
−jk0(z1 + d1)−

jπ
(
x1

2 + y1
2)

λRi
+ j(p + q + 1)φi

]
(1)

Er−co ≈ const· ∑
mn
{u1mn−pqEmn exp

[
jk0(z2 + d2) +

jπ(x2
2+y2

2)
λRr

− j(m + n + 1)φr

]
· exp

(
jϕmn−pq

)
exp(jπ)

} (2)

Er−cx ≈ const· ∑
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{u2m(n+1)−pqEm(n+1) exp
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Figure 1. Geometry of an off-axis ellipsoidal mirror with the input and output beams in the local
coordinate systems.

Here, Ei−co is the co-polarization of the incident field linearly polarized in the y
direction, and Er−co and Er−cx are the co- and cross-polarization of the reflected field,
respectively. Epq represents the amplitude of (p, q) order Hermite–Gaussian mode. The
exponential term in Equation (1) is the phase of (p, q) order Hermite–Gaussian mode. In
Equations (2) and (3), u1 and u2 are coefficients of co-polar modes and cx-polar modes,
respectively. The last two exponential terms, exp(jϕ) and exp(jπ), are additional phases to
ensure the phase matching and phase reversal of the incident and reflected beams on the
mirror according to the reflection theorem. Furthermore, the subscript mn− pq means that
the reflected (m, n) mode is generated by the incident (p, q) mode. The expressions of u1,
u2, and ϕ were given in [19]. k0 is the wavenumber. d1/2 is the distance between the beam
waist ω0_i/0_r and the center of the mirror. Ri/r and φi/r are the radius of curvature and
the phase slippage, respectively, which are functions of z1/2. Furthermore, the relationship
between parameters of the input and output Gaussian beams can be figured out by the
ABCD matrix techniques [25,26]. From Equations (2) and (3), we can see that the reflected
co-polarization will no longer be a single (p, q) mode, which consists of a set of (m, n)
modes close to the (p, q) mode. Additionally, the cross-polarization is composed of a set of
(m, n + 1) modes.

Different from 2-D quasi-optical systems in [19], the optical axes of beams are not on
the same plane in 3-D systems. Referring to the analysis of a single offset reflector, we
set up two coordinate systems of the output beam from the first mirror M1 and the input
beam to the second mirror M2, as shown in Figure 2. It can be seen from the figure that
there is a rotation angle θr between two planes of optical axes of M1 and M2. Obviously,
it becomes a 2-D system when θr equals 0 or π. In 3-D systems, some appropriate mode
conversions and polarization conversions are essential to ensure that the reflected beams
from M1 can be used as the incident beams to M2. Then, GBMA could be applied to analyze
3-D multi-reflector systems.

Figure 3 presents the view of x2y2z2 and x3y3z3 coordinate systems (shown in Figure 2)
from the z3-axis direction. From Figures 2 and 3, two coordinates are connected by:

x2 = cos θr·x3 + sin θr·y3
y2 = sin θr·x3 − cos θr·y3
z2 = −z3 − (d2 + d3)

(4)

where d2 and d3 are the distances from the beam waist ω02 to M1 and to M2, respec-
tively. Therefore, d2 + d3 is the distance between the two mirrors. Apparently, the modes
of reflected waves from M1 are in the x2y2z2 coordinate system. These modes must
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be converted into a new set of modes in the x3y3z3 system to fit M2. Now, substitute
Equation (4) into Equation (2):

Er−co ≈ const·∑mn

{
u1mn−pqEmn(x2, y2, z2) exp

[
−jk0(z3 + d3)−

jπ(x3
2+y3

2)
λRi(z3)

+

j(m + n + 1)φi(z3)]· exp
(
jϕmn−pq

)
exp(jπ)

}
.

(5)
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In the process of replacing x2, y2, z2 with x3, y3, z3, the functions Rr(z2) and φr(z2) in
Equation (2) can be written as −Ri(z3) and −φi(z3), and then we can obtain Equation (5).
The expression of cross-polarization is similar to this and not given here. The amplitude
Emn(x2, y2, z2) of the (m, n) Gaussian beam mode needs to be further discussed, which is
a function of x2, y2, and z2.

Emn(x2, y2, z2)

=
[
2m+n+1m!n!πω(z2)

2
]−0.5

Hm

[ √
2x2

ω(z2)

]
Hn

[ √
2y2

ω(z2)

]
exp

[
− x2

2+y2
2

ω(z2)
2

]
(6)
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where ω(z2) represents the beam radius and Hm(u) is the m order Hermite polynomial.

ω(z2) = ω02

{
1 +

[
λ(−z2 − d2)

πω022

]2
}0.5

(7)

where ω02 is the beam waist radius of the output wave from M1, which is also the beam
waist radius of the input wave to M2. Then, we obtain ω in the x3y3z3 coordinate system.

ω(z3) = ω02

{
1 +

[
λ(z3 + d3)

πω022

]2
}0.5

(8)

Combining Equation (4), Equation (6), Equation (7), and Equation (8), we could obtain
the formula of Emn(x3, y3, z3).

Emn(x3, y3, z3) =
[
2m+n+1m!n!πω(z3)

2
]−0.5

Hm

[√
2(cos θr·x3+sin θr·y3)

ω(z3)

]
Hn

[√
2(sin θr·x3−cos θr·y3)

ω(z3)

]
· exp

[
− x3

2+y3
2

ω(z3)
2

] (9)

Then, according to the expressions of Hermite polynomials, we could transform the
amplitude Emn of a single (m, n) mode into the amplitude sum of a new set of modes in
the x3y3z3 system. Here, we give three simple results of the mode conversion. By the way,
these three modes are generated by one reflection of the fundamental mode [11].

E00(x2, y2, z2) = E00(x3, y3, z3)

E12(x2, y2, z2) = −
√

3 cos2 θr sin θr·E03(x3, y3, z3) +
√

3 cos θr sin2 θr·E30(x3, y3, z3)
+
(
cos3 θr − 2 cos θr sin2 θr

)
E12(x3, y3, z3) +

(
− sin3 θr − 2 cos2 θr sin θr

)
E21(x3, y3, z3)

E30(x2, y2, z2) = − sin3 θr·E03(x3, y3, z3) + cos3 θr·E30(x3, y3, z3)

+
(√

3/2
)

cos θr sin2 θr·E12(x3, y3, z3)−
(√

3/2
)

cos2 θr sin θr·E21(x3, y3, z3)

+
(√

6/4
)(
− sin3 θr + sin θr

)
E01(x3, y3, z3) +

(√
6/4

)(
cos3 θr − cos θr

)
E10(x3, y3, z3)

(10)

By substituting Equation (10) into Equation (5), the formula for the co-polarization in
the x3y3z3 coordinate system will be obtained. We need to pay attention to the fact that the
phase (m + n + 1)φi in Equation (5) is the phase of the (m, n) mode. However, there is not
only the (m, n) mode but also other modes after the mode conversion. Therefore, to achieve
modular computing, we apply the same way in Equation (10) in [11] to approximate the
phase (m + n + 1)φi so that it can be paired with modes other than the (m, n) mode. Only
when the sum of x and y directional orders of the new modes is not equal to that of the
original mode, that is, mnew + nnew 6= m + n, the phase (m + n + 1)φi needs to be replaced
by the phase (mnew + nnew + 1)φi.

Since the converted modes and the original modes are essentially the same fields, the
condition of phase matching between the new mode (mnew, nnew) and the mode (p, q)
still needs to be met on M1. Therefore, the additional phase term in Equation (5), ϕmn−pq,
needs to be replaced by ϕmnewnnew−pq, when mnew + nnew is not equal to m + n. Finally, a
new set of modes and coefficients in the x3y3z3 coordinate system will be obtained. After
the mode conversion, the co-polarization can be written in the form of a set of (mnew, nnew)
modes:

Er−co ≈ const· ∑
mnewnnew

{u1′mnewnnew−pqEmnewnnew exp
[
−jk0(z3 + d3)−

jπ(x3
2+y3

2)
λRi

+ j(mnew + nnew + 1)φi

]
· exp

(
jϕmnewnnew−pq

)
exp(jπ)

}
.

(11)

Here, u1′mnewnnew−pq is the coefficient of the (mnew, nnew) mode, which is a function
of the mode order and the rotation angle θr, and can be obtained from the above analysis.
For example, the coefficients of new modes converted from (0, 0), (1, 0), and (1, 0) modes
can be obtained from Equation (10). Emnewnnew is the amplitude term of the (mnew, nnew)
mode. exp

(
jϕmnewnnew−pq

)
and exp(jπ) are additional phase terms.
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Up to now, the mode conversion was fully described. In the following part, we will
give details about the polarization conversion. According to the previous analyses, the
co-polarization Er−co−M1 and the cross-polarization Er−cx−M1 reflected from M1 are linearly
polarized in the y2 and x2 directions, respectively. Similarly, we should convert these two
orthogonal polarizations into linear polarizations in the x3y3z3 system after the mode
conversion. First, the original co- and cross-polarization need to be decomposed into two
components in the x3 and y3 directions. Er−co−M1 can be decomposed into cos θr·Er−co−M1

and sin θr·Er−co−M1 , which are linearly polarized in the y3 and x3 directions, respectively.
Furthermore, Er−cx−M1 can be decomposed into sin θr·Er−cx−M1 and cos θr·Er−cx−M1 , which
are linearly polarized in the y3 and x3 directions, respectively. Second, the decomposed co-
and cross-polarization in the same direction, for example, the x3 or y3 direction, need to be
accumulated to obtain two new polarizations linearly polarized in the x3 and y3 directions.
Whether these components are added or subtracted depends on the rotation angle θr. We
have modelled and simulated various systems, including the systems with two, three or
more reflectors, the feeds with or without cross-polarization, the feeds containing one,
two or more Gaussian beam modes, and so on. Through the calculation and analysis of
these systems, we finally obtained the following equation, which can correctly calculate
the converted co- and cross-polarization.

{
Ei−co−M2 = cos θr·Er−co−M1 − sin θr·Er−cx−M1

Ei−cx−M2 = − sin θr·Er−co−M1 + cos θr·Er−cx−M1

with(0 ≤ θr <
π
4 , 3π

4 ≤ θr <
5π
4 , 7π

4 ≤ θr < 2π){
Ei−co−M2 = cos θr·Er−co−M1 + sin θr·Er−cx−M1

Ei−cx−M2 = sin θr·Er−co−M1 + cos θr·Er−cx−M1

with(π
4 ≤ θr <

3π
4 , 5π

4 ≤ θr <
7π
4 )

(12)

Here, the subscripts i− co−M2 and r− cx−M1 mean the co-polarization of the
incident beam to M2 and the cross-polarization of the reflected beam from M1.

Ultimately, we will obtain the new co- and cross-polarization in the x3y3z3 coordinate
system by substituting Er−co−M1 and Er−cx−M1 into Equation (12). Er−co−M1 can be calcu-
lated by Equation (11) and Er−cx−M1 can be obtained in a similar way. It should be noted
that Er−co−M1 and Er−cx−M1 are the fields after the mode conversion. Then, Ei−co−M2 and
Ei−cx−M2 can be used as the incident fields to the next mirror M2.

Finally, 3-D multi-reflector quasi-optical systems can be analyzed by 3-D GBMA.
With 3-D GBMA, the proportion of different Gaussian beam modes in the system can be
calculated accurately, which can be used to analyze the performance of the system. At the
same time, the amplitude and phase field distribution at any position in the system can be
evaluated quickly, which directly shows the electrical properties. Therefore, 3-D GBMA
can be considered to be very useful for system analysis and design.

3. Results and Discussion

First, the rationality of the approximate calculation of the phase mentioned above will
be analyzed. There are three modes, (0, 0), (1, 2), and (3, 0), reflected from M1 with the
fundamental Gaussian beam mode incident to M1. These three modes need to be converted
to match the next mirror M2. According to the previous analysis of the mode conversion
and Equation (10), only the mode (3, 0) will be converted to other modes that meet the
condition mnew + nnew 6= m + n. In Figure 4, we show the curves of the coefficients of the
new modes, varying with θr in the example of (3, 0) mode. The coefficients of new modes
can be calculated by Equation (10). We can find that coefficients of other modes remain low
through the process of θr varying, except (3, 0) and (0, 3) modes, which means that the
energy of other modes is kept at a low level, and its influence on (3, 0) and (0, 3) modes is
small. In addition, coefficients of (0, 1) and (1, 0) modes that need to be approximated
for phase remain at a low level, so the impact of the approximation is relatively low. In
addition, the energy of (0, 1) and (1, 0) modes reaches a high level with θr approaching
π/4, 3π/4, etc., which means that the effect of approximation is great in these cases.
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The further accuracy analysis of 3-D GBMA will be given below, verified by the
simulated and measured results of 3-D double ellipsoidal reflector systems. To make the
whole process easier to understand, we select a fundamental mode Gaussian beam feed
without cross-polarization and two identical mirrors to compose the systems with different
θr. The details of the feed and reflector are given in Table 1. It is worth mentioning that
the proposed 3-D GBMA is programmed in MATLAB. The commercial electromagnetic
simulation software GRASP based on PO is used as a contrast. We can model and calculate
different systems with the parameters of the feed and reflector in Table 1 and different
rotation angles θr. Then, we present near-field amplitude and phase distributions on
the plane of the beam waist ω03 (shown in Figure 2) in 3-D systems with different θr in
Figures 5 and 6.

Table 1. Parameters of Feed and Reflector.

Feed Values Reflector Values

Frequency 183 GHz Distance R1 47λ
Wavelength λ Distance R2 86.29λ

Beam waist radius ω01 1.67λ Incident angle θ π/6
Diameter D 35.20λ

These amplitude results of 3-D GBMA are in good agreement with those of PO within
the range of twice the beam radius. The polarization direction of the feed is chosen to define
the co- and cross-polarization direction of the system. The mutual conversion between
the co- and cross-polarization is caused by the change of θr. It is not hard to see that
cross-polarization is higher than co-polarization with θr = π/2. The maximum difference
between the two results is less than 2.6 dB, which occurs on the edge of the sampling plane
with the rotation angle θr equal to π/4. Here, the results of two special 3-D systems with
θr = 0 and π are no longer given, which have been presented in [19]. As θr increases from
0 to π/4, the difference is increasing. Then, the difference drops until θr equals π/2. From
the phase results, we can obtain the same conclusions. The maximum difference is less than
24.7◦ on the edge of the sampling plane with θr = π/4. The reason is that the approximate
calculation of phase is used in the mode conversion.

Following, we present detailed information about the fabrication and measurement of
a system with θr = π/2 to verify the accuracy of 3-D GBMA further. The prototypes of
the corrugated horn and the fabricated double ellipsoidal reflector systems are illustrated
in Figure 7. The parameters of the corrugated horn and manufactured reflectors are also
consistent with those given in Table 1. The Root Mean Square (RMS) surface tolerance of
mirrors is less than 5 microns.

We applied near field scanning to measure the output electric field from this system.
Figure 8 presents the scanning devices, including the probe, scanning frame and absorbing
baffle. The scanning plane is chosen at a distance of 200 mm from the beam waist ω03
(shown in Figure 2). The dimension of the measured plane is 212 mm by 212 mm, which
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covers a range of two times the beam radius. The number of sampling points is 143*143,
and the sampling interval is 1.49 mm, slightly less than λ at 183 GHz. Furthermore, the far
field results are calculated by performing Fast Fourier Transform (FFT) on the near field
data. The far field radiation patterns on E- and H-planes are plotted in Figure 9, including
the simulated results of 3-D GBMA and PO and the measured results. The near field
results on the scanning plane are given in Figures 10 and 11. It should be noted that the
radiation field from the corrugated horn contains not only the fundamental Gaussian beam,
but also some higher order modes with very low energy. The purity of the fundamental
Gaussian beam mode in the horn feed is about 99.8%, and there is a cross-polarization
with a peak amplitude of about −30 dB. In the simulations, two single fundamental
Gaussian beam modes with peaks of 0 dB and −30 dB are used to approximate the co- and
cross-polarization in the horn, respectively, which caused a small difference between the
simulated and measured results. Furthermore, the ripples of measured results are caused
by the background noise, the reflection, and diffraction of various metal surfaces. However,
we can still see that the differences between these three results are acceptable. Moreover,
we can find that the amplitudes and phases simulated by 3-D GBMA and measured are
very similar through observing the near field results. Finally, we can conclude that both
the amplitude and phase of the co- and cross-polarization are simulated by 3-D GBMA
accurately, and 3-D GBMA is correct and precise compared with PO and the measured
results. Now, the calculation efficiency of 3-D GBMA will be discussed and compared
with PO in GRASP10. We program 3-D GBMA in MATLAB. It should be noted that the
calculation speed is not optimized, such as parallel computing. The execution time of 3-D
GBMA and PO in the 3-D dual-reflector system with θr = π/2 is given in Table 2. In the
first reflection, 3-D GBMA takes 0.08s to compute the modes, and PO (single-core) takes
0.52 s to obtain the currents on M1. Then, the consuming time of the mode and polarization
conversions is 0.13 s and 0.06 s, respectively. In the second reflection, 3-D GBMA and PO
(single-core) take 0.17 s and 15.92 s. Finally, two methods cost 0.08 s and 3.71 s to calculate
the field distributions. It is worth noting that the time of 3-D GBMA in Table 2 is executed
in the single-core, which can be further reduced with the multi-core parallel computing. In
addition, the execution time of PO in the multi-core operation is also given as a reference.
We can conclude that 3-D GBMA is efficient and accurate compared with PO in GRASP10.
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Figure 11. The near field phase results of the fabricated quasi-optical system with θr = π/2: (a) the simulated results; (b) the
measured results.

Table 2. Execution time of 3-D GBMA and PO.

Method First Reflection Mode Conversion Polarization Conversion Second Reflection Field Total

3-D GBMA 0.08 s 0.13 s 0.06 s 0.17 s 0.08 s 0.52 s

PO
(single-core) 0.52 s - - 15.92 s 3.71 s 20.15 s

PO
(multi-core) 0.42 s - - 3.85 s 0.54 s 4.81 s

Note: The computer configuration is as follows: 6 cores and 12 threads Central Processing Unit (CPU), 16 GB Random Access Memory
(RAM), 256 GB Solid State Disk (SSD).
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4. Conclusions

In this work, GBMA is further improved to be applied to analyze 3-D quasi-optical
systems. Some significant expressions and derivation processes are given and discussed in
detail. To verify the validity and accuracy of 3-D GBMA, we compared the results with
those obtained by PO in GRASP10 of several 3-D dual-reflector systems with different
rotation angles. To realize modular computation and improve efficiency, we made some
approximations at the expense of some accuracy. The maximum difference between the
two methods’ results is less than 2.6 dB in amplitude and 24.7◦ in phase at the edge of
twice the beam radius on the sampling plane. Moreover, we fabricated a 3-D double
ellipsoidal reflector system with θr = π/2, and applied near field scanning. The measured
results are in good agreement with the simulated results for both co- and cross-polarization.
Furthermore, the calculation efficiency of 3-D GBMA was compared with PO in GRASP10.
Taking a 3-D dual-reflector system as an example, the execution time of 3-D GBMA is
much shorter than that of PO with the same computing resources. Finally, we could
conclude that 3-D GBMA is correct, accurate and efficient to calculate the field distribution
in multi-reflector quasi-optical systems.
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